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Abstract

In this article, we introduce and consider a new system of general nonconvex
variational inequalities defined on uniformly prox-regular sets. We establish the
equivalence between the new system of general nonconvex variational inequalities
and the fixed point problems to analyze an explicit projection method for solving
this system. We also consider the convergence of the projection method under
some suitable conditions. Results presented in this article improve and extend the
previously known results for the variational inequalities and related optimization
problems.
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1 Introduction
Variational inequalities theory, which was introduced by Stampacchia [1], has emerged

as an interesting and fascinating branch of mathematical and engineering sciences. The

ideas and techniques of variational inequalities are being applied in structural analysis,

economics, optimization, operations research fields. It has been shown that variational

inequalities provide the most natural, direct, simple, and efficient framework for a gen-

eral treatment of some unrelated problems arising in various fields of pure and applied

sciences. In recent years, there have been considerable activities in the development of

numerical techniques including projection methods, Wiener-Hopf equations, auxiliary

principle, and descent framework for solving variational inequalities; see [2-17] and the

references therein. These activities have motivated us to generalize and extend the var-

iational inequalities and related optimization problems in several directions using novel

techniques.

Projection technique has played a significant role in the numerical solution of varia-

tional inequalities based on the convergence analysis. It is worth mentioning that

almost all the results regarding the existence and iterative schemes for variational

inequalities, which have been investigated and considered, if the underlying set is a

convex set. This is because all the techniques are based on the properties of the pro-

jection operator over convex sets, which may not hold in general, when the sets are
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nonconvex. Recently, Clarke et al. [8] and Poliquin et al. [9] have introduced and stu-

died a new class of nonconvex sets, which are called uniformly prox-regular sets. It is

known that uniformly prox-regular sets are nonconvex sets and include convex sets as

a special case. This class of uniformly prox-regular sets has played an important part

in many nonconvex applications such as optimization, dynamical systems, and differen-

tial inclusions.

In 2009, Noor [10] introduced a nonconvex variational inequalities based on the uni-

formly prox-regular sets. Moreover, he discussed the existence and algorithm of the

solution for the nonconvex variational inequalities, which shows projection technique

can be extended to nonconvex sets. Noor [11] proposed some iterative methods for

solving a general nonconvex variational inequalities with projection methods and

Wiener-Hopf equations technique. On the other hand, Verma [13] and Noor and

Noor [14] proposed explicit projection methods for solving systems of variational

inequalities and general variational inequalities on a closed convex subset of Hilbert

space, respectively. Very recently, Wen [15] modified projection methods to a general-

ized system of nonconvex variational inequalities with different nonlinear operators.

However, only iterative sequences {g(xn)}, {g(yn)} come from the projection methods,

which requires that mapping g must be injective in order to arrive at a solution of the

generalized system. Furthermore, the property defined on the underlying operator T

depends on the mapping g in convergence analysis. These strict conditions rule out

many applications of the projection type methods for the generalized system of non-

convex variational inequalities.

In this article, motivated and inspired by the research going on in this direction, we

introduce and consider a more general system, which is called a new general noncon-

vex variational inequalities. The new system includes the system of variational inequal-

ities involving two different nonlinear operators, the general nonconvex variational

inequalities and the systems of variational inequalities defined on closed convex sets as

special cases.

The purpose of this article is not only to show that projection technique can be

extended to the new system of general nonconvex variational inequalities on uniformly

prox-regular sets, but also to get rid of the dependence of T on the mapping g and the

injective property defined on g in convergence analysis of the projection method for

solving the new system of general nonconvex variational inequalities. Our results

extend and improve the corresponding results of [7,10-15].

2 Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by 〈.,.〉 and

∥.∥, respectively. Let K be a nonempty and convex subset in H.

First of all, we recall the following well-known concepts from nonlinear convex ana-

lysis and non-smooth analysis [8,9].

Definition 2.1. The proximal normal cone of K at u Î H is given by

NP
K(u) := {ξ ∈ H : u ∈ PK[u + αξ ]},

where a > 0 is a constant and

PK[u] = {u∗ ∈ K : dK(u) =
∥∥u − u∗∥∥}.
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Here dK(.) is the usual distance function to the subset K, that is dK(u) = infvÎK ∥v -

u∥. The proximal normal cone NP
K(u) has the following characterization.

Lemma 2.1. Let K be a nonempty, closed, and convex subset in H. Then ς ∈ NP
K(u)

if and only if there exists a constant a = a(ζ, u) > 0 such that

〈ς , v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.

Definition 2.2. The Clarke normal cone, denoted by NC
K(u), is defined as

NC
K(u) = co[NP

K(u)],

where comeans the closure of the convex hull. Clearly NP
K(u) ⊂ NC

K(u), but the con-

verse is not true. Note that NC
K(u) is always closed and convex, whereas NP

K(u) is con-

vex, but may not be closed [9].

Definition 2.3. For a given r Î (0, ∞], a subset Kr is said to be normalized uniformly

r-prox-regular if and only if every nonzero proximal normal to Kr can be realized by

an r-ball, that is, ∀u Î Kr and 0 
= ξ ∈ NP
Kr
(u), one has

〈
ξ

‖ξ‖ , v − u
〉

≤ 1
2r

‖v − u‖2, ∀v ∈ Kr .

It is clear that the class of normalized uniformly prox-regular sets is sufficiently large

to include the class of convex sets, p-convex sets, C1,1 submanifolds (possibly with

boundary) of H, the images under a C1,1 diffeomorphism of convex sets and many

other nonconvex sets; see [8,9]. It is known that if Kr is a uniformly prox-regular set,

then the proximal normal cone NP
Kr
(u) is closed as a set-valued mapping. Thus, we

have NP
Kr
(u) = NC

Kr
(u).

Remark 2.1. It is clear that if r = ∞, then uniformly prox-regularity of Kr is equiva-

lent to the convexity of K, that is, Kr = K.

Let Kr be a uniformly r-prox-regular (nonconvex) set, and T1, T2 : Kr × Kr ® Kr and

g, h : H ® Kr be different nonlinear operators, respectively. For any given constants r
> 0 and h > 0, we consider the problem of finding x*, y* Î Kr such that

〈ρT1(y∗, x∗) + x∗ − g(y∗), g(x) − x∗〉 + 1
2r

∥∥g(x) − x∗∥∥2 ≥ 0, ∀x ∈ H : g(x) ∈ Kr, (2:1a)

〈ηT2(x∗, y∗) + y∗ − h(x∗), h(x) − y∗〉 + 1
2r

∥∥h(x) − y∗
∥∥2 ≥ 0, ∀x ∈ H : h(x) ∈ Kr , (2:1b)

which is called a new system of general nonconvex variational inequalities.

If g = h = I, the identity operator, then problem (2.1) is equivalent to finding x*, y* Î
Kr such that

〈ρT1(y∗, x∗) + x∗ − y∗, x − x∗〉 + 1
2r

∥∥x − x∗∥∥2 ≥ 0, ∀x ∈ Kr, ρ > 0, (2:2a)

〈ηT2(x∗, y∗) + y∗ − x∗, x − y∗〉 + 1
2r

∥∥x − y∗
∥∥2 ≥ 0, ∀x ∈ Kr , η > 0, (2:2b)

which appears to be the other new system of nonconvex variational inequalities.

We note that, if r = ∞, Kr = K, the convex subset in H, then problem (2.1) is equiva-

lent to finding x*, y* Î K such that
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〈ρT1(y∗, x∗) + x∗ − g(y∗), g(x) − x∗〉 ≥ 0, ∀x ∈ H : g(x) ∈ K, ρ > 0, (2:3a)

〈ηT2(x∗, y∗) + y∗ − h(x∗), h(x) − y∗〉 ≥ 0, ∀x ∈ H : h(x) ∈ K, η > 0, (2:3b)

which is known as the system of general variational inequalities involving four differ-

ent nonlinear operators, introduced, and studied by Noor and Noor [14].

If g = h = I, T1, T2 : K ® K are two univariate nonlinear operators, then problem

(2.3) is equivalent to finding x*, y* Î K such that

〈ρT1(y∗) + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ K, ρ > 0, (2:4a)

〈ηT2(x∗) + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ K, η > 0, (2:4b)

which is known as the system of nonlinear variational inequalities involving two dif-

ferent nonlinear operators. If T1 = T2, problem (2.4) reduces to the system of varia-

tional inequalities, which was introduced and studied by Verma [13].

It is worth mentioning that if T1 = T2 = T : Kr ® Kr is a univariate nonlinear opera-

tor, and x* = y* = u, then problem (2.2) reduces to finding u Î Kr such that

〈Tu, v − u〉 + 1
2r

‖v − u‖2 ≥ 0, ∀v ∈ Kr , (2:5)

which is more general than the normal nonconvex variational inequality, introduced

and studied by Bounkhel et al. [3] and Noor [7,10], that is

〈Tu, v − u〉 ≥ 0, ∀v ∈ Kr . (2:6)

It is well known that problem (2.6) is equivalent to finding u Î Kr such that

0 ∈ Tu +NP
Kr
(u), (2:7)

where NP
Kr
(u) denotes the normal cone of Kr at u in the sense of nonconvex analysis.

Problem (2.7) is called the variational inclusion associated with nonconvex variational

inequality (2.6), which implies that the nonconvex variational inequality is equivalent

to finding a zero of the sum of two monotone operators. This equivalent formulation

plays a crucial and basic part in this article, which allows us to use the projection

operator technique for solving the general system of nonconvex variational inequalities

(2.1).

We now recall the well-known properties of the uniform prox-regular sets [8-10,15].

Lemma 2.2. Let K be a nonempty closed subset of H, r Î (0, ∞] and set Kr = {u Î H

: d(u, K) <r}. If Kr is uniformly prox-regular, then

(i) ∀u ∈ Kr , PKr(u) 
= 0..

(ii) ∀r′ ∈ (0, r), PKr is Lipschitz continuous with constant δ =
r

r − r′
on Kr’.

(iii) The proximal normal cone is closed as a set-valued mapping.

Lemma 2.3 [18]. Assume {an} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1 − γn)αn + σn, n ≥ 0,

where {gn} is a sequence in (0,1) and {sn} is a sequence in R such that

(i)
∑∞

n=0 γn = ∞;

(ii) lim supn→∞σn/γn ≤ 0 or
∑∞

n=0 |σn| < ∞.
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Then limn®∞an = 0.

Definition 2.4. An operator T : H ® H is said to be r-strongly monotone, if there

exists a constant r > 0 such that

〈Tx − Ty, x − y〉 ≥ r
∥∥x − y

∥∥2, ∀x, y ∈ H.

Definition 2.5. An operator T : H ® H is said to be μ-Lipschitz continuous, if there

exists a constant μ > 0 such that
∥∥Tx − Ty

∥∥ ≤ μ
∥∥x − y

∥∥ , ∀x, y ∈ H.

Remark 2.2. As T = I, the identity operator is 1-strongly monotone and 1-Lipschitz

continuous.

Remark 2.3. Obviously, whenever operator T is r-strongly monotone and μ-Lipschitz

continuous, it follows that μ ≥ r.

3 Projection methods
In this section, we establish the equivalence between the new system of general non-

convex variational inequalities (2.1) and the fixed point problem with the projection

technique. This alternative formulation enable us to suggest and analyze an explicit

projection method for solving system (2.1).

Lemma 3.1. x*, y* Î Kr is a solution of the system of general nonconvex variational

inequalities (2.1), if and only if

x∗ = PKr [g(y
∗) − ρT1(y∗, x∗)], (3:1a)

y∗ = PKr [h(x
∗) − ηT2(x∗, y∗)], (3:1b)

where PKr is the projection of H onto the uniformly prox-regular set Kr.

Proof. Let x*, y* Î Kr be a solution of (2.1). From (2.7), we have that the problem

(2.1a) is equivalent to that

0 ∈ ρT1(y∗, x∗) + x∗ − g(y∗) +NP
Kr
(x∗). (3:2)

where NP
Kr
(x∗) is proximal normal cone of Kr at x* in the sense of nonconvex analy-

sis. Indeed, if rT1(y*, x*) + x* - g(y*) = 0, because the vector zero always belongs to

any normal cone, then (3.2) is valid. If rT1(y*, x*) + x* - g(y*) ≠ 0, then for all x Î H :

g(x) Î Kr, it follows from (2.1a) that

〈−(ρT1(y∗, x∗) + x∗ − g(y∗)), g(x) − x∗〉 ≤ 1
2r

∥∥g(x) − x∗∥∥2.
By using Lemma 2.1, we obtain

−(ρT1(y∗, x∗) + x∗ − g(y∗)) ∈ NP
Kr
(x∗)

and so (3.2) holds also. Consequently, the general nonconvex variational inequality

(2.1a) is equivalent to (3.2), which is called variational inclusion associated with the

problem (2.1a).

On the other hand, (3.2) can be written as

g(y∗) − ρT1(y∗, x∗) ∈ x∗ +NP
Kr
(x∗) = (I +NP

Kr
)x∗,
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where I is identity operator. Moreover, we have

x∗ = PKr [g(y
∗) − ρT1(y∗, x∗)],

where we have used the well-known fact that PKr = (I + ρNP
Kr
)−1. In a similar way, we

can obtain (3.1b). This proves our assertions. □
Algorithm 3.1. For arbitrarily chosen initial points x0, y0 Î Kr, compute the

sequences {xn} and {yn} in the following way:

xn+1 = (1 − αn)xn + αnPKr [g(yn) − ρT1(yn, xn)], ρ > 0, (3:3a)

yn+1 = (1 − βn)xn+1 + βnPKr [h(xn+1) − ηT2(xn+1, yn)], η > 0, (3:3b)

where {an}, {bn} are two sequences in [0,1].

If bn = 1, Kr = K, then Algorithm 3.1 reduces to the following explicit projection

method for solving the system of variational inequalities (2.3), which is mainly due to

Noor and Noor [14]:

Algorithm 3.2. For arbitrarily chosen initial points x0, y0 Î K, compute the

sequences {xn} and {yn} in the following way:

xn+1 = (1 − αn)xn + αnPK[g(yn) − ρT1(yn, xn)], ρ > 0,

yn+1 = PK[h(xn+1) − ηT2(xn+1, yn)], η > 0,

where {an}, {bn} are two sequences in [0,1].

If g = h = I, Kr = K, and T1, T2 : K ® K are two univariate nonlinear operators, then

Algorithm 3.1 reduces to the following explicit projection method for solving the sys-

tem of variational inequalities (2.4):

Algorithm 3.3. For arbitrarily chosen initial points x0, y0 Î K, compute the

sequences {xn} and {yn} in the following way:

xn+1 = (1 − αn)xn + αnPK[yn − ρT1(yn)], ρ > 0,

yn+1 = (1 − βn)xn+1 + βnPK[xn+1 − ηT2(xn+1)], η > 0,

where {an}, {bn} are two sequences in [0,1]. Algorithm 3.3 extends and improves the

two-step projection methods of Verma [13].

If g = h, T1 = T2 = T is the univariate nonlinear operator, we again use the fixed

point formulation (3.1) to suggest and analyze the following explicit projection method,

known as Mann iteration:

Algorithm 3.4. For arbitrarily chosen initial points x0 Î Kr, compute the sequence

{xn} in the following way:

xn+1 = (1 − αn)xn + αnPKr [g(xn) − ρTxn], ρ > 0,

where {an} is a sequence in [0,1].

Remark 3.1. Algorithm 3.4 includes the projection methods of Noor [10] as special

cases.

4 Main results
We now consider the convergence analysis of Algorithm 3.1, and this is the main

motivation of our next result. In a similar way, we consider the convergence criteria of

other algorithms.
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Theorem 4.1. Let PKr be a Lipschitz continuous operator with constant δ =
r

r − r′
.

Let Ti : Kr × Kr ® Kr be ri-strongly monotone and μi-Lipschitz continuous in the first

variable, i = 1, 2, and g, h : Kr ® Kr be strongly monotone with constants r3, r4 and

Lipschitz continuous with constants μ3, μ4, respectively. If there exist constants r, h >

0 such that

∣∣∣∣ρ − r1
μ2
1

∣∣∣∣ <

√
δ2r21 − μ2

1[δ2 − (1 − δk1)
2]

δμ2
1

, δr1 > μ1

√
δ2 − (1 − δk1)

2, δk1 < 1, (4:1)

∣∣∣∣η − r2
μ2
2

∣∣∣∣ <

√
δ2r22 − μ2

2[δ2 − (1 − δk2)
2]

δμ2
2

, δr2 > μ2

√
δ2 − (1 − δk2)

2, δk2 < 1, (4:2)

where

k1 =
√
1 − 2r3 + μ2

3, k2 =
√
1 − 2r4 + μ2

4,

and an, bn Î [0, 1],
∑∞

n=0 αn = ∞,
∑∞

n=0 (1 − βn) < ∞, then the sequences {xn} and

{yn} obtained from Algorithm 3.1 converges to a solution of the system of general non-

convex variational inequalities (2.1), respectively.

Proof. Let x*, y* Î Kr be a solution of (2.1). From (3.1a) and (3.3a) and the Lipschitz

continuous property of operator PKr, we can obtain
∥∥xn+1 − x∗∥∥ =

∥∥(1 − αn)(xn − x∗) + αn{PKr [g(yn) − ρT1(yn, xn)] − PKr [g(y
∗) − ρT1(y∗, x∗)]}∥∥

≤ (1 − αn)
∥∥xn − x∗∥∥ + αn

∥∥PKr [g(yn) − ρT1(yn, xn)] − PKr [g(y
∗) − ρT1(y∗, x∗)]

∥∥
≤ (1 − αn)

∥∥xn − x∗∥∥ + αnδ
∥∥g(yn) − g(y∗) − ρ[T1(yn, xn) − T1(y∗, x∗)]

∥∥
≤ (1 − αn)

∥∥xn − x∗∥∥ + αnδ
∥∥g(yn) − g(y∗) − (yn − y∗)

∥∥ + αnδ
∥∥(yn − y∗)−

ρ[T1(yn, xn) − T1(y∗, x∗)]
∥∥ .

(4:3)

Since the operator T1 is r1-strongly monotone and μ1-Lipschitz continuous definition

in the first variable, it follows that
∥∥yn − y∗ − ρ[T1(yn, xn) − T1(y∗, x∗)]

∥∥2
=

∥∥yn − y∗
∥∥2 − 2ρ〈T1(yn, xn) − T1(y∗, x∗), yn − y∗〉 + ρ2

∥∥T1(yn, xn) − T1(y∗, x∗)
∥∥2

≤ ∥∥yn − y∗
∥∥2 − 2ρr1

∥∥yn − y∗
∥∥2 + ρ2

∥∥T1(yn, xn) − T1(y∗, x∗)
∥∥2

≤ (1 − 2ρr1 + ρ2μ2
1)

∥∥yn − y∗
∥∥2,

(4:4)

which implies that

∥∥yn − y∗ − ρ[T1(yn, xn) − T1(y∗, x∗)]
∥∥ ≤

√
1 − 2ρr1 + ρ2μ2

1

∥∥yn − y∗
∥∥ . (4:5)

In a similar way, we have (note that μ3 ≥ r3, from Remark 2.3)

∥∥g(yn) − g(y∗) − (yn − y∗)
∥∥ ≤

√
1 − 2r3 + μ2

3

∥∥yn − y∗
∥∥ . (4:6)

Consequently, from (4.3), (4.5), and (4.6), we have

∥∥xn+1 − x∗∥∥ ≤ (1 − αn)
∥∥xn − x∗∥∥ + αnδ

(
k1 +

√
1 − 2ρr1 + ρ2μ2

1

)∥∥yn − y∗
∥∥

= (1 − αn)
∥∥xn − x∗∥∥ + αnθ1

∥∥yn − y∗
∥∥ ,

(4:7)
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where θ1 = δ(k1 +
√
1 − 2ρr1 + ρ2μ2

1), k1 =
√
1 − 2r3 + μ2

3. From (4.1), we obtain that

θ1 Î (0, 1).

On the other hand, it follows from (3.1b) and (3.3b) that
∥∥yn+1 − y∗

∥∥ ≤ (1 − βn)
∥∥xn+1 − y∗

∥∥ + βn
∥∥PKr [h(xn+1) − ηT2(xn+1, yn)] − PKr [h(x

∗) − ηT2(x∗, y∗)]
∥∥

≤ (1 − βn)
∥∥xn+1 − y∗

∥∥ + βnδ
∥∥h(xn+1) − h(x∗) − η[T2(xn+1, yn) − T2(x∗, y∗)]

∥∥
≤ (1 − βn)

∥∥xn+1 − x∗∥∥ + (1 − βn)
∥∥x∗ − y∗

∥∥ + βnδ
∥∥h(xn+1) − h(x∗) − (xn+1 − x∗)

∥∥+
βnδ

∥∥xn+1 − x∗ − η[T2(xn+1, yn) − T2(x∗, y∗)]
∥∥ .

(4:8)

Similarly, from the properties defined on T2 in the first variable, we have
∥∥xn+1 − x∗ − η[T2(xn+1, yn) − T2(x∗, y∗)]

∥∥2
=

∥∥xn+1 − x∗∥∥2 − 2η〈T2(xn+1, yn) − T2(x∗, y∗), xn+1 − x∗〉 + η2
∥∥T2(xn+1, yn) − T2(x∗, y∗)

∥∥2
≤ ∥∥xn+1 − x∗∥∥2 − 2ηr2

∥∥xn+1 − x∗∥∥2
+ η2

∥∥T2(xn+1, yn) − T2(x∗, y∗)
∥∥2

≤ (1 − 2ηr2 + η2μ2
2)

∥∥xn+1 − x∗∥∥2,
(4:9)

and

∥∥h(xn+1) − h(x∗) − (xn+1 − x∗)
∥∥2 ≤ (1 − 2r4 + μ2

4)
∥∥xn+1 − x∗∥∥2 (4:10)

Moreover, from (4.8)-(4.10), we have

∥∥yn+1 − y∗
∥∥ ≤ (1 − βn)

∥∥xn+1 − x∗∥∥ + (1 − βn)
∥∥x∗ − y∗

∥∥ + βnδ

(
k2 +

√
1 − 2ηr2 + η2μ2

2

)∥∥xn+1 − x∗∥∥
≤ (1 − βn)

∥∥xn+1 − x∗∥∥ + (1 − βn)
∥∥x∗ − y∗

∥∥ + βnθ2
∥∥xn+1 − x∗∥∥ ,

(4:11)

where θ2 = δ(k2 +
√
1 − 2ηr2 + η2μ2

2), k2 =
√
1 − 2r4 + μ2

4. From (4.2), we obtain that

θ2 Î (0, 1). For all n ≥ 1, it follows from (4.11) that
∥∥yn − y∗

∥∥ ≤ (1 − βn−1)
∥∥xn − x∗∥∥ + (1 − βn−1)

∥∥x∗ − y∗
∥∥ + βn−1θ2

∥∥xn − x∗∥∥
=

[
1 − (1 − θ2) βn−1

] ∥∥xn − x∗∥∥ + (1 − βn−1)
∥∥x∗ − y∗

∥∥ . (4:12)

Substituting (4.12) into (4.7), we have (note that θ1, θ2 Î (0, 1))
∥∥xn+1 − x∗∥∥ ≤ (1 − αn)

∥∥xn − x∗∥∥ + αnθ1
{[
1 − (1 − θ2) βn−1

] ∥∥xn − x∗∥∥ + (1 − βn−1)
∥∥x∗ − y∗

∥∥}
≤ (1 − αn)

∥∥xn − x∗∥∥ + αnθ1
∥∥xn − x∗∥∥ + αn (1 − βn−1) θ1

∥∥x∗ − y∗
∥∥

≤ [1 − (1 − θ1) αn]
∥∥xn − x∗∥∥ + αn (1 − βn−1)

∥∥x∗ − y∗
∥∥ .

(4:13)

Since 1 − θ1 > 0,
∑∞

n=0 αn = ∞ and
∑∞

n=0 (1 − βn) < ∞, we apply Lemma 2.3 to get

lim
n→∞

∥∥xn − x∗∥∥ = 0. (4:14)

Combining (4.12) and (4.14), we have

lim
n→∞

∥∥yn − y∗
∥∥ = 0. (4:15)

It follows that limn®∞ xn = x*, limn®∞ yn = y*, satisfying the general system of non-

convex variational inequalities (2.1). This completes the proof. □
Theorem 4.2. Let K be a nonempty and convex subset of Hilbert space H. Let Ti : K

× K ® K be ri-strongly monotone and μi-Lipschitz continuous in the first variable, i =

1, 2, and g, h : K ® K be strongly monotone with constants r3, r4 and Lipschitz contin-

uous with constants μ3, μ4, respectively. If there exist constants r, h > 0 such that
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∣∣∣∣ρ − r1
μ2
1

∣∣∣∣ <

√
r21 − μ2

1

(
2k1 − k21

)
μ2
1

, r1 > μ1

√
2k1 − k21, k1 < 1, (4:16)

∣∣∣∣η − r2
μ2
2

∣∣∣∣ <

√
r22 − μ2

2

(
2k2 − k22

)
μ2
2

, r2 > μ2

√
2k2 − k22, k2 < 1, (4:17)

where

k1 =
√
1 − 2r3 + μ2

3, k2 =
√
1 − 2r4 + μ2

4,

and an Î [0, 1],
∑∞

n=0 αn = ∞, then the sequences {xn} and {yn} obtained from Algo-

rithm 3.2 converges to a solution of the system of general variational inequalities (2.3),

respectively.

Proof. If Kr = K, bn = 1, Algorithm 3.1 reduces to Algorithm 3.2. Moreover, we can

obtain r = ∞ and δ = 1 from Remark 2.1, and
∑∞

n=0 (1 − βn) = 0. Then the conclusion

follows immediately from Theorem 4.1. This completes the proof. □
Theorem 4.3. Let K be a nonempty and convex subset of Hilbert space H, and Ti : K

® K be ri-strongly monotone and μi-Lipschitz continuous, i = 1, 2. If there exist con-

stants r, h such that

0 < ρ <
2r1
μ2
1

, 0 < η <
2r2
μ2
2

. (4:18)

and an, bn Î [0, 1],
∑∞

n=0 αn = ∞,
∑∞

n=0 (1 − βn) < ∞, then the sequences {xn} and

{yn} obtained from Algorithm 3.3 converges to a solution of the system of variational

inequalities (2.4), respectively.

Proof. If g = h = I, Kr = K, Algorithm 3.1 reduces to Algorithm 3.3. Moreover, we

can obtain r = ∞ and δ = 1 from Remark 2.1, and k1 = k2 = 0 from Remark 2.2 (r3 =

μ3 = r4 = μ4 = 1). Then the conclusion follows immediately from Theorem 4.1. This

completes the proof. □
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