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Abstract

In this article, we first introduce the concept of directional hidden contractions in
metric spaces. The existences of generalized approximate fixed point property for
various types of nonlinear contractive maps are also given. From these results, we
present some new fixed point theorems for directional hidden contractions which
generalize Berinde-Berinde’s fixed point theorem, Mizoguchi-Takahashi’s fixed point
theorem and some well-known results in the literature.
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1 Introduction and preliminaries
Let (X, d) be a metric space. The open ball centered in x Î X with radius r > 0 is

denoted by B(x, r). For each x Î X and A ⊆ X, let d(x, A) = infyÎA d(x, y). Denote by

N (X) the class of all nonempty subsets of X, C(X) the family of all nonempty closed

subsets of X and CB(X) the family of all nonempty closed and bounded subsets of X.

A function H : CB(X) × CB(X) → [0,∞) defined by

H(A,B) = max
{
sup
x∈B

d(x,A), sup
x∈A

d(x,B)
}

is said to be the Hausdorff metric on CB(X) induced by the metric d on X. A point

v in X is a fixed point of a map T if v = Tv (when T : X ® X is a single-valued map)

or v Î Tv (when T : X → N (X) is a multivalued map). The set of fixed points of T is

denoted by F(T) . Throughout this article, we denote by N and ℝ, the sets of positive

integers and real numbers, respectively.

The celebrated Banach contraction principle (see, e.g., [1]) plays an important role in

various fields of applied mathematical analysis. It is known that Banach contraction

principle has been used to solve the existence of solutions for nonlinear integral equa-

tions and nonlinear differential equations in Banach spaces and been applied to study

the convergence of algorithms in computational mathematics. Since then a number of

generalizations in various different directions of the Banach contraction principle have
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been investigated by several authors; see [1-36] and references therein. A interesting

direction of research is the extension of the Banach contraction principle to multiva-

lued maps, known as Nadler’s fixed point theorem [2], Mizoguchi-Takahashi’s fixed

point theorem [3], Berinde-Berinde’s fixed point theorem [5] and references therein.

Another interesting direction of research led to extend to the multivalued maps setting

previous fixed point results valid for single-valued maps with so-called directional con-

traction properties (see [20-24]). In 1995, Song [22] established the following fixed

point theorem for directional contractions which generalizes a fixed point result due to

Clarke [20].

Theorem S [22]. Let L be a closed nonempty subset of X and T : L → CB(X) be a

multivalued map. Suppose that

(i) T is H-upper semicontinuous, that is, for every ε > 0 and every x Î L there

exists r > 0 such that supyÎTx’ d(y, Tx) <ε for every x’ Î B(x, r);

(ii) there exist a Î (0, 1] and g Î [0, a) such that for every x Î L with x �∈ Tx ,

there exists y Î L \ {x} satisfying

αd(x, y) + d(y,Tx) ≤ d(x,Tx)

and

sup
z∈Tx

d(z,Ty) ≤ γ d(x, y).

Then F(T) ∩ L �=� 0 .
Definition 1.1 [23]. Let L be a nonempty subset of a metric space (X, d). A multiva-

lued map T : L → CB(X) is called a directional multivalued k(·)-contraction if there

exist l Î (0, 1], a : (0, ∞) ® [l, 1] and k : (0, ∞) ® [0, 1) such that for every x Î L

with x �∈ Tx , there is y Î L \ {x} satisfying the inequalities

a(d(x, y))d(x, y) + d(y,Tx) ≤ d(x,Tx)

and

sup
z∈Tx

d(z,Ty) ≤ k(d(x, y))d(x, y).

Subsequently Uderzo [23] generalized Song’s result and some main results in [21] for

directional multivalued k(·)-contractions.

Theorem U [23]. Let L be a closed nonempty subset of a metric space (X, d) and

T : L → CB(X) be an u.s.c. directional multivalued k(·)-contraction. Assume that there

exist x0 Î L and δ > 0 such that d(x0, Tx0) ≤ aδ and

sup
t∈(0,δ]

k(t) < inf
t∈(0,δ]

a(t),

where l Î (0, 1], a and k are the constant and the functions occuring in the defini-

tion of directional multivalued k(·)-contraction. Then F(T) ∩ L �=� 0 .
Recall that a function p : X × X ® [0, ∞) is called a w-distance [1,25-30], if the

following are satisfied:

(w1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z Î X;

(w2) for any x Î X, p(x, ·): X ® [0, ∞) is l.s.c;
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(w3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

A function p : X × X ® [0, ∞) is said to be a τ-function [14,26,28-30], first introduced

and studied by Lin and Du, if the following conditions hold:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z Î X;

(τ2) if x Î X and {yn} in X with limn®∞ yn = y such that p(x, yn) ≤ M for some M =

M(x) > 0, then p(x, y) ≤ M;

(τ3) for any sequence {xn} in X with limn®∞ sup{p(xn, xm): m >n} = 0, if there exists a

sequence {yn} in X such that limn®∞ p(xn, yn) = 0, then limn®∞ d(xn, yn) = 0;

(τ4) for x, y, z Î X, p(x, y) = 0 and p(x, z) = 0 imply y = z.

Note that not either of the implications p(x, y) = 0 ⇔ x = y necessarily holds and p is

nonsymmetric in general. It is well known that the metric d is a w-distance and any

w-distance is a τ-function, but the converse is not true; see [26] for more detail.

The following result is simple, but it is very useful in this article.

Lemma 1.1. Let A be a nonempty subset of a metric space (X, d) and p : X × X ®
[0, ∞) be a function satisfying (τ1). Then for any x Î X, p(x, A) ≤ p(x, z) + p(z, A) for

all z Î X.

The following results are crucial in this article.

Lemma 1.2 [14]. Let A be a closed subset of a metric space (X, d) and p : X × X ®
[0, ∞) be any function. Suppose that p satisfies (τ3) and there exists u Î X such that

p(u, u) = 0. Then p(u, A) = 0 if and only if u Î A, where p(u, A) = infaÎA p(u, a).

Lemma 1.3 [29, Lemma 2.1]. Let (X, d) be a metric space and p : X × X ® [0, ∞)

be a function. Assume that p satisfies the condition (τ3). If a sequence {xn} in X with

limn®∞ sup{p(xn, xm): m >n} = 0, then {xn} is a Cauchy sequence in X.

Recently, Du first introduced the concepts of τ0-functions and τ0-metrics as follows.

Definition 1.2 [14]. Let (X, d) be a metric space. A function p : X × X ® [0, ∞) is

called a τ0-function if it is a τ-function on X with p(x, x) = 0 for all x Î X.

Remark 1.1. If p is a τ0-function, then, from (τ4), p(x, y) = 0 if and only if x = y.

Example 1.1 [14]. Let X = ℝ with the metric d(x, y) = |x - y| and 0 <a <b. Define

the function p : X × X ® [0, ∞) by

p(x, y) = max{a(y − x), b(x − y)}.

Then p is nonsymmetric and hence p is not a metric. It is easy to see that p is a τ0-

function.

Definition 1.3 [14]. Let (X, d) be a metric space and p be a τ0-function. For any

A,B ∈ CB(X) , define a function Dp : CB(X) × CB(X) → [0,∞) by

Dp(A,B) = max{δp(A,B), δp(B,A)},

where δp(A, B) = supxÎA p(x, B), then Dp is said to be the τ0-metric on CB(X)
induced by p.

Clearly, any Hausdorff metric is a τ0-metric, but the reverse is not true. It is known

that every τ0-metric Dp is a metric on CB(X) ; see [14] for more detail.

Let f be a real-valued function defined on ℝ. For c Î ℝ, we recall that

lim sup
x→c

f (x) = inf
ε>0

sup
0<|x−c|<ε

f (x)

Du Fixed Point Theory and Applications 2012, 2012:6
http://www.fixedpointtheoryandapplications.com/content/2012/1/6

Page 3 of 22



and

lim sup
x→c+

f (x) = inf
ε>0

sup
0<x−c<ε

f (x).

Definition 1.4. A function a : [0, ∞) ® [0, 1) is said to be a Reich’s function

(R -function, for short) if

lim sup
s→t+

α(s) < 1 for all t ∈ [0,∞). (1:1)

Remark 1.2. In [14-19,30], a function a : [0, ∞) ® [0, 1) satisfying the property (1.1)

was called to be an MT -function. But it is more appropriate to use the terminology

R -function instead of MT -function since Professor S. Reich was the first to use the

property (1.1).

It is obvious that if a : [0, ∞) ® [0, 1) is a nondecreasing function or a nonincreas-

ing function, then a is a R -function. So the set of R -functions is a rich class. It is

easy to see that a : [0, ∞) ® [0, 1) is a R -function if and only if for each t Î [0, ∞),

there exist rt Î [0, 1) and εt > 0 such that a(s) ≤ rt for all s Î [t, t + εt); for more

details of characterizations of R -functions, one can see [19, Theorem 2.1].

In [14], the author established some new fixed point theorems for nonlinear multiva-

lued contractive maps by using τ0-function, τ0-metrics and R -functions. Applying

those results, the author gave the generalizations of Berinde-Berinde’s fixed point theo-

rem, Mizoguchi-Takahashi’s fixed point theorem, Nadler’s fixed point theorem, Banach

contraction principle, Kannan’s fixed point theorems and Chatterjea’s fixed point theo-

rems for nonlinear multivalued contractive maps in complete metric spaces; for more

details, we refer the reader to [14].

This study is around the following Reich’s open question in [35] (see also [36]): Let

(X, d) be a complete metric space and T : L → CB(X) be a multivalued map. Suppose

that

H(Tx,Ty) ≤ ϕ(d(x, y))d(x, y) for all x, y ∈ X,

where j : [0, ∞) ® [0, 1) satisfies the property (*) except for t = 0. Does T have a

fixed point? In this article, our some new results give partial answers of Reich’s open

question and generalize Berinde-Berinde’s fixed point theorem, Mizoguchi-Takahashi’s

fixed point theorem and some well-known results in the literature.

The article is divided into four sections. In Section 2, in order to carry on the devel-

opment of metric fixed point theory, we first introduce the concept of directional

hidden contractions in metric spaces. In Section 3, we present some new existence

results concerning p-approximate fixed point property for various types of nonlinear

contractive maps. Finally, in Section 4, we establish several new fixed point theorems

for directional hidden contractions. From these results, new generalizations of Berinde-

Berinde’s fixed point theorem and Mizoguchi-Takahashi’s fixed point theorem are also

given.

2 Directional hidden contractions
Let (X, d) be a metric space and p : X × X ® [0, ∞) be any function. For each x Î X

and A ⊆ X, let
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p(x,A) = inf
y∈A

p(x, y).

Recall that a multivalued map T : X → N (X) is called

(1) a Nadler’s type contraction (or a multivalued k-contraction [3]), if there exists a

number 0 <k < 1 such that

H(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X.

(2) a Mizoguchi-Takahashi’s type contraction, if there exists a R -function a : [0, ∞)

® [0, 1) such that

H(Tx,Ty) ≤ α(d(x, y))d(x, y) for all x, y ∈ X;

(3) a multivalued (θ, L)-almost contraction [5-7], if there exist two constants θ Î
(0, 1) and L ≥ 0 such that

H(Tx,Ty) ≤ θd(x, y) + Ld(y,Tx) for all x, y ∈ X.

(4) a Berinde-Berinde’s type contraction (or a generalized multivalued almost con-

traction [5-7]), if there exist a R -function a : [0, ∞) ® [0, 1) and L ≥ 0 such that

H(Tx,Ty) ≤ α(d(x, y))d(x, y) + Ld(y,Tx) for all x, y ∈ X.

Mizoguchi-Takahashi’s type contractions and Berinde-Berinde’s type contractions are

relevant topics in the recent investigations on metric fixed point theory for contractive

maps. It is quite clear that any Mizoguchi-Takahashi’s type contraction is a Berinde-

Berinde’s type contraction. The following example tell us that a Berinde-Berinde’s type

contraction may be not a Mizoguchi-Takahashi’s type contraction in general.

Example 2.1. Let ℓ∞ be the Banach space consisting of all bounded real sequences

with supremum norm d∞ and let {en} be the canonical basis of ℓ∞. Let {τn} be a

sequence of positive real numbers satisfying τ1 = τ2 and τn+1 <τn for n ≥ 2 (for example,

let τ1 =
1
2

and τn =
1
n

for n Î N with n ≥ 2). Thus {τn} is convergent. Put vn = τnen for

n Î N and let X = {vn}nÎN be a bounded and complete subset of ℓ∞. Then (X, d∞) be a

complete metric space and d∞(vn, vm) = τn if m >n.

Let T : L → CB(X) be defined by

Tvn :=
{ {v1, v2}, if n ∈ {1, 2},
X\{v1, v2, . . . , vn, vn+1}, if n ≥ 3.

and define � : [0, ∞) ® [0, 1) by

ϕ(t) :=

{ τn+2

τn
, if t = τn for some n ∈ N,

0, otherwise.

Then the following statements hold.

(a) T is a Berinde-Berinde’s type contraction;

(b) T is not a Mizoguchi-Takahashi’s type contraction.
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Proof. Observe that lim sup
s→t+

ϕ(s) = 0 < 1 for all t Î [0, ∞), so � is a R -function. It

is not hard to verify that

H∞(Tv1,Tvm) = τ1 > τ3 = ϕ(d∞(v1, vm))d∞(v1, vm) for allm ≥ 3.

Hence T is not a Mizoguchi-Takahashi’s type contraction. We claim that T is a Ber-

inde-Berinde’s type contraction with L ≥ 1; that is,

H∞(Tx,Ty) ≤ ϕ(d∞(x, y))d∞(x, y) + Ld∞(y,Tx) for all x, y ∈ X,

where H∞ is the Hausdorff metric induced by d∞. Indeed, we consider the following

four possible cases:

(i) ϕ(d(v1, v2))d∞(v1, v2) + Ld∞(v2,Tv1) = τ3 > 0 = H∞(Tv1,Tv2) .

(ii) For any m ≥ 3, we have

ϕ(d∞(v1, vm))d∞(v1, vm) + Ld∞(vm,Tv1) = τ3 + Lτ2 > τ1 = H∞(Tv1,Tvm).

(iii) For any m ≥ 3, we obtain

ϕ(d∞(v2, vm))d∞(v2, vm) + Ld∞(vm,Tv2) = τ4 + Lτ2 > τ1 = H∞(Tv2,Tvm).

(iv) For any n ≥ 3 and m >n, we get

ϕ(d∞(vn, vm))d∞(vn, vm) + Ld∞(vm,Tvn) = τn+2 = H∞(Tvn,Tvm).

Hence, by (i)-(iv), we prove that T is a Berinde-Berinde’s type contraction with L ≥ 1.

In order to carry on such development of classic metric fixed point theory, we first

introduce the concept of directional hidden contractions as follows. Using directional

hidden contractions, we will present some new fixed point results and show that sev-

eral already existent results could be improved.

Definition 2.1. Let L be a nonempty subset of a metric space (X, d), p : X × X ® [0, ∞)

be any function, c Î (0, 1), h : [0, ∞) ® (c, 1] and j : [0, ∞) ® [0, 1) be functions. A multi-

valued map T : X → N (X) is called a directional hidden contraction with respect to p, c,

h and j ((p, c, h, j)-DHC, for short) if for any x Î L with x �∈ Tx , there exist y Î L \ {x}

and z Î Tx such that

p(z,Ty) ≤ φ(p(x, y))p(x, y)

and

η(p(x, y))p(x, y) + p(y, z) ≤ p(x,Tx).

In particular, if p ≡ d, then we use the notation (c, h, j)-DHC instead of (d, c, h, j)-
DHC.

Remark 2.1. We point out the fact that the concept of directional hidden contractions

really generalizes the concept of directional multivalued k(·)-contractions. Indeed, let T be

a directional multivalued k(·)-contraction. Then there exist l Î (0, 1], a : (0, ∞) ® [l, 1]
and k : (0, ∞) ® [0, 1) such that for every x Î L with x �∈ Tx , there is y Î L \ {x} satisfying

the inequalities
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a(d(x, y))d(x, y) + d(y,Tx) ≤ d(x,Tx) (2:1)

and

sup
z∈Tx

d(z,Ty) ≤ k(d(x, y))d(x, y). (2:2)

Note that x ≠ y and hence d(x, y) > 0. We consider the following two possible cases:

(i) If l = 1, then a(t) = 1 for all t Î (0, ∞). Choose c1, r Î (0, 1) with c1 <r. By (2.1),

we have

rd(x, y) + d(y,Tx) < d(x,Tx),

which it is thereby possible to find zr Î Tx such that

rd(x, y) + d(y, zr) < d(x,Tx).

Define h1 : [0, ∞) ® (c1, 1] by

η1(t) = r

and let j1 : [0, ∞) ® [0, 1) be defined by

φ1(t) =
{

0, if t = 0,
k(t), if t ∈ (0,∞).

Hence T is a (c1, h1, j1)-DHC.

(ii) If l Î (0, 1), we choose c2 satisfying 0 <c2 <l. Then

c2 <
λ + c2
2

≤ a(t) + c2
2

< a(t) ≤ 1 for all t ∈ (0,∞).

So we can define h2 : [0, ∞) ® (c2, 1] by

η2(t) =

⎧⎨
⎩

0, if t = 0,
a(t) + c2

2
, if t ∈ (0,∞).

Since h2(t) <a(t) for all t Î (0, ∞), the inequality (2.1) admits that there exists z Î Tx

such that

η(d(x, y))d(x, y) + d(y, z) < d(x,Tx).

Let j2 = j1. Therefore T is a (c2, h2, j2)-DHC.

The following example show that the concept of directional hidden contractions is

indeed a proper extension of classic contractive maps.

Example 2.2. Let X = [0, 1] with the metric d(x, y) = |x - y| for x, y Î X. Let

T : X → C(X) be defined by

Tx =

⎧⎪⎪⎨
⎪⎪⎩

{0, 1}, if x = 0,
{ 12x4, 1}, if x ∈ (0, 14 ],
{0, 12x4}, if x ∈ ( 14 , 1),

{1}, if x = 1.
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Define η : [0,∞) → ( 12 , 1] and j : [0, ∞) ® [0, 1) by

η(s) =
3
4

for all s ∈ [0,∞)

and

φ(t) =
{
2t, if t ∈ [0, 12 ),
0, if t ∈ [ 12 ,∞),

respectively. It is not hard to verify that T is a (
1
2
, η,φ )-DHC. Notice that

H(T(0),T(1)) = 1 = d(0, 1),

so T is not a Mizoguchi-Takahashi’s type contraction (hence it is also not a Nadler’s

type contraction).

We now present some existence theorems for directional hidden contractions.

Theorem 2.1. Let (X, d) be a metric space, p be a τ0-function, T : X → C(X) be a

multivalued map and g Î [0, ∞). Suppose that

(P ) there exists a function � : (0, ∞) ® [0, 1) such that

lim sup
s→γ +

ϕ(s) < 1

and for each x Î X with x �∈ Tx , it holds

p(y,Ty) ≤ ϕ(p(x, y))p(x, y) for all y ∈ Tx. (2:3)

Then there exist c Î (0, 1) and functions h : [0, ∞) ® (c, 1] and j : [0, ∞) ® [0, 1)

such that

(a) lim sup
s→γ +

φ(s) < lim inf
s→γ +

η(s) ;

(b) T is a (p, c, h, j)-DHC.

Proof. Set L ≡ X. Let j : [0, ∞) ® [0, 1) be defined by

φ(s) :=
{

0, if s = 0,
ϕ(s), if s ∈ (0,∞).

By (P ), there exists c Î (0, 1) such that

lim sup
s→γ +

ϕ(s) < c < 1.

Put α =
c + 1
2

. Then 0 <c <a < 1. Define h : [0, ∞) ® (c, 1] by h(s) = a for all s Î [0,

∞). So we obtain

lim sup
s→γ +

φ(s) < α = lim inf
s→γ +

η(s).

Given x Î X with x �∈ Tx . Since p is a τ0-function and Tx is a closed set in X, by

Lemma 1.2, p(x, Tx) > 0. Since p(x,Tx) <
p(x,Tx)

α
, there exists y Î Tx, such that
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p(x, y) <
p(x,Tx)

α
. (2:4)

Clearly, y ≠ x. Let z = y Î Tx. Since p is a τ0-function, we have p(y, z) = 0. From

(2.3) and (2.4), we obtain

p(z,Ty) ≤ φ(p(x, y))p(x, y)

and

η(p(x, y))p(x, y) + p(y, z) ≤ p(x,Tx),

which show that T is a (p, c, h, j)-DHC. □
If we put p ≡ d in Theorem 2.1, then we have the following result.

Theorem 2.2. Let (X, d) be a metric space, T : X → C(X) be a multivalued map and

g Î [0, ∞). Suppose that

(Pd ) there exists a function � : (0, ∞) ® [0, 1) such that

lim sup
s→γ +

ϕ(s) < 1

and for each x Î X with x �∈ Tx , it holds

d(y,Ty) ≤ ϕ(d(x, y))d(x, y) for all y ∈ Tx.

Then there exist c Î (0, 1) and functions h : [0, ∞) ® (c, 1] and j : [0, ∞) ® [0, 1)

such that

(a) lim sup
s→γ +

φ(s) < lim inf
s→γ +

η(s) ;

(b) T is a (c, h, j)-DHC.

Theorem 2.3. Let (X, d) be a metric space, p be a τ0-function, Dp be a τ0-metric on

CB(X) induced by p, T : X → CB(X) be a multivalued map, h : X × X ® [0, ∞) be a

function and g Î [0, ∞). Suppose that

(A ) there exists a function � : (0, ∞) ® [0, 1) such that

lim sup
s→γ +

ϕ(s) < 1

and

Dp(Tx,Ty) ≤ ϕ(p(x, y))p(x, y) + h(x, y)p(y,Tx) for all x, y ∈ X with x �= y. (2:5)

Then there exist c Î (0, 1) and functions h : [0, ∞) ® (c, 1] and j : [0, ∞) ® [0, 1)

such that

(a) lim sup
s→γ +

φ(s) < lim inf
s→γ +

η(s) ;

(b) T is a (p, c, h, j)-DHC.

Proof. Let x Î X with x �∈ Tx and let y Î Tx be given. So x ≠ y. By Lemma 1.2, p(y,

Tx) = 0. It is easy to see that (2.5) implies (2.3). Therefore the conclusion follows from

Theorem 2.1. □
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Theorem 2.4. Let (X, d) be a metric space, T : X → CB(X) be a multivalued map,

h : X × X ® [0, ∞) be a function and g Î [0, ∞). Suppose that

(Ad ) there exists a function � : (0, ∞) ® [0, 1) such that

lim sup
s→γ +

ϕ(s) < 1

and

H(Tx,Ty) ≤ ϕ(d(x, y))d(x, y) + h(x, y)d(y,Tx) for all x, y ∈ Xwith x �= y.

Then there exist c Î (0, 1) and functions h : [0, ∞) ® (c, 1] and j : [0, ∞) ® [0, 1)

such that

(a) lim sup
s→γ +

φ(s) < lim inf
s→γ +

η(s) ;

(b) T is a (c, h, j)-DHC.

The following result is immediate from Theorem 2.4.

Theorem 2.5. Let (X, d) be a metric space and T : X → CB(X) be a multivalued

map. Assume that one of the following conditions holds.

(1) T is a Berinde-Berinde’s type contraction;

(2) T is a multivalued (θ, L)-almost contraction;

(3) T is a Mizoguchi-Takahashi’s type contraction;

(4) T is a Nadler’s type contraction.

Then there exist c Î (0, 1) and functions h : [0, ∞) ® (c, 1] and j : [0, ∞) ® [0, 1)

such that T is a (c, h, j)-DHC.

3 Nonlinear conditions for p-approximate fixed point property
Let K be a nonempty subset of a metric space (X, d). Recall that a multivalued map

T : K → N (X) is said to have the approximate fixed point property [7] in K provided

inf
x∈K

d(x,Tx) = 0 . Clearly, F(T) �=� 0 implies that T has the approximate fixed point

property. A natural generalization of the approximate fixed point property is defined as

follows.

Definition 3.1. Let K be a nonempty subset of a metric space (X, d) and p be a

τ-function. A multivalued map T : K → N (X) is said to have the p-approximate fixed

point property in K provided inf
x∈K

p(x,Tx) = 0 .

Lemma 3.1. Let � : (0, ∞) ® [0, 1) be a function and g Î (0, ∞). If lim sup
s→γ +

ϕ(s) < 1 ,

then for any strictly decreasing sequence {ξn}nÎN in (0, ∞) with lim
n→∞ ξn = γ , we have

0 ≤ sup
n∈N

ϕ(ξn) < 1 .

Proof. Since lim sup
s→γ +

ϕ(s) < 1 , there exists ε > 0 such that

sup
γ<s<γ+ε

ϕ(s) < 1.
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By the denseness of ℝ, there exists a Î [0, 1) such that

sup
γ<s<γ+ε

ϕ(s) ≤ α < 1.

Hence �(s) ≤ a for all s Î (g, g + ε). Let {ξn}nÎN be a strictly decreasing sequence in

(0, ∞) with lim
n→∞ ξn = γ . Then

γ = lim
n→∞ ξn = inf

n∈N
ξn ≥ 0. (3:1)

Since {ξn}nÎN is strictly decreasing, it is obvious that ξn >g for all n Î N. By (3.1),

there exists ℓ Î N, such that

γ < ξn < γ + ε for all n ∈ Nwith n ≥ .

Hence j(ξn) ≤ a for all n ≥ ℓ. Let

ς := max{ϕ(ξ1),ϕ(ξ2), . . . ,ϕ(ξ−1),α} < 1.

Then j(ξn) ≤ ζ for all n Î N and hence 0 ≤ sup
n∈N

ϕ(ξn) ≤ ς < 1 . □

Theorem 3.1. Let (X, d) be a metric space, p be a τ0-function and T : X → N (X) be

a multivalued map. Suppose that

(R ) there exists a function � : (0, ∞) ® [0, 1) satisfying Reich’s condition; that is

lim sup
s→t+

ϕ(s) < 1 for all t ∈ (0,∞)

and for each x Î X with x �∈ Tx , it holds

p(y,Ty) ≤ ϕ(p(x, y))p(x, y) for all y ∈ Tx. (3:2)

Then the following statements hold.

(a) There exists a Cauchy sequence {xn}nÎN in X such that

(i) xn+1 Î Txn for each n Î N;

(ii) inf
n∈N

p(xn, xn+1) = lim
n→∞ p(xn, xn+1) = lim

n→∞ d(xn, xn+1) = inf
n∈N

d(xn, xn+1) = 0.

(b) inf
x∈X

p(x,Tx) = inf
x∈X

d(x,Tx) = 0 ; that is T have the p-approximate fixed point

property and approximate fixed point property in X.

Proof. Let x1 Î X with x1 �∈ Tx1 and x2 Î Tx1. Then x1 ≠ x2. Since p is a τ0-function,

p(x1, x2) > 0. By (3.2), we have

p(x2,Tx2) ≤ ϕ(p(x1, x2))p(x1, x2). (3:3)

If x2 Î Tx2, then x2 ∈ F(T) . Since

inf
x∈X

p(x,Tx) ≤ p(x2,Tx2) ≤ p(x2, x2) = 0

and

inf
x∈X

d(x,Tx) ≤ d(x2, x2) = 0,
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we have inf
x∈X

p(x,Tx) = inf
x∈X

d(x,Tx) = 0 . Let {zn} be a sequence defined by zn = x2 for

all n Î N. Then {zn} is Cauchy and (a) holds. Hence the proof is finished in this case.

Suppose x2 �∈ Tx2 . Define � : (0, ∞) ® [0, 1) by κ(t) =
ϕ(t) + 1

2
. Then �(t) <�(t) and 0

<�(t) < 1 for all t Î (0, ∞). By (3.3), there exists x3 Î Tx2 such that

p(x2, x3) < κ(p(x1, x2))p(x1, x2).

Since x2 ≠ x3, p(x2, x3) > 0. By (3.2) again, we obtain

p(x3,Tx3) ≤ ϕ(p(x2, x3))p(x2, x3).

If x3 Î Tx3, then, following a similar argument as above, we finish the proof. Other-

wise, there exists x4 Î Tx3 such that

p(x3, x4) < κ(p(x2, x3))p(x2, x3).

By induction, we can obtain a sequence {xn} in X satisfying xn+1 Î Txn, p(xn, xn+1) >

0 and

p(xn+1, xn+2) < κ(p(xn, xn+1))p(xn, xn+1) for each n ∈ N. (3:4)

Since �(t) < 1 for all t Î (0, ∞), the sequence {p(xn, xn+1)} is strictly decreasing in (0, ∞).

Then

γ := lim
n→∞ p(xn, xn+1) = inf

n∈N
p(xn, xn+1) ≥ 0 exists.

We claim that g = 0. Assume to the contrary that g > 0. By (R ), we have

lim sup
s→γ +

ϕ(s) < 1 . Applying Lemma 3.1,

0 ≤ sup
n∈N

ϕ(p(xn, xn+1)) < 1.

By exploiting the last inequality we obtain

0 < sup
n∈N

κ(p(xn, xn+1)) =
1
2

[
1 + sup

n∈N
ϕ(p(xn, xn+1))

]
< 1.

Let λ := sup
n∈N

κ(p(xn, xn+1)) . So l Î (0, 1). It follows from (3.4) that

p(xn+1, xn+2) < κ(p(xn, xn+1))p(xn, xn+1)

≤ λp(xn, xn+1)

≤ · · ·
≤ λnp(x1, x2) for each n ∈ N.

Taking the limit in the last inequality as n ® ∞ yields lim
n→∞ p(xn, xn+1) = 0 which

leads to a contradiction. Thus it must be

γ = lim
n→∞ p(xn, xn+1) = inf

n∈N
p(xn, xn+1) = 0.

Now, we show that {xn} is indeed a Cauchy sequence in X. Let

αn =
λn−1

1 − λ
p(x1, x2), n ∈ N . For m, n Î N with m >n, we obtain
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p(xn, xm) ≤
m−1∑
j=n

p(xj, xj+1) < αn.

Since l Î (0, 1), limn®∞ an = 0 and hence

lim
n→∞ sup{p(xn, xm) : m > n} = 0.

Applying Lemma 1.3, we show that {xn} is a Cauchy sequence in X. Hence

lim
n→∞ d(xn, xn+1) = 0 . Since inf

n∈N
d(xn, xn+1) ≤ d(xm, xm+1) for all m Î N and

lim
m→∞ d(xm, xm+1) = 0 , one also obtain

lim
n→∞ d(xn, xn+1) = inf

n∈N
d(xn, xn+1) = 0.

Since xn+1 Î Txn for each n Î N,

inf
x∈X

p(x,Tx) ≤ p(xn,Txn) ≤ p(xn, xn+1) (3:5)

and

inf
x∈X

d(x,Tx) ≤ d(xn,Txn) ≤ d(xn, xn+1) (3:6)

for all n Î N. Since lim
n→∞ p(xn, xn+1) = lim

n→∞ d(xn, xn+1) = 0 , by (3.5) and (3.6), we get

inf
x∈X

p(x,Tx) = inf
x∈X

d(x,Tx) = 0.

The proof is completed. □
Theorem 3.2. Let (X, d) be a metric space and T : X → N (X) be a multivalued

map. Suppose that

(Rd ) there exists a function � : (0, ∞) ® [0, 1) satisfying Reich’s condition and for

each x Î X with x �∈ Tx , it holds

d(y,Ty) ≤ ϕ(d(x, y))d(x, y) for all y ∈ Tx.

Then the following statements hold.

(a) There exists a Cauchy sequence {xn}nÎN in X such that

(i) xn+1 Î Txn for each n Î N;

(ii) inf
n∈N

d(xn, xn+1) = lim
n→∞ d(xn, xn+1) = 0 .

(b) T have the approximate fixed point property in X.

Remark 3.1. [23, Proposition 3.1] is a special case of Theorems 3.1 and 3.2.

Theorem 3.3. Let (X, d) be a metric space, p be a τ0-function, Dp be a τ0-metric on

CB(X) induced by pT : X → CB(X) be a multivalued map and h : X × X ® [0, ∞) be

a function. Suppose that

(L ) there exists a function � : (0, ∞) ® [0, 1) satisfying Reich’s condition and

Dp(Tx,Ty) ≤ ϕ(p(x, y))p(x, y) + h(x, y)p(y,Tx) for all x, y ∈ X with x �= y. (3:7)
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Then the following statements hold.

(a) There exists a Cauchy sequence {xn}nÎN in X such that

(i) xn+1 Î Txn for each n Î N;

(ii) inf
n∈N

p(xn, xn+1) = lim
n→∞ p(xn, xn+1) = lim

n→∞ d(xn, xn+1) = inf
n∈N

d(xn, xn+1) = 0.

(b) T have the p-approximate fixed point property and approximate fixed point

property in X.

Proof. Let x Î X with x �∈ Tx and let y Î Tx be given. By Lemma 1.2, p(y, Tx) = 0

and hence (3.7) implies (3.2). Therefore the conclusion follows from Theorem 3.1. □
Theorem 3.4. Let (X, d) be a metric space, T : X → CB(X) be a multivalued map

and h : X × X ® [0, ∞) be a function. Suppose that

(Ld ) there exists a function � : (0, ∞) ® [0, 1) satisfying Reich’s condition and

H(Tx,Ty) ≤ ϕ(d(x, y))d(x, y) + h(x, y)d(y,Tx) for all x, y ∈ X with x �= y.

Then the following statements hold.

(a) There exists a Cauchy sequence {xn}nÎN in X such that

(i) xn+1 Î Txn for each n Î N;

(ii) lim
n→∞ d(xn, xn+1) = inf

n∈N
d(xn, xn+1) = 0 .

(b) T have the approximate fixed point property in X.

Theorem 3.5. Let (X, d) be a metric space and T : X → CB(X) be a multivalued

map. Assume that one of the following conditions holds.

(1) T is a Berinde-Berinde’s type contraction;

(2) T is a multivalued (θ, L)-almost contraction;

(3) T is a Mizoguchi-Takahashi’s type contraction;

(4) T is a Nadler’s type contraction.

Then the following statements hold.

(a) There exists a Cauchy sequence {xn}nÎN in X such that

(i) xn+1 Î Txn for each n Î N;

(ii) lim
n→∞ d(xn, xn+1) = inf

n∈N
d(xn, xn+1) = 0 .

(b) T have the approximate fixed point property in X.

Let Ω denote the class of functions μ : [0, ∞) ® [0, ∞) satisfying

• μ(0) = 0;

• 0 <μ(t) ≤ t for all t > 0;

• μ is l.s.c. from the right;

• lim sup
s→0+

s

μ(s)
< ∞.
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Examples of such functions are μ(t) =
t

t + 1
,μ(t) = ln(1 + t) and μ(t) = ct, where c

Î (0, 1), for all t ≥ 0.

Theorem 3.6. Let (X, d) be a metric space, p be a τ0-function and T : X → C(X) be

a multivalued map. Suppose that

(Δ) there exists μ Î Ω such that for each x Î X with x �∈ Tx , it holds

p(y,Ty) ≤ p(x, y) − μ(p(x, y)) for all y ∈ Tx. (3:8)

Then the following statements hold.

(a) There exists a function a from [0, ∞) into [0, 1) such that a is a R -function

and p(y, Ty) ≤ a(p(x, y))p(x, y) for all y Î Tx.

(b) There exists a Cauchy sequence {xn}nÎN in X such that

(i) xn+1 Î Txn for each n Î N;

(ii) inf
n∈N

p(xn, xn+1) = lim
n→∞ p(xn, xn+1) = lim

n→∞ d(xn, xn+1) = inf
n∈N

d(xn, xn+1) = 0.

(c) T have the p-approximate fixed point property and approximate fixed point

property in X.

Proof. Set

α(t) =

⎧⎨
⎩1 − μ(t)

t
, t > 0,

0, t = 0.

Since 0 <μ(t) ≤ t for all t > 0, we have a(t) Î [0, 1) for all t Î [0, ∞). Hence a is a

function from [0, ∞) into [0, 1). Let x Î X with x �∈ Tx be given. Since p is a τ0-func-

tion, p(x, y) > 0 for all y Î Tx. Hence (3.8) implies

p(y,Ty) ≤ ϕ(p(x, y))p(x, y) for all y ∈ Tx.

We claim that a is a R -function. Indeed, by (Δ), the function t 	→ μ(t)
t

is l.s.c.

from the right and hence

lim sup
s→t+

α(s) = 1 − lim inf
s→t+

μ(s)
s

< 1 − μ(t)
t

< 1 for all t > 0.

On the other hand, since
t

μ(t)
≥ 1 for all t > 0 and lim sup

s→0+

s

μ(s)
< ∞, it follows

that

lim sup
s→0+

α(s) = 1 − lim inf
s→0+

μ(s)
s

= 1 − 1
lim sup
s→0+

s
μ(s)

< 1.

So we prove lim sup
s→t+

α(s) < 1 for all t Î [0, ∞) which say that a : [0, ∞) ® [0, 1) is a

R -function and (a) is true. The conclusions (b) and (c) follows from Theorem 3.1. □
Theorem 3.7. Let (X, d) be a metric space and T : X → C(X) be a multivalued map.

Suppose that
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(Δd) there exists μ Î Ω such that for each x Î X with x �∈ Tx , it holds

d(y,Ty) ≤ d(x, y) − μ(d(x, y)) for all y ∈ Tx.

Then the following statements hold.

(a) There exists a function a from [0, ∞) into [0, 1) such that a is a R -function

and d(y, Ty) ≤ a(d(x, y))d(x, y) for all y Î Tx.

(b) There exists a Cauchy sequence {xn}nÎN in X such that

(i) xn+1 Î Txn for each n Î N;

(ii) lim
n→∞ d(xn, xn+1) = inf

n∈N
d(xn, xn+1) = 0 .

(c) T have the approximate fixed point property in X.

4 Some applications in fixed point theory
The following existence theorem is a τ-function variant of generalized Ekeland’s varia-

tional principle.

Lemma 4.1. Let (X, d) be a complete metric space, f : X ® (-∞, ∞] be a proper l.s.c. and

bounded below function. Let p be a τ-function and ε > 0. Suppose that there exists u Î X

such that p(u, ·) is l.s.c, f(u) < ∞ and p(u, u) = 0. Then there exists v Î X such that

(a) εp(u, v) ≤ f(u) - f(v);

(b) εp(v, x) >f(v) - f(x) for all x Î X with x ≠ v.

Proof. Let

Y = {x ∈ X : εp(u, x) ≤ f (u) − f (x)}.

Clearly, u Î Y. By the completeness of X and the lower semicontinuity of f and p(u, ·),

we know that (Y, d) is a nonempty complete metric space. Applying a generalization ver-

sion of Ekeland’s variational principle due to Lin and Du (see, for instance, [26,28]), there

exists v Î Y such that εp(v, x) >f(v) - f(x) for all x Î Y with x ≠ v. Hence (a) holds from v

Î Y. For any x Î X \ Y, since

ε[p(u, v) + p(v, x)] ≥ εp(u, x)

> f (u) − f (x)

≥ εp(u, v) + f (v) − f (x),

it follows that εp(v, x) >f(v) - f(x) for all x Î X \ Y. Therefore εp(v, x) >�(f(v))(f(v) - f

(x)) for all x Î X with x ≠ v. The proof is completed. □
Theorem 4.1. Let L be a nonempty closed subset of a complete metric space (X, d),

p be a τ0-function and T : L → C(X) be a (p, c, h, j)-DHC. Suppose that

(i) there exist u Î L and δ > 0 such that p(u, ·) is l.s.c,

p(u,Tu) ≤ cδ, (4:1)

and

sup
t∈(0,δ)

(φ(t) − η(t)) < 0, (4:2)
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(ii) the function f : L ® [0, ∞) defined by f(x) = p(x, Tx) is l.s.c.

Then F(T) ∩ L �=� 0 .
Proof. Since L is a nonempty closed subset in X, (L, d) is also a complete metric

space. By (4.1), f(u) ≤ cδ < ∞. From (4.2), there exists g > 0 such that

sup
t∈(0,δ)

(φ(t) − η(t)) ≤ −γ . (4:3)

Applying Lemma 4.1 for u and
γ

2
, there exists v Î L, such that

γ

2
p(u, v) ≤ f (u) − f (v); (4:4)

γ

2
p(v, x) > f (v) − f (x) for all x ∈ L with x �= v. (4:5)

So f(v) ≤ f(u) from (4.4). We claim that v Î Tv, or equivalent, p(v, Tv) = 0. On the

contrary, suppose that f(v) = p(v, Tv) > 0. Since T is a (p, c, h, j)-DHC, there exists

yv Î L \ {v} and zv Î Tv such that

p(zv,Tyv) ≤ φ(p(v, yv))p(v, yv) (4:6)

and

η(p(v, yv))p(v, yv) + p(yv, zv) ≤ f (v). (4:7)

Since yv ≠ v, c <h(p(v, yv)) and f(v) ≤ f(u), by (4.1) and (4.7), we have

0 < p(v, yv) < c−1f (v) ≤ c−1f (u) ≤ δ. (4:8)

Combining (4.3) and (4.8), we get

φ(p(v, yv)) − η(p(v, yv)) ≤ −γ . (4:9)

By Lemma 1.1, (4.6), (4.7), and (4.9), one obtains

f (yv) = p(yv,Tyv) ≤ p(yv, zv) + p(zv,Tyv)

≤ f (v) + [φ(p(v, yv)) − η(p(v, yv))]p(v, yv)

≤ f (v) − γ p(v, yv).

On the other hand, since yv Î L \ {v}, it follows from (4.5) and the last inequality

that

f (v) < f (yv) +
γ

2
p(v, yv)

≤ f (v) +
(γ

2
− γ

)
p(v, yv)

= f (v) − γ

2
p(v, yv)

< f (v),

which yields a contradiction. Hence it must be f(v) = p(v, Tv) = 0. Since Tv is closed,

by Lemma 1.2, we get v Î Tv which means that v ∈ F(T) ∩ L . The proof is

completed. □

Du Fixed Point Theory and Applications 2012, 2012:6
http://www.fixedpointtheoryandapplications.com/content/2012/1/6

Page 17 of 22



Remark 4.1.

(a) Let K be a nonempty subset of a metric space (X, d) and T : X → C(X) be u.s.c.

Then the function f : K ® [0, ∞) defined by f(x) = d(x, Tx) is l.s.c. For more detail,

one can see, e.g., [31, Lemma 3.1] and [32, Lemma 2].

(b) [23, Theorem 2.1] is a special case of Theorem 4.1.

Theorem 4.2. Let L be a nonempty closed subset of a complete metric space (X, d)

and T : L → C(X) be a (c, h, j)-DHC. Suppose that

(i) there exist u Î L and δ > 0 such that

d(u,Tu) ≥ cδ,

and

sup
t∈(0,δ)

(φ(t) − η(t)) < 0,

(ii) the function f : L ® [0, ∞) defined by f(x) = d(x, Tx) is l.s.c.

Then F(T) ∩ L �=� 0 .
Theorem 4.3. Let L be a nonempty closed subset of a complete metric space (X, d)

and p be a τ0-function. Let T : L → C(X) be a (p, c, h, j)-DHC satisfying

lim sup
s→0+

φ(s) < lim inf
s→0+

η(s), (4:10)

and it has the p-approximate fixed point property in L. Suppose that there exists u Î
X such that p(u, ·) is l.s.c. and the function f : L ® [0, ∞) defined by f(x) = p(x, Tx) is l.

s.c, then F(T) ∩ L �=� 0 .
Proof. First, we note that (4.10) implies that the existences of δ1 > 0 and δ2 > 0 such

that

sup
t∈(0,δ1)

φ(t) < inf
t∈(0,δ2)

η(t). (4:11)

Let δ = min{δ1, δ2} > 0. Thus (4.11) implies

sup
t∈(0,δ)

(φ(t) − η(t)) ≤ sup
t∈(0,δ)

φ(t) − inf
t∈(0,δ)

η(t) ≤ sup
t∈(0,δ1)

φ(t) − inf
t∈(0,δ2)

η(t) < 0.

Since T has the p-approximate fixed point property in L, we have

inf
x∈L

p(x,Tx) = 0 < cδ and hence there exists u Î L such that p(u, Tu) <cδ. So all the

hypotheses of Theorem 4.1 are fulfilled. It is therefore possible to apply Theorem 4.1

to get the thesis. □
Theorem 4.4. Let L be a nonempty closed subset of a complete metric space (X, d).

Let T : L → C(X) be a (c, h, j)-DHC satisfying

lim sup
s→0+

φ(s) < lim inf
s→0+

η(s),
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and it has the approximate fixed point property in L. Suppose that the function f :

L ® [0, ∞) defined by f(x) = d(x, Tx) is l.s.c, then F(T) ∩ L �=� 0 .
Theorem 4.5. Let (X, d) be a complete metric space and p be a τ0-function and

T : X → C(X) be a multivalued map. Suppose that

(V ) there exists a R -function a : [0, ∞) ® [0, 1) such that for each x Î X with

x �∈ Tx , it holds

p(y,Ty) ≤ α(p(x, y))p(x, y) for all y ∈ Tx.

If there exists u Î X such that p(u, ·) is l.s.c. and the function f : X ® [0, ∞) defined

by f(x) = p(x, Tx) is l.s.c, then F(T) �=� 0 .
Proof. First, we observe that the condition (V ) implies the condition (P ) as in The-

orem 2.1. So we can apply Theorem 2.1 to know that there exist c Î (0, 1) and func-

tions h : [0, ∞) ® (c, 1] and j : [0, ∞) ® [0, 1) such that

(a) lim sup
s→0+

φ(s) < lim inf
s→0+

η(s) ;

(b) T is a (p, c, h, j)-DHC.

On the other hand, the condition (V ) also implies the condition (R ) as in Theorem

3.1. Hence T have the p-approximate fixed point property by using Theorem 3.1.

Therefore the thesis follows from Theorem 4.3. □
Theorem 4.6. Let (X, d) be a complete metric space and T : X → C(X) be a multiva-

lued map. Suppose that

(Vd ) there exists a R -function a : [0, ∞) ® [0, 1) such that for each x Î X with

x �∈ Tx , it holds

d(y,Ty) ≤ α(d(x, y))d(x, y) for all y ∈ Tx.

If the function f : X ® [0, ∞) defined by f(x) = d(x, Tx) is l.s.c, then F(T) �=� 0 .
Theorem 4.7. Let (X, d) be a complete metric space, p be a τ0-function, Dp be a

τ0-metric on CB(X) induced by p,T : X → CB(X) be a multivalued map and h : X ×

X ® [0, ∞) be a function. Suppose that

(W ) there exists a R -function a : [0, ∞) ® [0, 1) such that

Dp(Tx,Ty) ≤ α(p(x, y))p(x, y) + h(x, y)p(y,Tx) for all x, y ∈ X.

If there exists u Î X such that p(u, ·) is l.s.c. and the function f : X ® [0, ∞) defined

by f(x) = p(x, Tx) is l.s.c, then F(T) �=� 0 .
The following result is a generalization of Berinde-Berinde’s fixed point theorem. It is

worth observing that the following generalized Berinde-Berinde’s fixed point theorem

does not require the lower semicontinuity assumption on the function f(x) = d(x, Tx).

Theorem 4.8. Let (X, d) be a complete metric space, T : X → CB(X) be a multiva-

lued map and g : X ® [0, ∞) be a function. Suppose that there exists a R -function a :

[0, ∞) ® [0, 1) such that

H(Tx,Ty) ≤ α(d(x, y))d(x, y) + g(y)d(y,Tx) for all x, y ∈ X. (4:12)

Then F(T) �=� 0 .
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Proof. Observe that the condition (4.12) implies that for each x Î X with x �∈ Tx , it

holds

d(y,Ty) ≤ ϕ(d(x, y))d(x, y) for all y ∈ Tx.

It is therefore possible to apply Theorem 3.2 to obtain a Cauchy sequence {xn}nÎN in

X satisfying

• xn+1 Î Txn, n Î N,

• lim
n→∞ d(xn, xn+1) = inf

n∈N
d(xn, xn+1) = 0 .

By the completeness of X, there exists v Î X such that xn ® v as n ® ∞. It follows

from (4.12) again that

lim
n→∞ d(xn+1,Tv) ≤ lim

n→∞H(Txn,Tv)

≤ lim
n→∞{ϕ(d(xn, v))d(xn, v) + h(v)d(v, xn+1)} = 0,

which implies limn®∞ d(xn, Tv) = 0. By the continuity of d(·, Tv) and xn ® v as n ® ∞,

d(v, Tv) = 0. By the closedness of Tv, we get v Î Tv or v ∈ F(T). □
Remark 4.2.

(a) Theorem 4.8 generalizes [7, Theorem 2.6], Berinde-Berinde’s fixed point theo-

rem, Mizoguchi-Takahashi’s fixed point theorem and references therein.

(b) In [7, Theorem 2.6], the authors shown that a generalized multivalued almost

contraction T in a metric space (X, d) have F(T) �=� 0 provided either (X, d) is

compact and the function f(x) = d(x, Tx) is l.s.c. or T is closed and compact. But

reviewing Theorem 4.8, we know that the conditions in [7, Theorem 2.6] are

redundant.

Corollary 4.1. (M. Berinde and V. Berinde [5]). Let (X, d) be a complete metric

space, T : X → CB(X) be a multivalued map and L ≥ 0. Suppose that there exists a

R -function a : [0, ∞) ® [0, 1) such that

H(Tx,Ty) ≥ α(d(x, y))d(x, y) + Ld(y,Tx) for all x, y ∈ X.

Then F(T) �=� 0
Corollary 4.2 [3]. Let (X, d) be a complete metric space and T : X → CB(X) be a

multivalued map. Suppose that there exists a R -function a : [0, ∞) ® [0, 1) such that

H(Tx,Ty) ≤ α(d(x, y))d(x, y) for all x, y ∈ X.

Then F(T) �=� 0 .
Theorem 4.9. Let (X, d) be a complete metric space, p be a τ0-function and

T : X → C(X) be a multivalued map. Suppose that

(Δ) there exists μ Î Ω such that for each x Î X with x �∈ Tx , it holds

p(y,Ty) ≤ p(x, y) − μ(p(x, y)) for all y ∈ Tx.
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and further assume that there exists u Î X such that p(u, ·) is l.s.c. and the function f

: X ® [0, ∞) defined by f(x) = p(x, Tx) is l.s.c, then F(T) �=� 0 .
Proof. The conclusion follows from Theorems 3.6 and 4.5. □
Theorem 4.10. Let (X, d) be a complete metric space and T : X → C(X) be a multi-

valued map. Suppose that

(Δd) there exists μ Î Ω such that for each x Î X with x �∈ Tx , it holds

d(y,Ty) ≤ d(x, y) − μ(d(x, y)) for all y ∈ Tx.

and further assume that the function f : X ® [0, ∞) defined by f(x) = d(x, Tx) is l.s.c,

then F(T) �=� 0 .
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