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Abstract

The purpose of this article is to present some fixed point theorems for (ψ, �)-weak
contractive mappings in a complete metric space endowed with a partial order. As
an application of the main result, we give an existence theorem for the solution of a
periodic boundary value problem.
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1. Introduction and preliminaries
It is well known that the Banach Contraction Principle has been generalized in various

directions. Alber and Guerre-Delabrere [1] introduced the concept of weak contrac-

tions in Hilbert spaces and proved the corresponding fixed point result. Rhoades [2]

showed that the result of Alber et al. is also valid in complete metric spaces. Weakly

contractive mappings have been used in a number of subsequent articles (let us men-

tion articles [3-10]) to establish various fixed point and common fixed point theorems.

In particular, recent results of Zhang and Song [9] and Doric [10] are among the most

general ones. Also, some applications were obtained, in particular when dealing with

differential and matrix equations.

Existence of fixed point in partially ordered sets has been considered recently in

[11-25]. Tarski’s theorem is used in [26] to show the existence of solutions for fuzzy

equations and in [27] to prove existence theorems for fuzzy differential equations. In

[24,25,27] some applications to matrix equations and to ordinary differential equations

are presented. In [28-32], it is proved some fixed point theorems for a mixed mono-

tone mapping in a metric space endowed with partial order and the authors apply

their results to problems of existence and uniqueness of solutions for some boundary

value problems [26,32]. We begin by stating the result of Rhoades [2] after the follow-

ing definition.

A mapping f : X ® X, where (X, d) is a metric space, is said to be weakly contractive

if

d(fx, fy) ≤ d(x, y) − ϕ(d(x, y)), (1:1)

where x, y Î X and j : [0, ∞) ® [0, ∞) is a continuous and nondecreasing function

such that j(t) = 0 if and only if t = 0. If one takes �(t) = (1 - k)t, where 0 ≤ k < 1,

then (1.1) reduces to the contractivity condition
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d(fx, fy) ≤ kd(x, y).

Theorem 1.1. ([2]) Let (X, d) be a complete metric space, and f : X ® X be a weakly

contractive mapping. Then f has a unique fixed point.

Weak inequalities of the above type have been used to establish fixed point results in

a number of subsequent articles. For example, Zhang and Song [9] used generalized

�-weak contraction which is defined for two mappings and gave conditions for exis-

tence of a common fixed point.

Theorem 1.2. ([9]) Let (X, d) be a complete metric space, and f, g : X ® X be two

mappings such that for all x, y Î X

d(fx, gy) ≤ M(x, y) − ϕ(M(x, y)),

where � : [0, ∞) ® [0, ∞) is lower semi-continuous functions with �(t) > 0 for t Î (0,

∞), �(0) = 0, and

M(x, y) = max
{
d(x, y), d(x, fx), d(y, gy),

1
2

(
d(x, gy) + d(y, fx)

)}
. (1:2)

Then there exists a unique fixed point u Î X such that u = fu = gu.

Recently, Doric [10] extended the result of Zhang and Song using a pair of functions

ψ and �. He proved the following theorem.

Theorem 1.3. ([10]) Let (X, d) be a complete metric space, and f, g : X ® X be two

mappings such that

ψ(d(fx, gy)) ≤ ψ(M(x, y)) − ϕ(M(x, y)),

for all x,y Î X, where

(i) ψ : [0, ∞) ® [0, ∞) is a continuous and nondecreasing function such that ψ(t) = 0

if and only if t = 0.

(ii) � : [0, ∞) ® [0, ∞) is a lower semi-continuous function such that �(t) = 0 if and

only if t = 0.

(iii) M is defined by (1.2).

Then there exists a unique fixed point u Î X such that u = fu = gu.

When fixed point problems in partially ordered metric spaces are concerned, first

results were obtained by Ran and Reurings [25], and then by Nieto and Lopez [14].

The following two versions of the fixed point theorem were proved in these articles.

Theorem 1.4. ([14,25]) Let (X, ⊑ be a partially ordered set and let d be a metric on

X such that (X, d) is a complete metric space. Let f : X ® X be a nondecreasing map w.

r.t. ⊑. Suppose that the following conditions hold:

(i) There exists k Î (0,1) such that d(fx, fy) ≤ kd (x, y), for all x, y Î X with y ⊑ x;

(ii) there exists x0 Î X such that x0 ⊑ fx0.

Then in each of the following two cases the mappings f has at least one fixed point.

(τ1) f is continuous, or

(τ2) if a nondecreasing sequence {xn} converges to x, then xn ⊑ x for all n.

Results on weakly contractive mappings in such spaces were obtained by Harjani and

Sadarangani in [7]. We state one of their results.

Theorem 1.5. ([7]) Let (X, ⊑) be a partially ordered set and let d be a metric on X

such that (X, d) is a complete metric space. Let f : X ® X be a nondecreasing map w.r.

t. ⊑ such that for every two comparable elements x, y Î X,
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d(fx, fy) ≤ d(x, y) − ϕ(d(x, y)),

(i) � : [0,∞) ® [0,∞) is similar to the control function � of Theorem 1.3.

(ii) there exists x0 Î X such that x0 ⊑ fx0.

Then in each of the following two cases the mappings f has at least one fixed point.

(τ1) f is continuous, or

(τ2) if a nondecreasing sequence {xn} converges to x, then xn ⊑ x for all n.

2. Main results
Let (X, ⊑) be a partially ordered set. A pair (f, g) is said to be weakly increasing if fx ⊑
gfx and gx ⊑ fgx for all x Î X. There are examples (see [4]) when neither of such map-

pings f, g is nondecreasing w.r.t. ⊑. In particular, the pair (f, iX)(ix the identy function)

is weakly increasing if and only if x ⊑ fx for each x Î X.

Theorem 2.1. Let (X, ⊑) be a partially ordered set and let d be a metric on X such

that (X, d) is a complete metric space, and let f, g : X ® X be two weakly increasing

mappings such that for every two comparable elements x, y Î X,

ψ(d(fx, gy)) ≤ ψ(M(x, y)) − ϕ(ψ(M(x, y))) + θ(N(x, y)), (2:1)

where

(i) ψ : [0, ∞) ® [0, ∞) is a continuous and nondecreasing function such that ψ(t) = 0

if and only if t = 0 and also lim sups→0+
s

ψ(s) < ∞.

(ii) � : [0, ∞) ® [0, ∞) is a lower semi-continuous function such that �(t) = 0 if and

only if t = 0 and also for any sequence {tn} with limn®∞ tn = 0, there exists k Î (0,1)

and n0 Î N, such that �(tn) ≥ ktn for each n ≥ n0.

(iii) θ : [0, ∞) ® [0, ∞) is a continuous function such that θ(t) = 0 if and only if t = 0.

(iv) M is defined by (1.2) and N(x, y) = min{d(y, fx), d(x, gy)}.

Then in each of the following two cases the mappings f and g have at least one com-

mon fixed point.

(τ1) f or g is continuous, or

(τ2) if a nondecreasing sequence {xn} converges to x, then xn ⊑ x for all n.

Proof. Step 1. Using that the pair of functions (f, g) is weakly increasing, we can con-

struct inductively, starting with arbitrary x0 Î X, a sequence {xn} such that xn ⊑ xn+1.

Namely, denoted:

x1 = f x0 � gf x0 = gx1,

x2 = gx1 � fgx1 = f x2,

x3 = f x2 � gf x2 = gx3,

. . .

and in general, x2n+1 = fx2n and x2n+2 = gx2n+1 for all n Î N.

Suppose first that xn0 = xn0+1 for some n0. Then, the sequence {xn} is constant for n ≥

n0.

Indeed, let n0 = 2k. Then x2k = x2k+1 and we obtain from (2.1) that

ψ(d(x2k+1, x2k+2)) = ψ(d(f x2k, gx2k+1))

≤ ψ(M(x2k, x2k+1)) − ϕ(ψ(M(x2k, x2k+1))) + θ(N(x2k, x2k+1)),
(2:2)
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where

M(x2k, x2k+1) = max{d(x2k, x2k+1), d(x2k, f x2k), d(x2k+1, gx2k+1),
1
2
(d(x2k, gx2k+1) + d(x2k+1, f x2k))

}

= max
{
0, 0, d(x2k+1, x2k+2),

1
2
(d(x2k, x2k+2) + 0)

}

= max
{
d(x2k+1, x2k+2),

1
2
d(x2k, x2k+2)

}

= d(x2k+1, x2k+2),

and

N(x2k, x2k+1) = min{d(f x2k, x2k+1), d(gx2k+1, x2k)} = 0.

Now from (2.2), we get that

ψ(d(x2k+1, x2k+2)) ≤ ψ(d(x2k+1, x2k+2)) − ϕ(ψ(d(x2k+1, x2k+2))),

and so ψ(d(x2k+1, x2k+2)) ≤ 0 and x2k+1 = x2k+2. Similarly, if n0 = 2k + 1 one easily

obtains that x2k+2 = x2k+3 and the sequence {xn} is constant (starting from some n0)

and xn0 is common fixed point of f and g.

Suppose now that d(xn, xn+1) > 0 for each n. We shall show that for each n = 0, 1,...,

d(x2n+1, xn+2) ≤ M(x2n, x2n+1) = d(x2n, x2n+1), (2:3)

and

d(x2n+3, xn+2) ≤ M(x2n+2, x2n+1) = d(x2n+2, x2n+1). (2:4)

It is clear that N(x2n, x2n+1) = 0 and N(x2n+2, x2n+1) = 0, for all n Î N. Using condi-

tion (2.1), since x2n and x2n+1 are comparable, we obtain that

ψ(d(x2n+1, x2n+2)) = ψ(d(f x2n, gx2n+1))

≤ ψ(M(x2n, x2n+1)) − ϕ(ψ(M(x2n, x2n+1))) + θ(N(x2n, x2n+1))

≤ ψ(M(x2n, x2n+1)),

(2:5)

and since the control function ψ is nondecreasing, it follows that

d(x2n+1, x2n+2) ≤ M(x2n, x2n+1). (2:6)

Hence

M(x2n, x2n+1) = max
{
d(x2n, x2n+1), d(x2n, f x2n), d(x2n+1, gx2n+1) ,

1
2

(
d(x2n, gx2n+1) + d(x2n+1, f x2n)

)}

= max
{
d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),

1
2
d(x2n, x2n+2)

}

≤ max
{
d(x2n, x2n+1), d(x2n+1, x2n+2),

1
2

(
d(x2n, x2n+1) + d(x2n+1, x2n+2)

)}

≤ max
{
d(x2n, x2n+1), d(x2n+1, x2n+2)

}
.

If d(x2n+1, x2n+2) ≥ d(x2n, x2n+1), then it follows from the last inequality and (2.6) that

M(x2n, x2n+1) = d(x2n+1, x2n+2) and condition (2.5) implies that
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ψ(d(x2n+1, x2n+2)) = ψ(d(f x2n+, gx2n+1))

≤ ψ(d(x2n+1, x2n+2)) − ϕ(ψ(d(x2n+1, x2n+2))),

which is only possible when d(x2n+1, x2n+2) = 0, it is a contradiction. Hence, d(x2n+1,

x2n+2) ≤ d(x2n, x2n+1) and M(x2n, x2n+1) ≤ d(x2n, x2n+1). By definition, M(x2n, x2n+1) ≥ d

(x2n, x2n+1), (2.3) is proved for d(x2n+1, x2n+2). In a Similar way, one can obtain that

d(x2n+3, x2n+2) ≤ M(x2n+2, x2n+1) = d(x2n+2, x2n+1).

So, (2.3) and (2.4) holds for each n Î N.

It follows that the sequence {d(xn, xn+1)} is nondecreasing. Let limn®∞ d(xn, xn+1) =

d*, for some d* ≥ 0 then

lim
n→∞M(x2n, x2n+1) = d∗,

and

lim
n→∞M(x2n+2, x2n+1) = d∗.

Suppose that d* > 0. We have

ψ(d(x2n+1, x2n+2)) ≤ ψ(M(x2n, x2n+1)) − ϕ(ψ(M(x2n, x2n+1))).

Passing to the (upper) limit when n ® ∞, it follows that

ψ(d∗) ≤ ψ(d∗) − lim inf
n→∞ ϕ(ψ(M(x2n, x2n+1))) ≤ ψ(d∗) − ϕ(ψ(d∗)),

i.e. ψ(d*) ≤ 0. Using the properties of control functions, we get that d* = 0 which is a

contradiction. We conclude that limn®∞ d(xn, xn+1) = 0.

Step 2. Now we show that {xn} is a Cauchy sequence in X. Since

lim
n→∞ ψ(M(x2n, x2n+1)) = 0, lim

n→∞ ψ(M(x2n+2, x2n+1)) = 0

then by the property of � there exists k Î (0,1) and n0 Î N such that

ϕ(ψ(M(x2n, x2n+1))) ≥ kψ(M(x2n, x2n+1)),

ϕ(ψ(M(x2n+2, x2n+1))) ≥ kψ(M(x2n+2, x2n+1)),

for all n ≥ n0. For any natural number n ≥ n0, if n is even, we have

ψ(d(x2n+1, x2n+2)) = ψ(d(f x2n, gx2n+1))

≤ ψ(M(x2n, x2n+1)) − ϕ(ψ(M(x2n, x2n+1)))

≤ (1 − k)ψ(d(x2n, x2n+1)),

and similarly

ψ(d(x2n, x2n+1)) = ψ(d(f x2n, gx2n−1))

≤ ψ(M(x2n, x2n−1)) − ϕ(ψ(M(x2n, x2n−1)))

≤ (1 − k)ψ(d(x2n, x2n−1)).

Hence, for all n ≥ n0, we have

ψ(d(xn, xn+1)) ≤ (1 − k)ψ(d(xn, xn−1)).
∞∑
1

ψ(d(xn, xn+1)) ≤
n0∑
1

ψ(d(xn, xn+1)) +
∞∑
1

(1 − k)nψ(d(xn0 , xn0+1)) < ∞.
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Since

lim sup
n→∞

d(xn, xn+1)
ψ(d(xn, xn+1))

≤ lim sup
s→0+

s

ψ(s)
< ∞

then
∑∞

1 d(xn, xn+1) < ∞. This shows that {xn} is a Cauchy sequence. Since (X, d) is

a complete metric space, then there exists a z Î X such that limn®∞ xn = z.

Step 3. We have to prove that z is a common fixed point of f and g. We shall distin-

guish the case (τ1) and (τ2) of the theorem.

(τ1) Suppose that the mapping g is continuous. Since x2n+1 ® z, we obtain that x2n+2
= gx2n+1 ® gz. On the other hand, x2n+2 ® z (as a subsequence of {xn}). It follows that

gz = z. To prove fz = z, using z ⊑ z, we can put x = y = z in (2.1) and obtain that

ψ(d(fz, gz)) ≤ ψ(M(z, z)) − ϕ(ψ(M(z, z))) + θ(N(z, z)),where

M(z, z) = max
{
d(z, z), d(z, fz), d(z, gz),

1
2

(
d(z, gz) + d(z, fz)

)}

= max
{
0, d(z, fz), 0,

1
2
d(z, fz)

}
= d(z, fz),

and

N(z, z) = min{d(z, fz), d(z, gz)} = 0.

Hence, ψ(d(fz, z)) ≤ ψ(d(z, fz)) - � (ψ(d(z, fz))) it follows that z = fz.

The proof is similar if f is continuous.

(τ2) Suppose that the condition (τ2) of the theorem holds. The sequence {xn} is non-

decreasing w.r.t. ⊑ and it follows that xn ⊑ z. Take x = x2n and y = z, which are com-

parable in (2.1) to obtain that

ψ(d(f x2n, gz)) ≤ ψ(M(x2n, z)) − ϕ(ψ(M(x2n, z))) + θ(N(x2n, z)), (2:7)

where

M(x2n, z) = max
{
d(x2n, z), d(x2n, f x2n), d(z, gz),

1
2

(
d(x2n, gz) + d(z, f x2n)

)}

→ max
{
0, 0, d(z, gz),

1
2
d(z, gz)

}
= d(z, gz),

N(x2n, z) = min
{
d(x2n, gz), d(z, f x2n)

} → 0.

Now, passing to the limit when n ® ∞ in (2.7), we get

ψ(d(z, gz)) ≤ ψ(d(z, gz)) − ϕ(ψ(d(z, gz))),

wherefrom it follows that z = gz.

To prove fz = z, using z ⊑ z, we can put x = y = z in (2.1) and obtain that ψ(d(fz, gz))

≤ ψ(M(z, z)) - � (ψ(M(z, z))) + θ(N(z, z)), where

M(z, z) = max
{
d(z, z), d(z, fz), d(z, gz),

1
2

(
d(z, gz) + d(z, fz)

)}

= max
{
0, d(z, fz), 0,

1
2
d(z, fz)

}
= d(z, fz),
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and

N(z, z) = min{d(z, fz), d(z, gz)} = 0.

Hence, ψ(d(fz, z)) ≤ ψ(d(z, fz)) - � (ψ(d(z, fz))) it follows that z = fz.

Theorem 2.2. Let (X, ⊑) be a partially ordered set and let d be a metric on X such

that (X, d) is a complete metric space, and f : X ® X be a nondecreasing map such

that x0 ⊑ fx0 for some x0 Î X, and for every two comparable elements x, y Î X,

ψ(d(fx, fy)) ≤ ψ(M(x, y)) − ϕ(ψ(M(x, y))), (2:8)

where

(i) ψ : [0, ∞) ® [0, ∞) is a continuous and nondecreasing function such that ψ(t) = 0

if and only if t = 0 and also lim sups→0+
s

ψ(s) < ∞.

(ii) � : [0, ∞) ® [0, ∞) is a lower semi-continuous function such that �(t) = 0 if and

only if t = 0 and also for any sequence {tn} with limn®∞ tn = 0, there exists k Î (0,1)

and n0 Î N, such that �(tn) ≥ ktn for each n ≥ n0.

(iii)

M(x, y) = max
{
d(x, y), d(x, fx), d(y, fy),

1
2

(
d(x, fy) + d(y, fx)

)}
. (2:9)

Then in each of the following two cases the mappings f has fixed point.

(τ1) f is continuous, or

(τ2) if a nondecreasing sequence {xn} converges to x, then xn ⊑ x for all n.

Theorem 2.3. Let all the conditions of Theorem 2.2 be fulfilled and let the following

condition hold:

A : For arbitrary two points x, y Î X, there exists z Î X, which is comparable with

both x and y and z ⊑ fz. Then the fixed point of f is unique.

Proof. Let z and y be two fixed points of f. Consider the following two cases.

Case 1. z and y are comparable. Then we can apply condition (2.8) to obtain that

ψ(d(y, z)) = ψ(d(fy, fz)) ≤ ψ(M(y, z)) − ϕ(ψ(M(y, z))).

Where

M(z, y) = max
{
d(z, y), d(z, fz), d(y, fy),

1
2

(
d(y, fz) + d(z, fy)

)}
= d(z, y),

and hence

ψ(d(y, z)) = ψ(d(fy, fz)) ≤ ψ(M(y, z)) − ϕ(ψ(M(y, z)))

= ψ(d(z, y)) − ϕ(ψ(d(z, y))),

which implies that z = y.

Case 2. Suppose that z and y are not comparable. Choose an element x Î X compar-

able with both of them and x ⊑ fx. Then also z = fnz and is comparable with fnx, for

each n, since f is nondecreasing. Applying (2.8) one obtains that

ψ(d(z, f nx)) = ψ(d(f f n−1z, f f n−1x))

≤ ψ(M(f n−1z, f n−1x)) − ϕ(ψ(M(f n−1z, f n−1x))),
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where

M(f n−1z, f n−1x) = max
{
d(f n−1z, f n−1x), d(f n−1z, f nz), d(f n−1x, f nx),

1
2

(
d(f n−1z, f nx) + d(f nz, f n−1x)

)}

= max
{
d(z, f n−1x), 0, d(f n−1x, f nx),

1
2

(
d(z, f nx) + d(z, f n−1x)

)}

= max
{
d(z, f n−1x), d(z, f nx))

}
,

for n sufficiently large, because d(fn-1 x, fnx) ® 0 when n ® ∞.

Similarly as in the proof of Theorem 2.1, it can be shown that d(z, fnx) ≤ M(z, fn-1x)

≤ d(z, fn-1x). It follows that the sequence {d(z, fnx)} is non decreasing and it has a limit

l ≥ 0. Assuming that l > 0 and passing to the limit in the relation

ψ(d(z, f nx)) ≤ ψ(M(z, f n−1x)) − ϕ(ψ(M(z, f n−1x))),

one obtain that l = 0, a contradiction. In the same way it can be deduced that d(y,

fnx) ® 0 as n ® ∞. Now, passing the limit in d(z, y) ≤ d(z, fnx) + d(fnx, y), it follows

that z = y and the uniqueness of the fixed point is proved.

3. Application to ordinary differential equations
We prove the existence of solution for the following first-order periodic problem

u′(t) = f (t, u(t)), t ∈ I = [0,T]

u(0) = u(T),
(3:1)

where T > 0 and f : I × ℝ ® ℝ is continuous function. Previously, we consider the

space C(I)(I = [0,T]) of continuous functions defined on I. Obviously, this space with

metric given by

d(x, y) = sup{∣∣x(t) − y(t)
∣∣ : t ∈ I} for x, y ∈ C(I)

is a complete metric space. C(I) can also be equipped with partial order given by

x, y ∈ C(I), x ≤ y ⇔ x(t) ≤ y(t) for all t ∈ I.

Now, we give the following definition.

Definition 3.1. A lower solution for (3.1) is a function a Î C1(I) such that

α′(t) ≤ f (t,α(t)), t ∈ I = [0,T]

α(0) ≤ α(T).

Theorem 3.2. Consider problem (3.1) with f : I × ℝ ® ℝ continuous and suppose

that there exists l > 0 such that for x, y Î ℝ with y ≥ x

0 ≤ f (t, y) + λy − [f (t, x) + λx] ≤ λ

2
ln(y − x + 1).

Then the existence of a lower solution for (3.1) provides the existence of a solution of

(3.1).

Proof. Problem (3.1) is equivalent to the integral equation

u(t) =

T∫
0

G(s, t)[f (s, u(s)) + λu(s)] ds
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where

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

eλ(T+s−t)

eλT − 1
, 0 ≤ s < t ≤ T

eλ(s−t)

eλT − 1
, 0 ≤ t < s ≤ T.

Define F : C(I) ® C(I) by

(Fu)(t) =

T∫
0

G(s, t)[f (s, u(s)) + λu(s)] ds.

Note that if u Î C(I) is a fixed point of F then u Î C1(I) is a solution of (3.1). Now,

we will use Theorem 2.2.

The mapping F is increasing since for u ≥ v

f (t, u) + λu ≥ f (t, v) + λv

using that G(s, t) > 0 for (s, t) Î I × I, we give

(Fu)(t) =

T∫
0

G(s, t)[f (s, u(s)) + λu(s)] ds

≥
T∫

0

G(s, t)[f (s, v(s)) + λv(s)] ds = (Fv)(t)

for t Î I. Besides for u ≥ v

ln(d(F(u),F(v)) + 1) = ln
(
sup
t∈I

∣∣(Fu)(t) − (Fv)(t)
∣∣ + 1

)

= ln

⎛
⎝

⎡
⎣sup

t∈I

T∫
0

G(s, t)[f (s, u(s)) + λu(s)] − [f (s, v(s)) + λv(s)]ds

⎤
⎦ + 1

⎞
⎠

≤ ln

⎛
⎝

⎡
⎣sup

t∈I

T∫
0

G(s, t).
λ

2
ln(u(s) − v(s) + 1)ds

⎤
⎦ + 1

⎞
⎠

≤ ln

⎛
⎝

⎡
⎣λ

2
. ln

(
d(u, v) + 1

)
. sup

t∈I

T∫
0

G(s, t)ds

⎤
⎦ + 1

⎞
⎠

= ln
([

λ

2
. ln(d(u, v) + 1). sup

t∈I
1

eλT − 1
(
1
λ
eλ(T+s−t)]t0 +

1
λ
eλ(t−s)]Tt )

]
+ 1

)

= ln
([

λ

2
. ln(d(u, v) + 1). sup

t∈I
1

λ(eλT − 1)
eλT − 1

]
+ 1

)

= ln
([

1
2
ln(d(u, v) + 1)

]
+ 1

)

≤ ln
([

1
2
ln(M(u, v) + 1)

]
+ 1

)

= ln(M(u, v) + 1) −
(
ln(M(u, v) + 1) − ln

([
1
2
ln(M(u, v) + 1)

]
+ 1

))
.

Putting ψ(x) = ln(x + 1) and ϕ(x) = x − ln
( 1
2x + 1

)
. Obviously ψ : [0, ∞) ® [0, ∞) is

continuous, increasing
(
ψ ′(x) = 1

x+1 > 0
)
, positive in (0, ∞), ψ(0) = 0 and
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lim supx→0+
x

ψ(x) = 1 < ∞. Also, � : [0,∞) ® [0,∞) is continuous, positive in (0, ∞) and

ψ(0) = 0, now let {tn}n be sequence that tn ® 0, since limn→∞
ϕ(tn)
tn

= ϕ′(0) =
1
2
, then

for ε = 1
4, there exists n0 such that

∣∣∣ϕ(tn)
tn

− 1
2

∣∣∣ <
1
4
, for all n ≥ n0, hence, ϕ(tn) ≥ 1

4 tn for

all n ≥ n0.

Therefore the controls function ψ and � satisfying the conditions of Theorem 2.2.

Finally, if a(t) be a lower solution for (3.1) then we will show that a ≤ Fa.
Indeed

α′(t) + λα(t) ≤ f (t,α(t)) + λα(t), for t ∈ I.

Multiplying by elt we get

(α(t)eλt)′ ≤ [f (t,α(t)) + λα(t)]eλt , for t ∈ I

and this gives us

α(t)eλt ≤ α(0) +

t∫
0

eλs[f (s,α(s)) + λ(s)] ds (3:2)

which implies that

α(0)eλT ≤ α(T)eλT ≤ α(0) +

T∫
0

eλs[f (s,α(s)) + λα(s)] ds

and so

α(0) ≤
T∫

0

eλs

eλT − 1
[f (s,α(s)) + λα(s)] ds.

From this inequality and (3.2), we obtain that

α(t)eλt ≤
t∫

0

eλ(T+s)

eλT − 1
[f (s,α(s)) + λα(s)] ds +

T∫
t

eλs

eλT − 1
[f (s,α(s)) + λα(s)] ds

and consequently,

α(t) ≤
t∫

0

eλ(T+s−t)

eλT − 1
[f (s,α(s)) + λα(s)] ds +

T∫
t

eλ(s−1)

eλT − 1
[f (s,α(s)) + λα(s)] ds.

Hence

α(t) ≤
T∫

0

G(s, t)[f (s,α(s)) + λα(s)] ds = (Fα)(t)

for t Î I. Finally, it follows from Theorems 2.2 that F has a fixed point.
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