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Abstract

The purpose of this article is first to introduce the concept of total quasi-j-
asymptotically nonexpansive multi-valued mapping which contains many kinds of
mappings as its special cases, and then by using the hybrid shrinking technique to
propose an iterative algorithm for finding a common element of the set of solutions
for a generalized mixed equilibrium problem, the set of solutions for variational
inequality problems, and the set of common fixed points for a countable family of
multi-valued total quasi-j-asymptotically nonexpansive mappings in a real uniformly
smooth and strictly convex Banach space with Kadec-Klee property. The results
presented in the article not only generalize some recent results from single-valued
mappings to multi-valued mappings, but also improve and extend the main results
of Homaeipour and Razani.
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1. Introduction
Throughout this article, we always assume that X is a real Banach space with the dual

X*, C is a nonempty closed convex subset of X, and J : X ® 2X is the normalized dua-

lity mapping defined by

J(x) = {f ∗ ∈ X∗ : 〈x, f ∗〉 = ||x||2 = ||f ∗||2}, x ∈ E.

In the sequel, we use F(T ) to denote the set of fixed points of a mapping T , and use

R and R+ to denote the set of all real numbers and the set of all nonnegative real

numbers, respectively. We denote by xn ® x and xn ⇀ x the strong convergence and

weak convergence of a sequence {xn}, respectively.

Let � : C × C → R be a bifunction, ψ : C → R be a real valued function, and A :

C ® X* be a nonlinear mapping. The so-called generalized mixed equilibrium problem

is to find u Î C such that
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�(u, y) + 〈Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C. (1:1)

The set of solutions to (1.1) is denoted by Ω, i.e.,

� = {u ∈ C : �(u, y) + 〈Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C}. (1:2)

Special examples:

(I) If A ≡ 0, the problem (1.1) is equivalent to finding u Î C such that

�(u, y) + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C. (1:3)

which is called the mixed equilibrium problem (MEP) [1].

(II) If Θ ≡ 0, the problem (1.1) is equivalent to finding u Î C such that

〈Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C. (1:4)

which is called the mixed variational inequality of Browder type (VI) [2].

A Banach space X is said to be strictly convex, if ‖x+y‖
2 < 1 for all x, y Î U = {z Î X :

||z|| = 1} with x ≠ y. X is said to be uniformly convex if, for each � Î (0, 2], there exists

δ >0 such that ‖x+y‖
2 < 1 − δ for all x, y Î U with ||x - y|| ≥ �. X is said to be smooth

if the limit

lim
t→0

||x + ty|| − ||x||
t

exists for all x, y Î U. X is said to be uniformly smooth if the above limit is attained

uniformly in x, y Î U.

Remark 1.1 The following basic properties of a Banach space X can be found in

Cioranescu [1].

(i) If X is uniformly smooth, then X is reflexive and the normalized duality mapping J

is uniformly continuous on each bounded subset of X;

(ii) If X is a reflexive and strictly convex Banach space, then J-1 is norm-weak-

continuous;

(iii) If X is a smooth, strictly convex, and reflexive Banach space, then J is single-

valued, one-to-one and onto;

(iv) A Banach space X is uniformly smooth if and only if X* is uniformly convex;

(v) Each uniformly convex Banach space X has the Kadec-Klee property, i.e., for any

sequence {xn} ⊂ X, if xn ⇀ x Î X and ||xn|| ® ||x||, then xn ® x.

Let X be a smooth Banach space. In the sequel, we use φ : X × X → R+ to denote

the Lyapunov functional which is defined by

φ(x, y) = ||x||2 − 2〈x, Jy〉 + ||y||2, ∀x, y ∈ X. (1:5)

It is obvious from the definition of j that

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x|| + ||y||)2, ∀x, y ∈ X. (1:6)

and

φ(x, J−1(λJy + (1 − λ)Jz)) ≤ λφ(x, y) + (1 − λ)φ(x, z), (1:7)
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for all l Î [0, 1] and x, y, z Î X. If X is a smooth, strictly convex, and reflexive

Banach space, following Alber [2], the generalized projection ∏C : X ® C is defined by

�C(x) = arg inf
y∈C

φ(y, x), ∀x ∈ X.

Lemma 1.2 [2] Let X be a smooth, strictly convex, and reflexive Banach space and C

be a nonempty closed convex subset of X. Then the following conclusions hold:

(a) j (x, ∏Cy) + j (∏Cy, y) ≤ j (x, y) for all x Î C and y Î X;

(b) If x Î X and z Î C, then

z = �Cx ⇔ 〈z − y, Jx − Jz〉 ≥ 0, ∀y ∈ C;

(c) For x, y Î X, j(x, y) = 0 if and only if x = y.

In the sequel, we denote by 2C the family of all nonempty subsets of C.

Definition 1.3 Let T : C ® 2C be a multi-valued mapping.

(1) A point p Î C is said to be an asymptotic fixed point of T, if there exists a

sequence {xn} in C such that {xn} converges weakly to p and

lim
n→∞ d(xn,T(xn)) := lim

n→∞ inf
y∈T(xn)

||xn − y|| = 0.

In the sequel we use F̂(T) to denote the set of all asymptotic fixed points of T;

(2) A multi-valued mapping T : C ® 2C is said to be relatively nonexpansive [3], if

(a) F(T ) ≠ Ø;

(b) j (p, w) ≤ j (p, x), ∀x Î C, w Î Tx, p Î F(T)

(c) F̂(T) = F(T) .

Definition 1.4 (1) A multi-valued mapping T : C ® 2C is said to be quasi-j-nonex-
pansive, if F (T ) ≠ Ø and

φ(p,w) ≤ φ(p, x), ∀x ∈ C,w ∈ Tx, p ∈ F(T).

(2) A multi-valued mapping T : C ® 2C is said to be quasi-j-asymptotically nonex-

pansive if F(T ) ≠ Ø and there exists a real sequence {kn} ⊂ [1, ∞) with kn ® 1 such

that

φ(p,wn) ≤ knφ(p, x), ∀n ≥ 1, x ∈ C,wn ∈ Tnx, p ∈ F(T). (1:8)

(3) A multi-valued mapping T : C ® 2C is said to be ({νn}, {μn},ζ)-total quasi-j-
asymptotically nonexpansive, if F(T) ≠ Ø and there exist nonnegative real sequences

{νn}, {μn} with νn ® 0, μn ® 0 (as n ® ∞) and a strictly increasing continuous function

ζ : R+ → R+ with ζ (0) = 0 such that for all x Î C, p Î F(T )

φ(p,wn) ≤ φ(p, x) + νnζ (φ(p, x)) + μn, ∀n ≥ 1,wn ∈ Tnx. (1:9)

(4) A total quasi-j-asymptotically nonexpansive multi-valued mapping T : C ® 2C is

said to be uniformly L-Lipschitz continuous if there exists a constant L >0 such that

||wn − sn|| ≤ L||x − y||, ∀x, y ∈ C,wn ∈ Tnx, sn ∈ Tny,n ≥ 1.

(5) A multi-valued mapping T : C ® 2C is said to be closed if, for any sequences {xn}

and {wn} in C with wn Î T (xn), if xn ® x and wn ® y, then y Î Tx.
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(6) A countable family of multi-valued mappings {Ti}∞i=1 : C → 2C is said to be uni-

formly ({νn}, {μn}, ζ)-total quasi-j-asymptotically nonexpansive, if F :=
⋂∞

i=1 F(Ti) = ∅
and there exist nonnegative real sequences ({νn}, {μn} with νn ® 0, μn ® 0 and a

strictly increasing continuous function ζ : R+ → R+ with ζ(0) = 0 such that for all x

Î C, p ∈ F

φ(p,wn,i) ≤ φ(p, x) + νnζ (φ(p, x)) + μn, ∀n ≥ 1,wn,i ∈ Tn
i x, i = 1, 2, . . . . (1:10)

Remark 1.5 From the definitions, it is easy to know that

(1) Every quasi-j-asymptotically nonexpansive multi-valued mapping must be a total

quasi-j-asymptotically nonexpansive multi-valued mapping. In fact, taking ζ(t) = t, t ≥ 0,

kn = νn + 1 and μn = 0, then (1.6) can be rewritten as

φ(p,wn) ≤ φ(p, x) + νnζ (φ(p, x)) + μn, ∀n ≥ 1, x ∈ C,wn ∈ Tnx, p ∈ F(T),

where νn ® 0 (as n ® ∞).

(2) The class of quasi-j-asymptotically nonexpansive multi-valued mappings contains

properly the class of quasi-j-nonexpansive multi-valued mappings as a subclass, but

the converse is not true.

(3) The class of quasi-j-nonexpansive multi-valued mappings contains properly the

class of relatively nonexpansive multi-valued mappings as a subclass, but the converse

is not true.

Example 1.6 Now we give some examples of single-valued and multi-valued total

quasi-j-asymptotically nonexpansive mappings.

(1) Single-valued total quasi-j-asymptotically nonexpansive mapping.

Let C be a unit ball in a real Hilbert space l2 and let T : C ® C be a mapping

defined by

T : (x1, x2, . . . , ) → (0, x21, a2x2, a3x3, . . .), (x1, x2, . . . , ) ∈ l2, (1:11)

where {ai} is a sequence in (0, 1) such that
∏∞

i=2 ai =
1
2 . It is proved in [4] that T is

total quasi-j-asymptotically nonexpansive.

(2) Multi-valued total quasi-j-asymptotically nonexpansive mappings.

Let I = 0[1], X = C(I) (the Banach space of continuous functions defined on I with the

uniform convergence norm || f ||C = suptÎI |f(t)|), D = {f Î X : f (x) ≥ 0, ∀x Î I} and a,

b be two constants in (0, 1) with a < b. Let T : D ® 2D be a multi-valued mapping

defined by

T(f ) =
{ {g ∈ D : a ≤ f (x) − g(x) ≤ b,∀x ∈ I}, if f (x) > 1,∀x ∈ I;

{0}, otherwise.
(1:12)

It is easy to see that F (T ) = {0}, therefore F(T) is nonempty.

Next, we prove that T : D ® 2D is a closed total quasi-j-asymptotically nonexpan-

sive multi-valued mapping. In fact, for any given f Î D:

(I) if f(x) >1, ∀x Î I, then for any g Î T(f), we have a ≤ f(x) - g(x) ≤ b. Hence for any

p Î F(T ) = {0} we have

φ(p, g) = φ(0, g) = ||g||2C ≤ ||f ||2C = φ(0, f ) = φ(p, f ).
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If there exists some point x0 Î I such that 0 ≤ f (x0) ≤ 1, then from the definition of

mapping T, we have T(f) = {0}. Hence for any p Î F(T) and g Î T(f) = {0}, we have

φ(p, g) = φ(0, 0) = 0 ≤ ||f ||2C = φ(0, f ) = φ(p, f ).

Summing up the above arguments we have that for any given f Î D

φ(p, g) ≤ φ(p, f ), ∀p ∈ F(T), g ∈ T(f ), (1:13)

(II) For any g ∈ T2(f ) = T(T(f )) =
⋃

g1∈T(f ) T(g1) , there exists some g∗
1 ∈ T(f ) such

that g ∈ T(g∗
1) .

(1) If g∗
1 > 1, ∀x ∈ I , then we have a ≤ g∗

1 − g < b . By (1.13), for any p Î F(T) = {0},

we have

φ(p, g) = φ(0, g) = ||g||2C ≤ ||g∗
1||2C = φ(0, g∗

1) = φ(p, g∗
1) ≤ φ(p, f ).

(2) If there exists x1 Î I such that 0 ≤ g∗
1(x1) ≤ 1, then by the definition of T , we

have Tg∗
1 = {0} . Since g ∈ Tg∗

1 = {0} , and so g = 0. Hence for any p Î F(T), by (1.13)

we have

φ(p, g) = φ(0, 0) = 0 ≤ ||g∗
1||2 = φ(0, g∗

1) = φ(p, g∗
1) ≤ φ(p, f ).

From (1) and (2) we have that for any given f Î D

φ(p, g) ≤ φ(p, f ), ∀p ∈ F(T), g ∈ T2(f ), (1:14)

By induction, we can prove that for any given f Î D, g Î Tn(f), n ≥ 1, p Î F(T),

φ(p, g) ≤ φ(p, f ). (1:15)

Letting {μn} and {νn} be two any nonnegative sequences with μn ® 0 and νn ® 0 and

ζ(t) = t, t ≥ 0, then (1.15) can be rewritten as

φ(p, g) ≤ φ(p, f ) + νnζ (φ(p, f )) + μn

for any f Î D, g Î Tn(f), n ≥ 1, p Î F(T). This shows that T : C ® 2C is a total quasi-

j-asymptotically nonexpansive multi-valued mapping.

Next, we prove that T is a closed mapping. In fact, let {fn} and {gn} be two sequences

in D with gn Î T(fn) such that || fn - f ||C ® 0, ||gn - g||C ® 0 as n ® ∞.

(1) If f(x) >1, ∀x Î I, since {fn} converges uniformly to f, then there exists n0 ≥ 1 such

that fn(x) >1, ∀x Î I, ∀n ≥ n0. By the definition of T, we have

a ≤ fn(x) − gn(x) ≤ b, ∀n ≥ 1 and x ∈ I. (1:16)

Letting n ® ∞ in (1.16), we have

a ≤ f (x) − g(x) ≤ b, ∀n ≥ 1.

This implies that g Î T (f).

(2) If there exists some point x2 Î I such that 0 ≤ f (x2) ≤ 1, then T(f) = {0}. Since

{fn} converges uniformly to f, then there exists a positive integer n2 such that 0 ≤ fn
(x2) ≤ 1, ∀n ≥ n2. By the definition of T, this implies that T(fn) = 0, ∀n ≥ n2. Since gn
Î T(fn), this implies that gn = 0, ∀n ≥ n2. Since gn ® g, g = 0. Therefore g Î T(f).
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These show that T is a closed mapping.

Concerning the weak and strong convergence of iterative sequences to approximate a

common element of the set of solutions for a generalized MEP, the set of solutions for

variational inequality problems, and the set of common fixed points for single-valued

relatively non-expansive mappings, single-valued quasi-j-nonexpansive mappings, sin-

gle-valued quasi-j-asymptotically nonexpansive mappings and single-valued total quasi-

j-asymptotically non-expansive mappings have been studied by many authors in the set-

ting of Hilbert or Banach spaces (see, for example, [4-21] and the references therein).

Very recently, in 2011, Homaeipour and Razani [3] introduced the concept of multi-

valued relatively nonexpansive mappings and proved some weak and strong convergence

theorems to approximation a fixed point for a single relatively nonexpansive multi-

valued mapping in a uniformly convex and uniformly smooth Banach space X which

improve and extend the corresponding results of Matsushita and Takahashi [5].

Motivated and inspired by the researches going on in this direction, the purpose of

this article is first to introduce the concept of total quasi-j-asymptotically nonexpansive

multi-valued mapping which contains multi-valued relatively nonexpansive mappings

and many other kinds of mappings as its special cases, and then by using the hybrid

shirking iterative algorithm for finding a common element of the set of solutions for a

generalized MEP, the set of solutions for variational inequality problems, and the set of

common fixed points for a countable family of multi-valued total quasi-j-asymptotically

nonexpansive mappings in a real uniformly smooth and strictly convex Banach space

with Kadec-Klee property. The results presented in the article not only generalize the

corresponding results of [4-21] from single-valued mappings to multi-valued mappings,

but also improve and extend the main results of Homaeipour and Razani [3]. The

method given in this article is quite different from that one adopted in [3].

2. Preliminaries
In order to prove our main results, the following conclusions and notations will be

needed.

Lemma 2.1 [8] Let X be a real uniformly smooth and strictly convex Banach space

with Kadec-Klee property, and C be a nonempty closed convex set of X. Let {xn} and

{yn} be two sequences in C such that xn ® p and j(xn, yn) ® 0, where j is the func-

tion defined by (1.1), then yn ® p.

Lemma 2.2 Let X and C be as in Lemma 2.1. Let T : C ® 2C be a closed and ({νn},

{μn}, ζ)-total quasi-j-asymptotically nonexpansive multi-valued mapping. If μ1 = 0,

then the fixed point set F (T) of T is a closed and convex subset of C.

Proof Let {xn} be a sequence in F(T) with xn ® p(as n ® ∞), we prove that p Î F

(T). In fact, by the assumption that T is a ({νn}, {μn}, ζ)-total quasi-j-asymptotically

nonexpansive multi-valued mapping with μ1 = 0, hence we have

φ(xn, u) ≤ φ(xn, p) + ν1ζ (φ(xn, p)), ∀u ∈ Tp,

and

φ(p, u) = lim
n→∞ φ(xn, u)

≤ lim
n→∞(φ(xn, p) + ν1ζ (φ(xn, p))) = 0,∀u ∈ Tp.
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By Lemma 1.2(c), p = u. Hence, p Î Tp. This implies that F (T ) is a closed set in C.

Next, we prove that F (T) is convex. For any x, y Î F(T), t Î (0, 1), putting q = tx +

(1 - t)y, we prove that q Î F (T ). Indeed, let {un} be a sequence generated by

u1 ∈ Tq, u2 ∈ Tu1 ⊂ T2q, u3 ∈ Tu2 ⊂ T3q, . . .

un ∈ Tun−1 ⊂ Tnq, . . .
(2:1)

Therefore for each un Î Tun-1 ⊂ Tnq, we have

φ(q, un) = ||q||2 − 2〈q, Jun〉 + ||un||2
= ||q||2 − 2t〈x, Jun〉 − 2(1 − t)〈y, Jun〉 + ||un||2
= ||q||2 + tφ(x, un) + (1 − t)φ (y, un) − t||x||2 − (1 − t)||y||2

(2:2)

Since

tφ(x, un) + (1 − t)φ(y, un)

≤ t(φ(x, q) + νnζ (φ(x, q)) + μn) + (1 − t)(φ(y, q) + νnζ (φ(y, q)) + μn)

= t(||x||2 − 2〈x, Jq〉 + ||q||2 + νnζ (φ(x, q)) + μn)

+ (1 − t)(||y||2 − 2〈y, Jq〉 + ||q||2 + νnζ (φ(y, q)) + μn)

= t||x||2 + (1 − t)||y||2 − ||q||2 + tνnζ (φ(x, q)) + (1 − t)νnζ (φ(y, q)) + μn

(2:3)

Substituting (2.3) into (2.2) and simplifying we have

φ(q, un) ≤ tνnζ (φ(x, q)) + (1 − t)νnζ (φ(y, q)) + μn → 0(n → ∞).

By Lemma 2.1, we have un ® q (as n ® ∞). This implies that un+1 ® q (as n ® ∞).

Since un+1 Î Tun and T is closed, we have q Î Tq, i.e., q Î F(T).

This completes the proof of Lemma 2.2.

Lemma 2.3 [8] Let X be a uniformly convex Banach space, r >0 be a positive num-

ber and Br(0) be a closed ball of X. Then for any sequence {xi}ωi=1 ⊂ Br(0) (where ω is

any positive integer or +∞) and for any sequence {λi}ωi=1 of positive numbers with∑ω
n=1 λn = 1 , there exists a continuous, strictly increasing, and convex function g : [0,

2r) ® [0, ∞), g(0) = 0 such that for any positive integer i ≠ 1, the following hold:

||
ω∑
n=1

λnxn||2 ≤
ω∑
n=1

λn||xn||2 − λ1λig(||x1 − xi||), (2:4)

and for all x Î X

φ(x, J−1(
ω∑
i=1

λiJxi) ≤
ω∑
i=1

λiφ(x, xi) − λ1λig(||Jx1 − Jxi||). (2:5)

For solving the generalized MEP, let us assume that the function ψ : C → R is

convex and lower semi-continuous, the nonlinear mapping A : C ® X* is continuous

and monotone, and the bifunction � : C × C → R satisfies the following conditions:

(A1) Θ(x, x) = 0, ∀x Î C.

(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0, ∀x, y Î C.

(A3) lim supt↓0 Θ(x + t(z - x), y) ≤ Θ(x, y), ∀x, y, z Î C.

(A4) The function y ↦ Θ (x, y) is convex and lower semicontinuous.
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Lemma 2.4 Let X be a smooth, strictly convex, and reflexive Banach space, and C be

a nonempty closed convex subset of X. Let � : C × C → R be a bifunction satisfying

the conditions (A1)-(A4). Let r >0 and x Î X. Then, the following hold:

(i) [12] There exists z Î C such that

�(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

(ii) [13] Define a mapping Tr : X ® C by

Trx =
{
z ∈ C : �

(
z, y

)
+
1
r
〈y − z, Jz − Jx〉 ≥ 0,∀y ∈ C

}
, x ∈ X.

Then, the following conclusions hold:

(a) Tr is single-valued;

(b) Tr is a firmly nonexpansive-type mapping, i.e., ∀z, y Î X,

〈
Tr (z) − Tr

(
y
)
, JTr (z) − JTr

(
y
)〉 ≤ 〈

Tr (z) − Tr
(
y
)
, Jz − Jy

〉
;

(c) F(Tr) = EP(Θ) = F(Tr);

(d) EP(Θ) is closed and convex;

(e) j(q, Tr(x)) + j(Tr(x), x) ≤ j(q, x), ∀q Î F(Tr).

Lemma 2.5 [18] Let X be a smooth, strictly convex, and reflexive Banach space, and

C be a nonempty closed convex subset of X. Let A : C ® X* be a continuous and

monotone mapping, ψ : C → R be a lower semi-continuous and convex function,

and � : C × C → R be a bifunction satisfying the conditions (A1)-(A4). Let r >0 be

any given number and x Î X be any given point. Then, the following conclusions hold:

(i) There exists u Î C such that ∀y Î C

�
(
u, y

)
+ 〈Au, y − u〉 + ψ

(
y
) − ψ (u) +

1
r
〈y − u, Ju − Jx〉 ≥ 0. (2:6)

(ii) If we define a mapping Kr : C ® C by

Kr (x) =
{
u ∈ C : �

(
u, y

)
+ 〈Au, y − u〉 + ψ

(
y
) − ψ (u)

+
1
r
〈y − u, Ju − Jx〉 ≥ 0,∀y ∈ C

}
, x ∈ C,

(2:7)

then, the mapping Kr has the following properties:

(a) Kr is single-valued;

(b) Kr is a firmly nonexpansive-type mapping, i.e., ∀z, y Î X〈
Kr (z) − Kr

(
y
)
, JKr (z) − JKr

(
y
)〉 ≤ 〈

Kr (z) − Kr
(
y
)
, Jz − Jy

〉
;

(c) F(Kr) = Ω = F(Kr);

(d) Ω is a closed convex set of C;

(e) j (p, Kr(z)) + j (Kr(z), z) ≤ j (p, z), ∀p Î F(Kr), z Î X.

Remark 2.6 It follows from Lemma 2.4 that the mapping Kr : C ® C defined by

(2.6) is a relatively nonexpansive mapping. Thus, it is quasi-j-nonexpansive.
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3. Main results
In this section, we shall use the hybrid iterative algorithm to find a common element

of the set of solutions of a generalized MEP, the set of solutions for variational

inequality problems, and the set of fixed points of a infinite family of total quasi-j-
asymptotically nonexpansive multi-valued mappings. For the purpose we give the fol-

lowing hypotheses:

(H1) X is a uniformly smooth and strictly convex Banach space with Kadec-Klee

property and C is a nonempty closed convex subset of X;

(H2) � : C × C → R is a bifunction satisfying the conditions (A1)-(A4), A : C ® X*

is a continuous and monotone mapping, and ψ : C → R is a lower semi-continuous

and convex function.

(H3) {Ti}∞i=1 : C → 2C is a countable family of closed and uniformly ({νn}, {μn}, ζ)-

total quasi-j-asymptotically nonexpansive multi-valued mappings and for each i = 1, 2,

. . . , Ti is uniformly Li-Lipschitzian with μ1 = 0.

We have the following

Theorem 3.1. Let X, C, Θ, A, ψ, {Ti}∞i=1 satisfy the above conditions (H1)-(H3). Let

{xn} be the sequence generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1 (αnJxn + (1 − αn) Jzn) , ∀n ≥ 1,

zn = J−1(βn,0Jxn +
∞∑
i=1

βn,iJwn,i), (wn,i ∈ Tn
i xn, i ≥ 1),∀n ≥ 1,

un ∈ C such that ∀y ∈ C, ∀n ≥ 1,

�
(
un, y

)
+ 〈Aun, y − un〉 + ψ

(
y
) − ψ (un) +

1
rn

〈y − un, Jun − Jyn〉 ≥ 0,

Cn+1 = {ν ∈ Cn : φ (ν, un) ≤ φ (ν, xn) + ξn}, ∀n ≥ 0,

xn+1 = �Cn+1x0, ∀n ≥ 0,

(3:1)

where
∏

Cn+1 is the generalized projection of X onto Cn+1, F := ∩∞
i=1F (Ti) ,

ξn = νnsupp∈F ζ (φ(p, xn)) + μn, {αn} and {bn,0, bn,i} are sequences in 0[1] satisfying the

following conditions:

(i) for each n ≥ 0,
∑∞

i=0 βn,i = 1;

(ii) lim infn®∞ bn,0, bni >0 for any i ≥ 1;

(iii) 0 ≤ an ≤ a <1 for some a Î (0, 1).

If G := F ∩ � = ∩∞
i=1F (Ti) ∩ � is nonempty and F is a bounded subset of C, then

the sequence {xn} converges strongly to ∏Gx0.

Proof. First, we define two functions H : C × C → R and Kr : C ® C by

H
(
x, y

)
= �

(
x, y

)
+ 〈Ax, y − x〉 + ψ

(
y
) − ψ (x) , ∀x, y ∈ C,

Kr (x) = 〈u ∈ C : H
(
u, y

)
+
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C}, x ∈ C.

By Lemma 2.5, we know that the function H satisfies the conditions (A1)-(A4) and Kr

has the property (a)-(e). Therefore, (3.1) can be rewritten as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1 (αnJxn + (1 − αn) Jzn) , ∀n ≥ 1,

zn = J−1

(
βn,0Jxn +

∞∑
i=1

βn,iJwn,i

)
(wn,i ∈ Tn

i xn, i ≥ 1),∀n ≥ 1,

un ∈ C such that

H
(
un, y

)
+

1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C, ∀n ≥ 1,

Cn+1 = {ν ∈ Cn : φ (ν, un) ≤ φ (ν, xn) + ξn}, ∀n ≥ 0,

xn+1 = �Cn+1x0 ∀n ≥ 0.

(3:2)

Now we divide the proof of Theorem 3.1 into six steps.

(I) F and Cn are closed and convex for each n ≥ 0.

In fact, it follows from Lemma 2.2 that F(Ti), i ≥ 1 is closed and convex subsets of C.

Therefore F is a closed and convex subsets in C.

Again by the assumption, C0 = C is closed and convex. Suppose that Cn is closed and

convex for some n ≥ 1. Since the condition j(ν, yn) ≤ j (ν, xn) + ξn is equivalent to

2〈ν, Jxn − Jyn〉 ≤ ‖xn‖2 − ∥∥yn∥∥2 + ξn, n = 1,2, . . . ,

hence the set

Cn+1 = {ν ∈ Cn : 2〈ν, Jxn − Jyn〉 ≤ ‖xn‖2 − ∥∥yn∥∥2 + ξn}

is closed and convex. Therefore Cn is closed and convex for each n ≥ 0.

(II) {xn} is bounded and {j (xn, x0)} is a convergent sequence.

Indeed, it follows from (3.1) and Lemma 1.2(a) that for all n ≥ 0, u Î F(T )

φ (xn, x0) = φ(�Cnx0, x0) ≤ φ (u, x0) − φ(u,�Cnx0) ≤ φ (u, x0) .

This implies that {j (xn, x0)} is bounded. By virtue of (1.6), we know that {xn} is

bounded.

In view of structure of {Cn}, we have Cn+1 ⊂ Cn, xn =
∏

Cn
x0 and xn+1 =

∏
Cn+1

x0 . This

implies that xn+1 Î Cn and

φ (xn, x0) ≤ φ (xn+1, x0) , ∀n ≥ 0.

Therefore {j(xn, x0)} is a convergent sequence.

(III) G := F ∩ � ⊂ Cn for all n ≥ 0.

Indeed, it is obvious that G ⊂ C0 = C . Suppose that G ⊂ Cn for some n ∈ N .

Since un = Krn yn , by Lemma 2.5 and Remark 2.6, Krn is quasi-j-nonexpansive. Hence,

for any given u ∈ G ⊂ Cn and n ≥ 1, it follows from (1.7) that

φ (u, un) = φ
(
u,Krn yn

) ≤ φ
(
u, yn

)
= φ

(
u, J−1 (αnJxn + (1 − αn) Jzn)

)
≤ αnφ (u, xn) + (1 − αn) φ (u, zn) .

(3:3)

Furthermore, it follows from Lemma 2.3 that for any u Î G ⊂ Cn, wn,i ∈ Tn
i xn and i

≥ 1 we have
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φ (u, zn) = φ

(
u, J−1

(
βn,0Jxn +

∞∑
i=1

βn,iJwn,i

))

≤ βn,0φ (u, xn) +
∞∑
i=1

βn,iφ(u,wn,i)−βn,0βn,l g
(||Jxn − Jwn,l||

)

≤ βn,0φ (u, xn) +
∞∑
i=1

βn,i(φ(u,wn,i) + νnζ (φ(u,wn,i)) + μn)

− βn,0βn,lg
(||Jxn − Jwn,l||

)
≤ φ (u, xn) + νn sup

p∈F
ζ (φ(p, xn)) + μn − βn,0βn,l g

(∥∥Jxn − Jwn,l
∥∥)

= φ (u, xn) + ξn − βn,0βn,lg
(∥∥Jxn − Jwn,l

∥∥)
,

(3:4)

where ξn = νnsupp∈F ζ (φ(p, xn)) . Substituting (3.4) into (3.3) and simplifying,

∀u ∈ G we have

φ (u, un) ≤ φ
(
u, yn

)
≤ φ (u, xn) + (1 − αn) ξn − (1 − αn) βn,0βn,lg

(||Jxn − Jwn,l||
)

≤ φ (u, xn) + ξn − (1 − αn) βn,0βn,lg
(||Jxn − Jwn,l||

)
≤ φ (u, xn) + ξn,

(3:5)

i.e., u Î Cn+1 and so G ⊂ Cn+1 for all n ≥ 0.

By the way, in view of the assumption on {νn}, {μn} we have

ξn = νn sup
p∈F

ζ
(
φ

(
p, xn

))
+ μn → 0 (n → ∞) .

(IV) {xn} converges strongly to some point p* Î C.

In fact, since {xn} is bounded and X is reflexive, there exists a subsequence

{xni} ⊂ {xn} such that xni ⇀ p∗ (some point in C). Since Cn is closed and convex and

Cn+1 ⊂ Cn, this implies that Cn is weakly closed and p* Î Cn for each n ≥ 0. In view of

xni = �Cni
x0 , we have

φ
(
xni , x0

) ≤ φ
(
p∗, x0

)
, ∀ni ≥ 0.

Since the norm || · || is weakly lower semi-continuous, we have

lim inf
ni→∞ φ(xni , x0) = lim inf

ni→∞ (||xni ||2 − 2〈xni, Jx0〉 + ||x0||2)
≥ ||p∗||2 − 2〈p∗, Jx0〉 + ||x0||2 = φ(p∗, x0),

and so

φ(p∗, x0) ≤ lim inf
ni→∞ φ(xni , x0) ≤ lim sup

ni→∞
φ(xni , x0) ≤ φ(p∗, x0).

This implies that limni→∞φ(xni , x0) = φ(p∗, x0) , and so ||xni || → ||p∗||. Since

xni ⇀ p∗ , by virtue of Kadec-Klee property of X, we obtain that

lim
ni→∞ xni = p∗.

Since {j(xn, x0)} is convergent, this together with limni→∞φ(xni , x0) = φ(p∗, x0) ,
which shows that limn®∞ j(xn, x0) = j(p*, x0). If there exists some sequence
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φ(p∗, q) = lim
ni,nj→∞ φ(xni , xnj) = lim

ni,nj→∞ φ(xni ,�Cnj
x0)

≤ lim
ni,nj→∞(φ(xni , x0) − φ(�Cnj

x0, x0)

= lim
ni,nj→∞(φ(xni , x0) − φ(xnj , x0)

= φ(p∗, x0) − φ(p∗, x0) = 0.

such that xnj → q , then from

Lemma 1.2(a) we have that

φ(p∗, q) = lim
ni,nj→∞ φ(xni , xnj) = lim

ni,nj→∞ φ(xni ,�Cnj
x0)

≤ lim
ni,nj→∞(φ(xni , x0) − φ(�Cnj

x0, x0)

= lim
ni,nj→∞(φ(xni , x0) − φ(xnj , x0)

= φ(p∗, x0) − φ(p∗, x0) = 0.

This implies that p* = q and

lim
n→∞ xn = p∗. (3:6)

(V) Now we prove that p∗ ∈ G = F ∩ � .

First, we prove that p∗ ∈ F . In fact, since xn+1 Î Cn+1 ⊂ Cn, it follows from (3.1)

and (3.6) that

φ
(
xn+1, yn

) ≤ φ (xn+1, xn) + ξn → 0 (n → ∞) .

By the virtue of Lemma 2.1, we have

lim
n→∞ yn = p∗. (3:7)

From (3.5), for any u ∈ F and wn,i ∈ Tn
i xn , we have

φ
(
u, yn

) ≤ φ (u, xn) + ξn − (1 − αn) βn,0βn,lg
(||Jxn − Jwn,l||

)
,

i.e.,

(1 − αn) βn,0βn,lg
(||Jxn − Jwn,l||

) ≤ φ (u, xn) + ξn − φ
(
u, yn

) → 0 (n → ∞) .

By conditions (ii) and (iii) it shows that limn®∞ g(||Jxn - Jwn,l||) = 0. In view of prop-

erty of g, we have

||Jxn − Jwn,l|| → 0(n → ∞), ∀l ≥ 1.

Since Jxn ® Jp*, this implies that Jwn,l ® Jp*. From Remark 1.1 (ii) it yields

wn,l ⇀ p∗(n → ∞),∀l ≥ 1. (3:8)

Again since

|||wn,l|| − ||p∗||| = |||Jwn,l|| − ||Jp∗||| ≤ ||Jwn,l − Jp∗|| → 0(n → ∞),

this together with (3.8) and the Kadec-Klee property of X shows that

lim
n→∞wn,l = p∗,∀l ≥ 1. (3:9)
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Let {sn,l} be a sequence generated by

s2,l ∈ Tlw1,l ⊂ T2
l x1, s3,l ∈ Tlw2,l ⊂ T3

l x2, . . . ,

sn+1,l ∈ Tlwn,l ⊂ Tn+1
l xn, . . . , l ≥ 1

By the assumption that each Ti is uniformly Li-Lipschitz continuous, hence for any

wn,l ∈ Tn
l xn and sn+1,l ∈ Tlwn ⊂ Tn+1

l xn we have

||sn+1,l − wn,l|| ≤ ||sn+1,l − wn+1,l|| + ||wn+1,l − xn+1|| + ||xn+1 − xn|| + ||xn − wn,l||
≤ (Ll + 1)||xn+1 − xn|| + ||wn+1,l − xn+1|| + ||xn − wn,l||. (3:10)

This together with (3.6) and (3.10) shows that

lim
n→∞ ||sn+1,l − wn,l|| = 0, and

lim
n→∞ sn+1,l = p∗.

In view of the closeness of Tl, it yields that p* Î Tp*, i.e., p* Î F (Tl). By the arbi-

trariness of l ≥ 1, we have

p∗ ∈ F = ∩∞
i=1F(Ti).

Next, we prove that p* Î Ω. Since xn+1 = �Cn+1x0 ∈ Cn , it follows from (3.1) and

(3.6) that

φ(xn+1, un) ≤ φ(xn+1, xn) + ξn → 0(n → ∞).

Since xn ® p*, by virtue of Lemma 2.1 we have

lim
n→∞ un = p∗. (3:11)

This together with (3.7) shows that ||un - yn|| ® 0 and limn®∞ ||Jun - Jyn|| ® 0. By

the assumption that rn ≥ a, ∀n ≥ 0, we have

lim
n→∞

||Jun − Jyn||
rn

= 0. (3:12)

Since H(un, y) + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C , by condition (A1), we have

1
rn

〈y − un, Jun − Jyn〉 ≥ −H(un, y) ≥ H(y, un), ∀y ∈ C. (3:13)

By the assumption that y ↦ H(x, y) is convex and lower semi-continuous, letting n ®
∞ in (3.13), from (3.11) and (3.12), we have H(y, p*) ≤ 0, ∀y Î C.

For t Î (0, 1] and y Î C, letting yt = ty + (1 - t)p*, therefore yt Î C and H(yt, p*) ≤ 0.

By condition (A1) and (A4), we have

0 = H(yt, yt) ≤ tH(yt, y) + (1 − t)H(yt, p∗) ≤ tH(yt, y).

Dividing both sides of the above equation by t, we have H(yt, y) ≤ 0, ∀y Î C. Letting

t ↓ 0, from condition (A3), we have H(p*, y) ≤ 0, ∀y Î C, i.e., p* Î Ω, and

p∗ ∈ G = F
⋂

� .

(VI) we prove that xn → p∗ = �G x0. .
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Let q = ∏Gx0. Since q ∈ G ⊂ Cn and xn = ∏Cn x0, we have

φ(xn, x0) ≤ φ(q, x0), ∀n ≥ 0.

This implies that

φ(p∗, x0) = lim
n→∞ φ(xn, x0) ≤ φ(q, x0). (3:14)

In view of the definition of �G x0 , from (3.14) we have p* = q. Therefore,

xn → p∗ = �G x0 . This completes the proof of Theorem 3.1.

Definition 3.2 A finite family of multi-valued mappings {Ti}∞i=1 : C → 2C is said to

be uniformly quasi-j-asymptotically nonexpansive, if F =
⋂∞

i=1
F(Ti) = ∅ and there

exists a real sequence {kn} ⊂ [1, ∞), kn ® 1 such that for each i = 1, 2, . . . , N

φ(p,wn,i) ≤ knφ(p, x), ∀x ∈ C, p ∈
∞⋂
i=1

F(Ti), wn,i ∈ Tn
i x (3:15)

The following theorems can be obtained from Theorem 3.1 immediately.

Theorem 3.3 Let X, C, Θ, A, ψ be as in Theorem 3.1. Let {Ti}∞i=1 be a countable

family of closed and uniformly quasi-j-asymptotically nonexpansive multi-valued map-

pings with a real sequence {kn} ⊂ [1, ∞), kn ® 1 and for each i = 1, 2, . . . , Ti be uni-

formly Li-Lipschitzian. Let {xn} be the sequence generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1(αnJxn + (1 − αn)Jzn), ∀n ≥ 1,

zn = J−1

(
βn,0Jxn +

∞∑
i=1

βn,iJwn,i

)
, (wn,i ∈ Tn

i xn, i ≥ 1), ∀n ≥ 1,

un ∈ C such that ∀y ∈ C

�(un, y) + 〈Aun, y − un〉 + ψ(y) − ψ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0,

Cn+1 = {ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn) + ξn}, ∀n ≥ 0,

xn+1 = �Cn+1x0, ∀n ≥ 0,

(3:16)

where F :=
⋂∞

i=1 F(Ti), ξn = (kn − 1)supp∈F ζ (φ(p, xn)), {βn,0, βn,i}∞i=1,and {an} are

sequences in 0[1] satisfying the conditions (i), (ii), (iii) in Theorem 3.1. If

F :=
⋃∞

i=1 F(Ti) is a bounded subset of C, then {xn} converges strongly to �G x0 .

Proof. Since {Ti}∞i=1 is a countable family of closed and uniformly quasi-j-asymptoti-

cally nonexpansive multi-valued mappings, by Remark 1.5(2), it is a countable family

of closed and uniformly total quasi-j-asymptotically nonexpansive multi-valued map-

pings with non-negative sequences {νn = (kn - 1)}, {μn = 0} and a strictly increasing and

continuous function ζ(t) = t, t ≥ 0. Hence ξn = (kn − 1)supp∈Fφ(p, xn) → 0 (as n ®

∞). Therefore all conditions in Theorem 3.1 are satisfied. The conclusion of Theorem

3.3 can be obtained from Theorem 3.1 immediately.

Theorem 3.4 Let X, C, Θ, A, ψ be as in Theorem 3.1. Let {Ti}∞i=1 be a countable

family of closed and quasi-j-nonexpansive multi-valued mappings. Let {xn} be the

sequence generated by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1(αnJxn + (1 − αn)Jzn), ∀n ≥ 1,

zn = J−1

(
βn,0Jxn +

∞∑
i=1

βn,iJwn,i

)
, (wn,i ∈ Tn

i xn, i ≥ 1), ∀n ≥ 1,

un ∈ C such that ∀y ∈ C, ∀n ≥ 1,

�(un, y) + 〈Aun, y − un〉 + ψ(y) − ψ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0,

Cn+1 = {ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn)}, ∀n ≥ 0,

xn+1 = �Cn+1x0, ∀n ≥ 0,

(3:17)

where {βn,0, βn,i}∞i=1 and {an} are sequences in 0[1] satisfying the conditions (i), (ii),

(iii) in Theorem 3.1. If F :=
⋂∞

i=1
F(Ti) = ∅, then {xn} converges strongly to �G x0 .

Proof. Since {Ti}∞i=1 is a countable family of closed quasi-j-nonexpansive multi-

valued mappings, by Remark 1.5(3), it is a countable of closed and uniformly quasi-j-
asymptotically nonexpansive multi-valued mappings with sequence {kn = 1}. Hence

ξn = (kn − 1)supu∈Fφ(u, xn) = 0 Therefore, the conditions appearing in Theorem 3.3:

“F is a bounded subset in C“ and “for each i ≥ 1, Ti is uniformly Li-Lipschitz” is no

use here. Therefore all conditions in Theorem 3.3 are satisfied. The conclusion of The-

orem 3.4 can be obtained from Theorem 3.3 immediately.

Remark 3.5 Theorems 3.1, 3.3, and 3.4 not only generalize the corresponding results

of Matsushita and Takahashi [5], Plubtieng and Ungchittrakool [6], Ceng et al. [9], Su

et al. [10], Ofoedu and Malonza [11], Wang et al. [12], Chang et al. [4,7,8,13,17,19,20],

Yao et al. [14], Zegeye et al. [15] and Nilsrakoo and Saejung [16] from single-valued

mappings to multi-valued mappings, but also improve and extend the main results of

Homaeipour and Razani [3] and the method adopted in this article is also different

from that one adopted in [3].

4. Applications
In this section, we shall utilize the results presented in Section 3 to study some

problems.

(I) Application to convex feasibility problem.

The “so called” convex feasibility problem for a family of mappings {Ti}ωi=1 (where ω

is a finite positive integer or +∞) is to finding a point in the nonempty intersection⋂ω
i=1 Ci , where Ci is a fixed point set of Ti, i = 1, 2, . . . , ω.

In Theorem 3.4 if Θ = 0, A = 0, ψ = 0, then by Lemma 1.2(c), the condition “un Î C

such that ∀y Î C, 〈y - un, Jun - Jyn〉 ≥ 0” is equivalent to un = ΠC(yn). Hence from The-

orem 3.4, the iterative sequence {xn} defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1(αnJxn + (1 − αn)Jzn), ∀n ≥ 1,

zn = J−1

(
βn,0Jxn +

∞∑
i=1

βn,iJwn,i

)
, (wn,i ∈ Tn

i xn, i ≥ 1), ∀n ≥ 1,

Cn+1 = {ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn)}, un = �Cyn, ∀n ≥ 1,

xn+1 = �Cn+1x0, ∀n ≥ 0,

(4:1)

Chang et al. Fixed Point Theory and Applications 2012, 2012:69
http://www.fixedpointtheoryandapplications.com/content/2012/1/69

Page 15 of 17



converges strongly to a point p∗ =
∏

F x0 , which is a solution of the convex feasibil-

ity problem for a countable family of closed and quasi-j-nonexpansive multi-valued

mappings {Ti}∞i=1 where F =
⋂∞

i=1 F(Ti) .

(II) Application to generalized MEP

In Theorem 3.4 taking Ti = I, ∀i ≥ 1, (the identity mapping on C), then

zn = yn = xn, ∀n ≥ 1, F = C, G = � . By Theorem 3.4 the sequence {xn} defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary, C0 = C,

un ∈ C such that ∀y ∈ C, ∀n ≥ 1,

�(un, y) + 〈Aun, y − un〉 + ψ(y) − ψ(un) +
1
rn

〈y − un, Jun − Jxn〉 ≥ 0,

Cn+1 = {ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn)}, ∀n ≥ 0,

xn+1 = �Cn+1x0, ∀n ≥ 0.

(4:2)

converges strongly to a point p* = ∏Ωx0, which is a solution of the generalized MEP

(1.1).

(III) Application to optimization problem

In (4.2), if Θ = 0, A = 0, then from Theorem 3.4 the sequence {xn} defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary, C0 = C,

un ∈ C such that ∀y ∈ C

ψ(y) − ψ(un) +
1
rn

〈y − un, Jun − Jxn〉 ≥ 0,

Cn+1 = {ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn)}, ∀n ≥ 0,

xn+1 = �Cn+1x0.

(4:3)

converges strongly to a point p* = ∏Kx0 which is a solution of the optimization pro-

blem minxÎC ψ(x), where K ⊂ C is the set of solutions to this optimization problem.

(IV) Application to the mixed variational inequality problem of Browder type

In (4.2), if Θ = 0, then the iterative sequence {xn} defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary, C0 = C,

un ∈ C such that ∀y ∈ C

〈Aun, y − un〉 + ψ(y) − ψ(un) +
1
rn

〈y − un, Jun − Jxn〉 ≥ 0,

Cn+1 = {ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn)}, ∀n ≥ 0,

xn+1 = �Cn+1x0.

(4:4)

converges strongly to a point p* = ∏Qx0 which is a solution of the mixed variational

inequality of Browder type (1.4), where Q is the set of solutions to equation (1.4).
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