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Abstract

In this article, we introduce the concept of nonself uniformly quasi-Lipschitzian
mapping and consider a new iterative scheme with errors to converge to a common
fixed point for a finite family of nonself uniformly quasi-Lipschitzian mappings in
Banach spaces. The results of this article improve and extend many known results.
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1 Introduction and preliminaries
Throughout the article, we assume that X is a real Banach space, C is a nonempty subset

of X, and Fix(T) is the set of fixed points of mapping T, i.e., Fix(T) = {x Î C : Tx = x}.

Definition 1.1. Let T : C ® C be a mapping.

(1) T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1, ∞)

with lim
n→∞ kn = 1 such that

||Tnx − Tny|| ≤ kn||x − y||

for all x, y Î C and n ≥ 1.

(2) T is said to be uniformly Lipschitzian if there exists a constant L > 0 such that

||Tnx − Tny|| ≤ L||x − y||

for all x, y Î C and n ≥ 1.

(3) T is called asymptotically quasi-nonexpansive if there exists a sequence {kn} ⊂

[1, ∞) with lim
n→∞ kn = 1such that

||Tnx − p|| ≤ kn||x − p||

for all x Î C, p Î Fix(T) and n ≥ 1.

Remark 1.1. (i) The concept of asymptotically nonexpansive mapping was initially

introduced by Geobel and Kirk [1]. Meanwhile, they proved that if C is a nonempty
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closed, convex, and bounded subset of a uniformly convex Banach space, then every

asymptotically nonexpansive mapping has a fixed point.

(ii) It is easy to see that if T is an asymptotically nonexpansive mapping, then T is a

uniformly Lipschitzian mapping (taking L = supn ≥ 1 kn), and if Fix(T) ≠ Ø, then

every asymptotically nonexpansive mapping T is an asymptotically quasi-nonexpan-

sive mapping.

Definition 1.2. Let X be a real Banach space and C be a nonempty subset of X.

(1) A mapping P : X ® C is said to be retraction if P2 = P.

(2) If there exists a nonexpansive retraction P : X ® C such that Px = x for all x Î
C, then the set C is said to be nonexpansive retract of X.

Next, we introduce some concepts for nonself mappings.

Definition 1.3. Let X be a real Banach space, C be a nonempty subset of X, and P :

X ® C the nonexpansive retraction of X onto C. Let T : C ® X be a nonself mapping.

(1) T is said to be nonself asymptotically nonexpansive if there exists a sequence {kn}

⊂ [1, ∞) with lim
n→∞ kn = 1such that

||T(PT)n−1x − T(PT)n−1y|| ≤ kn||x − y||

for all x, y Î C and n ≥ 1.

(2) T is said to be nonself uniformly Lipschitzian if there exists a constant L > 0

such that

||T(PT)n−1x − T(PT)n−1y|| ≤ L||x − y||

for all x, y Î C and n ≥ 1.

(3) T is said to be nonself asymptotically quasi-nonexpansive if there exists a

sequence {kn} ⊂ [1, ∞) with lim
n→∞ kn = 1such that

||T(PT)n−1x − p|| ≤ kn||x − p||

for all x Î C, p Î Fix(T) and n ≥ 1.

(4) T is said to be nonself uniformly quasi-Lipschitzian if there exists a constant L >

0 such that

||T(PT)n−1x − p|| ≤ L||x − p||

for all x Î C, p Î Fix(T) and n ≥ 1.

Remark 1.2. (i) The concept of nonself asymptotically nonexpansive mapping was

introduced by Chidume et al. [2] which is a generalization of asymptotically nonexpan-

sive self-mapping.
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(ii) If T is a nonself asymptotically nonexpansive mapping, then it must be nonself

uni-formly Lipschitzian, but the converse does not hold [3].

(iii) If T is a nonself uniformly Lipschitzian mapping or a nonself asymptotically

quasi-nonexpansive mapping, then it must be a nonself uniformly quasi-Lipschit-

zian mapping.

Fixed points iterative technique for (self or nonself) asymptotically nonexpansive

mappings in Banach spaces, including Mann type iteration, Ishikawa type iteration, and

three-step type iteration, have been studied by many authors (see, e.g., [2-8]). Recently,

Khan et al. [9] introduced an iterative scheme (which generalizes Mann iteration, Ishi-

kawa iteration, and three-step iteration) for a finite family of asymptotically quasi-non-

expansive self-mappings {Ti : i Î I}: C ® C, where I = {1, 2, . . ., k} and C be a convex

set. For any initial point x1 Î C:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn+1 = (1 − αkn)xn + αknTn
k y(k−1)n,

y(k−1)n = (1 − α(k−1)n)xn + α(k−1)nTn
(k−1)y(k−2)n,

y(k−2)n = (1 − α(k−2)n)xn + α(k−2)nTn
(k−2)y(k−3)n,

...
y1n = (1 − α1n)xn + α1nTn

1y0n,

(1:1)

where y0n = xn and {ain} are real sequences in [0, 1] for all n ≥ 1. They proved the

convergence to a common fixed point for a finite family of asymptotically quasi-nonex-

pansive self-mappings in Banach spaces by using the iterative (1.1).

Inspired and motivated by the above research, we introduce a new iterative process

as follows:

Let C be a nonempty convex subset of a real Banach space X and P : X ® C the

nonexpansive retraction of X onto C. Assume Ti : C ® X, i Î I be a finite family of

nonself uniformly quasi-Lipschitzian mappings. For any x1 Î C, the sequence {xn} is

defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn+1 = ykn = P(αknxn + βknTk(PTk)
n−1y(k−1)n + γknukn),

y(k−1)n = P(α(k−1)nxn + β(k−1)nT(k−1)(PT(k−1))
n−1y(k−2)n + γ(k−1)nu(k−1)n),

y(k−2)n = P(α(k−2)nxn + β(k−2)nT(k−2)(PT(k−2))
n−1y(k−3)n + γ(k−2)nu(k−2)n),

...
y1n = P(α1nxn + β1nT1(PT1)

n−1y0n + γ1nu1n),

(1:2)

where y0n = xn for all n ≥ 1, {ain}, {bin}, {gin} are real sequences in [0, 1] with ain +

bin + gin = 1 and {uin} is a bounded sequence in C, for i Î I.

Remark 1.3. The iterative sequence (1.2) is a natural generalization of the well-

known iteration:

(i) If {Ti : i Î I} is asymptotically quasi-nonexpansive self-mappings and gin = 0 for

i Î I and n ≥ 1, then the iterative sequence (1.2) reduces to (1.1).

(ii) If k = 2 and T1, T2 are nonself asymptotically nonexpansive mappings, g1n = g2n
= 0, then the iterative sequence (1.2) reduces to the Ishikawa type iteration in

Wang [8].

(iii) If k = 1 and T1 is a nonself asymptotically nonexpansive mapping, g1n = 0, then

the iterative sequence (1.2) reduce to the Mann type iteration in Chidume et al. [2].
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In this article, we are concerned with the convergence to a common fixed point for a

finite family of nonself uniformly quasi-Lipschitzian mappings in Banach spaces by

using the iterative sequence (1.2). As one will see, our results extend and generalize

the corresponding results in [2-10] as follows: (i) the condition
∑∞

n=1 (kin − 1) < ∞ is

dropped; (ii) the condition
∑∞

n=1 γin < ∞, i ∈ I is replaced with
∑∞

n=1 (βkn + γkn) < ∞;

(iii) a more general mapping is considered.

We need the following lemma for proving our main results.

Lemma 1.1. ([5]) Let {an}, {bn}, and {cn} be sequences of nonnegative real numbers

satisfying the following conditions:

an+1 ≤ (1 + bn)an + cn,∀n ≥ 1.

where
∑∞

n=1
bn < ∞ and

∑∞
n=1

cn < ∞ , then lim
n→∞ an exists.

2 Main results
In this section, we shall prove the strong convergence of the iteration sequence (1.2) to

a common fixed point for a finite family of nonself uniformly quasi-Lipschitzian map-

pings Ti (i Î I) in real Banach spaces. We first prove the following lemma.

Lemma 2.1. Let C be a nonempty convex subset of a real normed linear space X. Let

{Ti : i Î I}: C ® X be a finite family of nonself uniformly quasi-Lipschitzian mappings

with Li >0, i.e.,

‖ Ti(PTi)n−1x − pi ‖ ≤ Li ‖ x − pi ‖

for all x Î C and pi Î Fix(Ti), i Î I. Define the sequence {xn} as in (1.2) with∑∞
n=1 (βkn + γkn) < ∞. If F =

⋂k
i=1 Fix(Ti) 	= ∅ , then

(i) there exist two constants M0, M1 > 0 such that

||xn+1 − p|| ≤ [1 + θnM0]||xn − p|| + θnM1 (2:1)

where θn = bkn + gkn for all n ≥ 1, p Î F.

(ii) there exists a constant M2 >0, such that

||xn+m − p|| ≤ M2||xn − p|| +M1M2

n+m−1∑
j=n

θj (2:2)

for all n, m ≥ 1, p Î F.

Proof. (i)We take p Î F. Since {uin} is a bounded sequence in C for all i Î I, there

exists M > 0 such that

M = max
1≤i≤k

{||uin − p||}.
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Let L = max1 ≤ i ≤ k{Li} >0. Using (1.2), we have

||y1n − p|| = ||P(α1nxn + β1nT1(PT1)n−1xn + γ1nu1n) − p||
≤ ||α1nxn + β1nT1(PT1)n−1xn + γ1nu1n − (α1n + β1n + γ1n)p||
≤ α1n||xn − p|| + β1n||T1(PT1)n−1xn − p|| + γ1n||u1n − p||
≤ α1n||xn − p|| + β1nL||xn − p|| + γ1nM

≤ (1 + L)||xn − p|| +M.

Assume that

||yin − p|| ≤ (1 + L)i||xn − p|| +
i−1∑
j=0

LjM

holds for some 1 ≤ i ≤ k - 1. Then

||y(i+1)n − p|| = ||P(α(i+1)nxn + β(i+1)nT(i+1)(PT(i+1))n−1yin + γ(i+1)nu(i+1)n) − p||
≤ α(i+1)n||xn − p|| + β(i+1)n||T(i+1)(PT(i+1))n−1yin − p|| + γ(i+1)n||u(i+1)n − p||
≤ α(i+1)n||xn − p|| + β(i+1)nL||yin − p|| + γ(i+1)n||u(i+1)n − p||

≤ α(i+1)n||xn − p|| + β(i+1)nL

⎡
⎣(1 + L)i||xn − p|| +

i−1∑
j=0

LjM

⎤
⎦ + γ(i+1)n||u(i+1)n − p||

≤
[
α(i+1)n + β(i+1)nL(1 + L)i

]
||xn − p|| + β(i+1)nL

i−1∑
j=0

LjM + γ(i+1)nM

≤ [1 + L(1 + L)i]||xn − p|| +
i∑

j=1

LjM +M

≤ (1 + L)i+1||xn − p|| +
i∑

j=0

LjM

Therefore, by induction, we get for all i Î I

||yin − p|| ≤ (1 + L)i||xn − p|| +
i−1∑
j=0

LjM.

Now, from (1.2), it implies that

||xn+1 − p|| = ||P(αknxn + βknTk(PTk)n−1y(k−1)n + γknukn) − p||
≤ αkn||xn − p|| + βknL||y(k−1)n − p|| + γkn||ukn − p||

≤ αkn||xn − p|| + βknL

⎡
⎣(1 + L)k−1||xn − p|| +

k−2∑
j=0

LjM

⎤
⎦ + γknM

≤
[
αkn + βknL(1 + L)k−1

]
||xn − p|| + βknL

k−2∑
j=0

LjM + γknM

≤ [1 + θn(1 + L)k]||xn − p|| + θn

⎡
⎣L

k−2∑
j=0

LjM +M

⎤
⎦

≤ [1 + θnM0]||xn − p|| + θnM1,

where θn = bkn +gkn, and M0 = (1 + L)k, and M1 =
∑k−1

j=0 LjM .

Wang et al. Fixed Point Theory and Applications 2012, 2012:72
http://www.fixedpointtheoryandapplications.com/content/2012/1/72

Page 5 of 9



(ii) It is well known that 1 + x ≤ ex for all x ≥ 0. Estimate (2.1) yields

||xn+m − p|| ≤ (1 + θn+m−1M0)||xn+m−1 − p|| + θn+m−1M1

≤ eθn+m−1M0 [(1 + θn+m−2)M0||xn+m−2 − p|| + θn+m−2M1] + θn+m−1M1

≤ e(θn+m−1+θn+m−2)M0||xn+m−2 − p|| + eθn+m−1M0M1(θn+m−1 + θn+m−2)

· · · · · ·

≤ eM0�
∞
j=1θj ||xn − p|| + eM0�

∞
j=1θj · M1 ·

n+m−1∑
j=n

θj

≤ M2||xn − p|| +M1M2

n+m−1∑
j=n

θj,

where M2 = eM0�
∞
j=1θj .

□
Theorem 2.1. Let C be a nonempty closed convex subset of a real Banach space X.

Let {Ti : i Î I}: C ® X be a finite family of nonself uniformly quasi-Lipschitzian map-

pings with Li >0, i.e.,

||Ti(PTi)n−1x − pi|| ≤ Li||x − pi||,

for all x Î C and pi Î F (Ti), i Î I. Define the sequence {xn} as in (1.2) with∑∞
n=1 (βkn + γkn) < ∞. Suppose that F =

⋂k
i=1 Fix(Ti) 	= ∅and closed. Then {xn} con-

verges to a common fixed point of {Ti : i Î I} if and only if lim inf
n→∞ d(xn, F) = 0 , where d

(x, F) = inf{||x - p||: p Î F}.

Proof. The necessity is obvious. Next, we will prove the sufficiency. It follows from

Lemma 2.1 that {xn} is bounded. From Lemma 2.1 (i), we have

||y1n − p|| ≤ α1n||xn − p|| + β1nL||xn − p|| + γ1n||u1n − p||
≤ α1n||xn − p|| + β1nL||xn − p|| + γ1n[||u1n − xn|| + ||xn − p||]
≤ (1 + L)||xn − p|| +M′,

where

M′ = max
1≤i≤k

{||uin − xn||}.

The same to the proof of Lemma 2.1, we get that

||xn+1 − p|| ≤ [1 + θnM0]||xn − p|| + θnM
′
1,

where θn = bkn + gkn, and M0 = (1 +L)k, and M′
1 =

∑k−1
j=0 LjM′. Taking infimum over

all p in F, we obtain

d(xn+1, F) ≤ (1 + θnM0)d(xn, F) + θnM
′
1.

Note that M′
1 does not depend on p.

Since
∑∞

n=1 θn =
∑∞

n=1(βkn + γkn) < ∞ and Lemma 1.1, we get that limn ® ∞d(xn, F)

exists. Furthermore, from lim inf
n→∞ d(xn, F) = 0 , we obtain that limn→∞d(xn, F) = 0 .
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We claim that {xn} is a Cauchy sequence. Indeed, for any ε > 0, there exists a con-

stant N0 such that for all n ≥ N0, we have

d(xn, F) ≤ ε

4M2
and

∞∑
i=N0

θi ≤ ε

4M1M2
.

In particular, there exists a p1 Î F and a constant N1 > N0, such that

||xN1 − p1|| ≤ ε

4M2
.

It follows from (2.2) that when n > N1, we have

||xn+m − xn|| ≤ ||xn+m − p1|| + ||xn − p1||

≤ 2M2||xN1 − p1|| +M1M2

⎛
⎝n+m−1∑

j=N1

θj +
n−1∑
j=N1

θj

⎞
⎠

≤ 2M2
ε

4M2
+M1M2

(
ε

4M1M2
+

ε

4M1M2

)
= ε.

Hence, {xn} is a Cauchy sequence in closed convex subset of real Banach spaces.

Clearly, {xn} converges to a point of C.

Suppose that lim
n→∞ xn = p ∈ C . We notice that

|d(p, F) − d(xn, F)| ≤ ||xn − p||,

for all n ≥ 1. Since lim
n→∞ xn = p and limn→∞d(xn, F) = 0 , we conclude that d(p, F) = 0.

Therefore, p Î F. □
Corollary 2.1. Let C be a nonempty closed convex subset of a real Banach space X.

Let {Ti : i Î I}: C ® X be a finite family of nonself uniformly Lipschitzian mappings

with Li >0. Define the sequence {xn} as in (1.2) with
∑∞

n=1 (βkn + γkn) < ∞. Suppose

that F =
⋂k

i=1 Fix(Ti) 	= ∅ and closed. Then {xn} converges to a common fixed point of

{Ti : i Î I} if and only if lim inf
n→∞ d(xn, F) = 0 , where d(x, F) = inf{||x - p||: p Î F}.

Corollary 2.2. Let C be a nonempty closed convex subset of a real Banach space X. Let

{Ti : i Î I}: C ® X be a finite family of nonself asymptotically nonexpansive mappings (or

nonself asymptotically quasi-nonexpansive mappings) with {kin}. Define the sequence {xn}

as in (1.2) with
∑∞

n=1 (βkn + γkn) < ∞. Suppose that F =
⋂k

i=1 Fix(Ti) 	= ∅and closed.

Then {xn} converges to a common fixed point of {Ti : i Î I} if and only if

lim inf
n→∞ d(xn, F) = 0 , where d(x, F) = inf{||x - p|| : p Î F}.

Proof. Since for all i Î I, {kin} ⊂ [1, ∞) and lim
n→∞ kin = 1 , there exists Li >0 such that

Li = sup
n≥1

{kin} < ∞ . Consequently, {Ti : i Î I} is a finite family of nonself uniformly

quasi-Lipschitzian mappings with Li >0. From Theorem 2.1, we get the desired result.

□
Remark 2.1. (i) When {Ti : i Î I} is a finite family of asymptotically nonexpansive

self-mappings or asymptotically quasi-nonexpansive self-mappings with {kin}, Corollary

2.2 also holds.
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(ii) In Corollary 2.2, we remove the condition: “
∑∞

n=1 (kin − 1) < ∞“, which is

required in many other article (see, e.g., [2,4-9]).

(iii) When considering iterative schemes with errors, many authors need the condi-

tions: “
∑∞

n=1 γin < ∞, i ∈ I “, see for example [4-6]. But in Corollary 2.2, we only

need the condition: “
∑∞

n=1 θn < ∞“, where θn = bkn + gkn.

Theorem 2.2. Let C be a nonempty closed convex subset of a real Banach space X.

Let {Ti : i Î I}: C ® X be a finite family of nonself uniformly quasi-Lipschitzian map-

pings with Li >0. Define the sequence {xn} as in (1.2) with
∑∞

n=1 (βkn + γkn) < ∞. Sup-

pose that F =
⋂k

i=1 Fix(Ti) 	= ∅ , and closed. If for any given 1 ≤ l ≤ k,

(i) lim
n→∞ ||xn–Tlxn|| = 0 ;

(ii) there exists a constant a > 0 such that || xn - Tlxn || ≥ ad(xn, F) for all n ≥ 1.

Then {xn} converges to a common fixed point of {Ti : i Î I}.

Proof. From the conditions (i) and (ii), it implies that limn→∞d(xn, F) = 0 . Therefore,

from the proof of Theorem 2.1, {xn} converges to a common fixed point of {Ti : i Î I}.

□
Remark 2.2. A mapping T : C ® X is said to be semi-compact, if for any sequence

{xn} Î C such that lim
n→∞ ||xn − Txn|| = 0 , there exists a subsequence {xnj} of {xn} such

that {xnj} converges strongly to x*Î C.

Theorem 2.3. Let C be a nonempty closed convex subset of a real Banach space X.

Let {Ti : i Î I}: C ® X be a finite family of nonself uniformly quasi-Lipschitzian map-

pings with Li >0. Define the sequence {xn} as in (1.2) with
∑∞

n=1 (βkn + γkn) < ∞. Sup-

pose that F =
⋂k

i=1
F(Ti) 	= ∅and closed. If

(i) lim
n→∞ ||xn − Tixn|| = 0 for all 1 ≤ i ≤ k;

(ii) for some 1 ≤ l ≤ k, Tl is semi-compact.

Then {xn} converges to a common fixed point of {Ti : i Î I}.

Proof. Since Tl is semi-compact and lim
n→∞ ||xn–Tlxn|| = 0, there exist a subsequence

{xnj} ⊂ {xn} such that xnj → x∗ ∈ C . Consequently, we have

||x∗ − Tix∗|| = lim
nj→∞ ||xnj − Tixnj || = lim

nj→∞ ||xnj − Tlxnj || = 0.

This implies that x* Î F. From Theorem 2.1, it follows that

||xn+1 − x∗|| ≤ [1 + θnM0]||xn − x∗|| + θnM′
1.

Since
∑∞

n=1 θn < ∞ , it implies from Lemma 1.1 that there exist a constant b ≥ 0

such that

lim
n→∞ ||xn − x∗|| = b.
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From xnj → x∗ , we know that b = 0, i.e., xn® x*. Thus, {xn} converge to a common

fixed point of {Ti : i Î I}.

□
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