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Abstract

The existence of common fixed points is established for three mappings where T is
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space. As applications, the invariant approximation results are proved. Our results
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1. Introduction and preliminaries
We first review needed definitions. Let (X, d) be a metric space. A map T : X ® X is

called weakly contractive if, for each x, y Î X,

d
(
Tx,Ty

) ≤ d
(
x, y

) − φ
(
d
(
x, y

))
,

where j: [0, ∞) ® [0, ∞) is a lower semicontinuous function from right such that j
is positive on (0, ∞) and j(0) = 0.

A map T : X ® X is called (f, g)-weakly contractive if, for each x, y Î X,

d
(
Tx,Ty

) ≤ d
(
fx, gy

) − φ
(
d
(
fx, gy

))
, (1:1)

where f, g : X ® X are self-mappings and j: [0, ∞) ® [0, ∞) is a lower semicontinu-

ous function from right such that j is positive on (0, ∞) and j(0) = 0. If g = f, then T

is called f-weakly contractive. If f = I, the identity operator, then T is called weakly con-

tractive. Note that if g = f = I and j is continuous nondecreasing, then the definition of

(f, g)-weakly contractive maps is same as the one which appeared in [1,2]. Further if f =

I and j(t) = (1 - k)t for a constant k with 0 < k <1, then an f-weakly contractive map-

ping is called a contraction. Also note that if f = g = I and j is lower semicontinuous

from the right, then ψ(t) = t - j(t) is upper semicontinuous from the right and the

condition (1.1) is replaced by

d
(
Tx,Ty

) ≤ ψ
(
d
(
x, y

))
.

Therefore (f, g)-weakly contractive maps for which j is lower semicontinuous from

the right are of the type of Boyd and Wong [3]. And if we set k(t) = 1 - j(t)/t for t >0
and k(0) = 0 together with f = g = I, then the condition (1.1) is replaced by
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d
(
Tx,Ty

) ≤ k
(
d
(
x, y

))
d
(
x, y

)
.

Therefore (f, g)-weakly contractive maps are closely related to the maps studied by

Mizoguchi and Takahashi [4].

If j(t) = (1 - k)t for a constant k with 0 < k <1, then an (f, g)-weakly contractive

mapping is called a (f, g)-contraction, which has been investigated by Hussain and

Jungck [5], Jungck and Hussain [6], Song [7] and many others.

The set of fixed points of T is denoted by F(T). A point x Î X is a coincidence point

(common fixed point) of f and T if fx = Tx (x = fx = Tx). The set of coincidence points

of f and T is denoted by C(f, T). The pair {f, T} is called;

(1) commuting [8] if T fx = fTx for all x Î M;

(2) compatible (see [6,9]) if limn d(Tfxn, fTxn) = 0 whenever {xn} is a sequence such

that limn Txn = limn fxn = t for some t in M;

(3) weakly compatible [10] if they commute at their coincidence points, i.e., if fTx =

Tfx whenever fx = Tx;

(4) Banach operator pair, if the set F(f) is T-invariant, namely T(F(f)) ⊆ F(f).

Obviously, commuting pair (T, f) is a Banach operator pair but converse is not true in

general; see [11-13]. If (T, f) is a Banach operator pair, then (f, T) need not be a

Banach operator pair (cf. [[11], Example 1]).

The set M in a linear space X is called q-starshaped with q Î M, if the segment [q, x] =

{(1 - k)q + kx :0 ≤ k ≤ 1} joining q to x is contained in M for all x Î M. The map f

defined on a q-starshaped set M is called affine if

f
(
(1 − k) q + kx

)
= (1 − k) fq + kfx, for all x ∈ M.

Suppose that M is q-starshaped with q Î F(f) and is both T- and f-invariant. Then T

and f are called (5) pointwise R-subweakly commuting [14] if for given x Î M, there

exists a real number R >0 such that ||fTx - Tfx|| ≤ Rdist(fx, [q, Tx]) (6) R-subweakly

commuting on M (see [5]) if for all x Î M, there exists a real number R >0 such that

||fTx - Tfx || ≤ Rdist(fx, [q, Tx]); (7) Cq-commuting (see [6,7] if fTx = Tfx for all x Î
Cq(f, T), where Cq(f, T) = ∪{C(f, Tk): 0 ≤ k ≤ 1} where Tkx = (1 - k)q + kTx.

A Banach space X satisfies Opial’s condition if, for every sequence {xn} in X weakly

convergent to x Î X, the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞
∥∥xn − y

∥∥
holds for all y ≠ x. Every Hilbert space and the space lp(1 < p < ∞) satisfy Opial’s

condition. The map T : M ® X is said to be demiclosed at 0 if, for every sequence {xn}

in M converging weakly to x and {Txn} converges to 0 Î X, then 0 = Tx.

Let M be a subset of a normed space (X, ||·||). The set PM(u) = {x Î M : ||x - u|| = dist

(u, M)} is called the set of best approximants to u Î X out of M, where dist(u, M) = inf{||

y - u||: y Î M}. We denote by N and cl(M) (wcl(M)), the set of positive integers and the

closure (weak closure) of a set M in X, respectively.

The concept of the weak contractive mapping has been defined by Alber and

Guerre-Delabriere [1]. Actually, in [1], the authors proved the existence of fixed points

for a single-valued weakly contractive mapping on Hilbert spaces. In 2001, Rhoades

[[2], Theorem 2] obtained a generalization of Banach’s contraction mapping principle

[Note the weakly con-traction contains contraction as the special case (j(t) = (1-k)t)].
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Recently, Chen and Li [11] introduced the class of Banach operator pairs, as a new

class of noncommuting maps and it has been further studied by Ciric et al. [15,16],

Hussain [12,13], Hussain et al. [17], Khan and Akbar [18,19], Pathak and Hussain [20],

Song and Xu [21] and Akbar and Khan [22].

In this article, we introduce the new concept of generalized (f, g)-weakly contractive

map-pings, and consequently establish common fixed point and invariant best approxi-

mation results for the noncommuting generalized (f, g)-weakly contractive mapping.

Our results improve and extend the recent common fixed point and invariant approxi-

mation results of Al-Thagafi [23], Al-Thagafi and Shahzad [24], Chen and Li [11],

Habiniak [25], Hussain and Jungck [5], Jungck and Hussain [6], Jungck and Sessa [26],

Pathak and Hussain [20], Sahab et al. [27], Singh [28,29], Song [7] and Song and Xu

[21] to the class of (f, g)-weakly contractive maps. The applications of fixed point theo-

rems are remarkable in diverse disciplines of mathematics, statistics, engineering and

economics in dealing with the problems arising in approximation theory, potential the-

ory, game theory, theory of differential equations, theory of integral equations and

others (see [20,30,31]).

2. Results for (f, g)-weak contractions
The following result is a particular case of Song [[32], Theorem 3.1].

Lemma 2.1. Let M be a nonempty subset of a metric space (X, d), and T be a self-

map of M. Assume that clT (M) ⊂ M, clT (M) is complete, and T is weakly contractive

mapping. Then M ∩ F(T) is singleton.

Theorem 2.2. Let M be a nonempty subset of a metric space (X, d), and T, f and g

be self-maps of M. Assume that F(f)∩F(g) is nonempty, clT(F(f)∩F(g)) ⊆ F(f)∩F(g), cl(T
(M)) is complete, and T is (f, g)-weakly contractive mapping. Then M ∩ F(T) ∩ F(f) ∩ F

(g) is singleton.

Proof. cl(T(F(f) ∩ F(g))) being subset of cl(T(M)) is complete. Further, for all x, y Î F

(f) ∩ F(g), we have by (f, g)-weak contractiveness of T,

d
(
Tx,Ty

) ≤ d
(
fx, gy

) − φ
(
d
(
fx, gy

))
= d

(
x, y

) − φ
(
d
(
x, y

))

Hence T is weakly contractive mapping on F(f)∩F(g) and clT (F(f)∩F(g)) ⊆ F(f)∩F(g).
By Lemma 2.1, T has a unique fixed point z in F(f) ∩ F(g) and consequently, M ∩ F(T)

∩ F(f) ∩ F(g) is singleton.

Corollary 2.3. Let M be a nonempty subset of a metric space (X, d), and (T, f) and

(T, g) be Banach operator pairs on M. Assume that cl(T(M)) is complete, T is (f, g)-

weakly contractive mapping and F(f)∩F(g) is nonempty and closed. Then M∩F(T)∩F
(f)∩F(g) is singleton.
Corollary 2.4. Let M be a nonempty subset of a metric space (X, d), and T, f and g

be self-maps of M. Assume that F(f) ∩ F(g) is nonempty, clT (F(f) ∩ F(g)) ⊆ F(f) ∩ F(g),

cl(T (M)) is complete. If T satisfies the following inequality for all x, y Î M,

d
(
Tx,Ty

) ≤ ψ
(
d
(
fx, gy

))
(2:1)

where ψ: [0, ∞) ® [0, ∞) is upper semicontinuous from right such that ψ(0) = 0 and

ψ(t) < t for each t >0. Then M ∩ F(T) ∩ F(f) ∩ F(g) is singleton.
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Proof. Set j(t) = t - ψ(t). Then inequality (2.1) implies

d
(
Tx,Ty

) ≤ d
(
fx, gy

) − φ
(
d
(
fx, gy

))
,

where j: [0, ∞) ® [0, ∞) is a lower semicontinuous function from right such that j
(t) >0 for t >0 and j(0) = 0. The result follows from Theorem 2.2.

Corollary 2.5. Let M be a nonempty subset of a metric space (X, d), and T, f and g

be self-maps of M. Assume that F(f) ∩ F(g) is nonempty, clT (F(f) ∩ F(g)) ⊆ F(f) ∩ F(g),

cl(T(M)) is complete. If T satisfies the following inequality for all x, y Î M,

d
(
Tx,Ty

) ≤ α
(
d
(
fx, gy

))
d
(
fx, gy

)
(2:2)

where a: [0, ∞) ® (0, 1) is an upper semicontinuous from right. Then M∩F(T)∩F
(f)∩F(g) is singleton.
Proof. Set j(t) = (1 - a(t))t, then inequality (2.2) implies

d
(
Tx,Ty

) ≤ d
(
fx, gy

) − φ
(
d
(
fx, gy

))
,

where j: [0, ∞) ® [0, ∞) is a lower semicontinuous function from right such that j
(t) >0 for t >0 and j(0) = 0. The result follows from Theorem 2.2.

In Corollary 2.3, if j(t) = (1 - k)t for a constant k with 0 < k <1, and f = g, then we

easily obtain the following result which improves Lemma 3.1 of Chen and Li [11].

Corollary 2.6. Let M be a nonempty subset of a metric space (X, d), and (T, f) be a

Banach operator pair on M. Assume that cl(T(M)) is complete, T is f-contraction and

F(f) is nonempty and closed. Then M ∩ F(T) ∩ F(f) is singleton.

The following result properly contains Theorems 3.2-3.3 of [11], Theorem 2.2 of

[23], Theorem 4 of [25] and Theorem 6 of [26].

Theorem 2.7. Let M be a nonempty subset of a normed [resp. Banach] space X and

T, f and g be self-maps of M. Suppose that F(f) ∩ F(g) is q-starshaped, clT(F(f) ∩ F(g))

⊆ F(f)∩F(g) [resp. wclT (F(f)∩F(g)) ⊆ F(f)∩F(g)], cl(T(M)) is compact [resp. wcl(T(M)) is

weakly compact], T is continuous on M [resp.id - T is demiclosed at 0, where id stands

for identity map] and

||Tx − Ty|| ≤ ||fx − gy||
k

− φ(||fx − gy||), (2:3)

for all k Î (0, 1) and x, y Î M where j: [0, ∞) ® [0, ∞) is a lower semicontinuous

function from right such that j is positive on (0, ∞) and j(0) = 0. Then M ∩F(T)∩F
(f)∩F(g) ≠ ∅.

Proof. Define Tn: F(f) ∩ F(g) ® F(f) ∩ F(g) by Tnx = (1 - kn)q + knTx for all x Î F(f)

∩ F(g) and a fixed sequence of real numbers kn(0 < kn <1) converging to 1. Since F

(f)∩F(g) is q-starshaped and clT (F(f)∩F(g)) ⊆ F(f)∩F(g) [resp. wclT (F(f)∩F(g)) ⊆ F(f)∩F
(g)], so clTn(F(f)∩F(g)) ⊆ F(f)∩F(g)] [resp. wclTn(F(f)∩F(g)) ⊆ F(f)∩F(g)] for each n ≥ 1.

Let jn: = knj. Then by (2.3),

||Tnx − Tny|| = kn||Tx − Ty||

≤ kn

( ||fx − gy||
kn

− φ
(||fx − gy||)

)

≤ ||fx − gy|| − knφ
(||fx − gy||)

= ||fx − gy|| − φn
(||fx − gy||) ,
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for each x, y Î F(f)∩F(g) and for each n Î N, jn: [0, ∞) ® [0, ∞) is a lower semicon-

tinuous function from right such that jn is positive on (0, ∞) and jn(0) = 0.

If cl(T(M)) is compact, for each n Î N, cl(Tn(F(f)∩F(g))) is compact and hence com-

plete. By Theorem 2.2, for each n Î N there exists xn Î F(f) ∩ F(g) such that xn = fxn =

gxn = Tnxn. The compactness of cl(T(M)) implies that there exists a subsequence {Txm}

of {Txn} such that Txm ® z cl(T(M)) as m ® ∞. Since {Txm} is a sequence in T(F(f) ∩ F

(g)) and clT(F(f) ∩ F(g)) ⊆ F(f) ∩ F(g), therefore z Î F(f) ∩ F(g). Further, xm = Tmxm = (1 -

km)q + kmTxm ® z. By the continuity of T, we obtain Tz = z. Thus, M ∩ F(T) ∩ F(f) ∩ F

(g) ≠ ∅ proves the first case.

The weak compactness of wcl(T(M)) implies that wcl(Tn(F(f)∩F(g))) is weakly compact

and hence complete due to completeness of X. From Theorem 2.2, for each n ≥ 1, there

exists xn Î F(f) ∩ F(g) such that xn = fxn = gxn = Tnxn. Moreover, we have ||xn - Txn|| ®
0 as n ® ∞. The weak compactness of wcl(T(M)) implies that there is a subsequence

{Txm} of {Txn} converging weakly to y Î wcl(T(M)) as m ® ∞. Since {Txm} is a sequence

in T(F(f)∩F(g)), therefore y Î wcl(T(F(f)∩F(g))) ⊆ F(f)∩F(g). Also we have, xm-Txm ® 0 as

m ® ∞. If id - T is demiclosed at 0, then y = Ty. Thus M ∩ F(T) ∩ F(f) ∩ F(g) ≠ ∅.

Corollary 2.8. Let M be a nonempty subset of a normed [resp. Banach] space X and

T, f and g be self-maps of M. Suppose that F(f) ∩ F(g) is q-starshaped and closed [resp.

weakly closed], cl(T(M)) is compact [resp. wcl(T(M)) is weakly compact], T is continu-

ous on M [resp.id-T is demiclosed at 0], (T, f) and (T, g) are Banach operator pairs

and satisfy (2.3) for all x, y Î M. Then M ∩ F(T) ∩ F(f) ∩ F(g) ≠ ∅.

In Theorem 2.7 and Corollary 2.8, if φ(t) = (1k − 1)t for any constant k with 0 < k <1,

and g = f, then we easily obtain the following results.

Corollary 2.9. [[24], Theorem 2.4] Let M be a nonempty subset of a normed [resp.

Banach] space X and T and f be self-maps of M. Suppose that F(f) is q-starshaped, clT

(F(f)) ⊆ F(f) [resp. wclT (F(f)) ⊆ F(f)], cl(T(M)) is compact [resp. wcl(T(M)) is weakly

compact and either id-T is demiclosed at 0 or X satisfies Opial’s condition] and T is

f-nonexpansive on M. Then F(T) ∩ F(I) ≠ ∅.

Corollary 2.10. [[11], Theorems 3.2-3.3] Let M be a nonempty subset of a normed

[resp. Banach] space X and T, f be self-maps of M. Suppose that F(f) is q-starshaped

and closed [resp. weakly closed], cl(T(M)) is compact [resp. wcl(T(M)) is weakly com-

pact and either id - T is demiclosed at 0 or X satisfies Opial’s condition], (T, f) is a

Banach operator pair and T is f-nonexpansive on M. Then M ∩ F(T) ∩ F(f) ≠ ∅.

Corollary 2.11. [[23], Theorem 2.1] Let M be a nonempty closed and q-starshaped

subset of a normed space X and T and f be self-maps of M such that T(M) ⊆ f(M).

Suppose that T commutes with f and q Î F (f). If cl(T(M)) is compact, f is continuous

and linear and T is f-nonexpansive on M, then M ∩ F(T) ∩ F(f) ≠ ∅.

Let C = PM (u) ∩ Cf ,g
M (u) , where Cf ,g

M (u) = Cf
M (u) ∩ Cg

M (u) and

Cf
M (u) =

{
x ∈ M : fx ∈ PM (u)

}
.

Corollary 2.12. Let X be a normed [resp. Banach] space X and T, f and g be self-

maps of X. If u Î X, D ⊆ C, D0: = D ∩ F(f) ∩ F(g) is q-starshaped, cl(T(D0)) ⊆ D0

[resp. wcl(T(D0)) ⊆ D0], cl(T(D)) is compact [resp. wcl(T(D)) is weakly compact], T is

continuous on D [resp.id - T is demiclosed at 0] and (2.3) holds for all x, y Î D, then

PM(u) ∩ F(T) ∩ F(f) ∩ F(g) ≠ ∅.
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Corollary 2.13. Let X be a normed [resp. Banach] space X and T, f and g be self-

maps of X. If u Î X, D ⊆ PM(u), D0: = D ∩ F(f) ∩ F(g) is q-starshaped, cl(T(D0)) ⊆ D0

[resp. wcl(T(D0)) ⊆ D0], cl(T(D)) is compact [resp. wcl(T(D)) is weakly compact], T is

continuous on D[resp.id - T is demiclosed at 0] and (2.3) holds for all x, y Î D, then

PM(u) ∩ F(T) ∩ F(f) ∩ F(g) ≠ ∅.

Remark 2.14. Corollary 2.5 of [24], and Theorems 4.1 and 4.2 of Chen and Li [11]

and the corresponding results in [23,25-29] are particular cases of Corollaries 2.12 and

2.13.

We denote by ℑ0 the class of closed convex subsets of X containing 0. For M Î ℑ0,

we define Mu = {x Î M : ||x|| ≤ 2 ||u||}. It is clear that PM(u) ⊂ Mu Î ℑ0 (see [5,23]).

Theorem 2.15. Let f, g, T be self-maps of a normed [resp. Banach] space X. If u Î X

and M Î ℑ0 such that T(Mu) ⊆ M, cl(T(Mu)) is compact [resp. wcl(T(Mu)) is weakly

compact] and ||Tx - u|| ≤ ||x - u|| for all x Î Mu, then PM(u) is nonempty, closed and

convex with T(PM(u)) ⊆ PM(u). If, in addition, D ⊆ PM(u), D0: = D ∩ F(f) ∩ F(g) is q-

starshaped, cl(T(D0)) ⊆ D0 [resp. wcl(T(D0)) ⊆ D0], T is continuous on D [resp.id - T

is demiclosed at 0] and (2.3) holds for all x, y Î D, then PM(u) ∩ F(T) ∩ F(f) ∩ F(g) ≠

∅.

Proof. We may assume that u ∉ M. If x Î M\Mu, then ||x|| >2 ||u||. Note that

‖x − u‖ ≥ ‖x‖ − ‖u‖ > ||u|| ≥ dist (u, M) .

Thus, dist(u, Mu) = dist(u, M) ≤ ||u||. If cl(T(Mu)) is compact, then by the continuity

of norm, we get ||z - u|| = dist(u, cl(T(Mu))) for some z Î cl(T(Mu)).

If we assume that wcl(T(Mu)) is weakly compact, using Lemma 5.5 of [[33], p. 192]

we can show the existence of a z Î wcl(T(Mu)) such that dist(u, wcl(T(Mu))) = ||z -

u||.

Thus, in both cases, we have

dist (u,Mu) ≤ dist (u, clT (Mu)) ≤ dist (u,T (Mu)) ≤ ‖Tx − u‖ ≤ ‖x − u‖ ,

for all x Î Mu. Hence ||z - u|| = dist(u, M) and so PM(u) is nonempty, closed and

convex with T(PM(u)) ⊆ PM(u). The compactness of cl(T(Mu)) [resp. weak compactness

of wcl(T(Mu))] implies that cl(T(D)) is compact [resp. wcl(T(D)) is weakly compact].

The result now follows from Corollary 2.13.

Remark 2.16. Theorem 2.15 extends Theorems 4.1 and 4.2 of [23], Theorem 2.6 of

[24], and Theorem 8 of [25].

3. Results for generalized (f, g)-weak contractions
Definition 3.1. A map T : X ® X is called generalized weak contraction [34] if, for

each x, y Î X,

d
(
Tx,Ty

) ≤ M
(
x, y

) − φ
(
M

(
x, y

))
, (3:1)

where j: [0, ∞) ® [0, ∞) is a lower semicontinuous function from right such that j
is positive on (0, ∞), j(0) = 0 and

M
(
x, y

)
= max

{
d
(
x, y

)
, d (Tx, x) , d

(
Ty, y

)
,
1
2

[
d
(
Tx, y

)
+ d

(
Ty, x

)]}
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In (3.1), if we change M(x, y) by

m
(
x, y

)
:= max

{
d
(
fx, gy

)
, d

(
Tx, fx

)
, d

(
Ty, gy

)
,
1
2

[
d
(
Tx, gy

)
+ d

(
Ty, fx

)]}

then T is called generalized (f, g)-weak contraction. If

d
(
Tx,Ty

) ≤ m
(
x, y

)
, (3:2)

then T is called generalized (f, g)-contraction (see [7]). Notice that m(x, y) coincides

with M(x, y) on F(f) ∩ F(g).

The following result is a particular case of Theorem 2.1 of Zhang and Song [34].

Lemma 3.2. Let M be a nonempty subset of a metric space (X, d), and T be a self-

map of M. Assume that clT(M) ⊂ M, clT(M) is complete, and T is a generalized weak

contraction. Then M ∩ F(T) is singleton.

Theorem 3.3. Let M be a nonempty subset of a metric space (X, d), and T, f and g

be self-maps of M. Assume that F(f)∩F(g) is nonempty, clT(F(f)∩F(g)) ⊆ F(f)∩F(g), cl(T
(M)) is complete, and T is generalized (f, g)-weak contraction. Then M ∩ F(T) ∩ F(f) ∩
F(g) is singleton.

Proof. cl(T(F(f) ∩ F(g))) being subset of cl(T(M)) is complete. Further, for all x, y Î F

(f) ∩ F(g), we have by generalized (f, g)-weak contractiveness of T,

d
(
Tx,Ty

) ≤ m
(
x, y

) − φ
(
m

(
x, y

))
= M

(
x, y

) − φ
(
M

(
x, y

))

Hence T is generalized weak contraction mapping on F(f) ∩ F(g) and clT(F(f) ∩ F(g))

⊆ F(f) ∩ F(g). By Lemma 3.2, T has a unique fixed point z in F(f) ∩ F(g) and conse-

quently, M ∩ F(T) ∩ F(f) ∩ F(g) is singleton.

Corollary 3.4. Let M be a nonempty subset of a metric space (X, d), and (T, f) and

(T, g) be Banach operator pairs on M. Assume that cl(T(M)) is complete, T is general-

ized (f, g)-weakly contractive mapping and F(f) ∩ F(g) is nonempty and closed. Then M

∩ F(T) ∩ F(f) ∩ F(g) is singleton.

Corollary 3.5. Let M be a nonempty subset of a metric space (X, d), and T, f and g

be self-maps of M. Assume that F(f) ∩ F(g) is nonempty, clT(F(f) ∩ F(g)) ⊆ F(f) ∩ F(g),

cl(T(M)) is complete. If T satisfies the following inequality for all x, y Î M,

d
(
Tx,Ty

) ≤ ψ
(
m

(
x, y

))
(3:3)

where ψ: [0, ∞) ® [0, ∞) is upper semicontinuous from right such that ψ(0) = 0 and

ψ(t) < t for each t >0, then M ∩ F(T) ∩ F(f) ∩ F(g) is singleton.

Proof. Set j(t) = t - ψ(t). Then inequality (3.3) implies

d
(
Tx,Ty

) ≤ m
(
x, y

) − φ
(
m

(
x, y

))
,

where j: [0, ∞) ® [0, ∞) is lower semicontinuous function from right such that j(t)
>0 for t >0 and j(0) = 0. The result follows from Theorem 3.3.

In Theorem 3.3 and Corollary 3.4, if j(t) = (1 - k)t for a constant k with 0 < k <1,

then we easily obtain the following results which improve Lemma 3.1 of Chen and Li

[11] and provide the conclusions about common fixed points in Theorem 2.1 and Cor-

ollaries 2.2 and 2.3 for different classes of maps.
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Corollary 3.6. Let M be a nonempty subset of a metric space (X, d), and T, f and g

be self-maps of M. Assume that F(f) ∩ F(g) is nonempty, clT(F(f) ∩ F(g)) ⊆ F(f) ∩ F(g),

cl(T(M)) is complete, and T is generalized (f, g)-contraction. Then M ∩F(T) ∩F(f) ∩F(g)
is singleton.

Corollary 3.7. Let M be a nonempty subset of a metric space (X, d), and (T, f) and

(T, g) are Banach operator pairs on M. Assume that cl(T(M)) is complete, T is general-

ized (f, g)-contraction and F(f) ∩ F(g) is nonempty and closed. Then M ∩ F(T) ∩ F(f) ∩
F(g) is singleton.

Theorem 3.8. Let M be a nonempty subset of a normed [resp. Banach] space X and

T, f and g be self-maps of M. Suppose that F(f) ∩ F(g) is q-starshaped, clT(F(f) ∩ F(g))

⊆ F(f)∩F(g) [resp. wclT (F(f)∩F(g)) ⊆ F(f)∩F(g)], cl(T(M)) is compact [resp. wcl(T(M)) is

weakly compact], T is continuous on M [resp.id - T is demiclosed at 0, where id stands

for identity map] and

∥∥Tx − Ty
∥∥ ≤ n

(
x, y

)
k

− φ
(
n

(
x, y

))
, (3:4)

for all k Î (0, 1) and x, y Î M where j: [0, ∞) ® [0, ∞) is a lower semicontinuous

function from right such that j is positive on (0, ∞), j(0) = 0 and

n
(
x, y

)
= max

{∥∥fx − gy
∥∥ , dist (fx, [q,Tx]) , dist (gy, [q,Ty])
1
2

[
dist

(
gy,

[
q,Tx

])
+ dist

(
fx,

[
q,Ty

])]}
.

Then M ∩ F(T) ∩ F(f) ∩ F(g) ≠ ∅.

Proof. We utilize Theorem 3.3 instead of Theorem 2.2 in the proof of Theorem 2.7.

Corollary 3.9. Let M be a nonempty subset of a normed [resp. Banach] space X and

T, f and g be self-maps of M. Suppose that F(f) ∩ F(g) is q-starshaped and closed [resp.

weakly closed], cl(T(M)) is compact [resp. wcl(T(M)) is weakly compact], T is continu-

ous on M [resp.id-T is demiclosed at 0], (T, f) and (T, g) are Banach operator pairs

and satisfy (3.4) for all x, y Î M. Then M ∩ F(T) ∩ F(f) ∩ F(g) ≠ ∅.

In Theorem 3.8, if φ(t) = (1k − 1)t for any constant k with 0 < k <1, then (3.4)

changes into
∥∥Tx − Ty

∥∥ ≤ n
(
x, y

)
(3:5)

Such a map T is called generalized (f, g)-nonexpansive (see [7]).

Corollary 3.10. Let M be a nonempty subset of a normed [resp. Banach] space X

and T, f and g be self-maps of M. Suppose that F(f)∩F(g) is q-starshaped, clT(F(f)∩F(g))
⊆ F(f)∩F(g) [resp. wclT (F(f)∩F(g)) ⊆ F(f)∩F(g)], cl(T(M)) is compact [resp. wcl(T(M)) is

weakly compact], T is continuous on M [resp.id-T is demiclosed at 0] and T is general-

ized (f, g)-nonexpansive. Then M ∩ F(T) ∩ F(f) ∩ F(g) ≠ ∅.

Remark 3.11. (1) By comparing Theorem 2.2(i) of Hussain and Jungck [5] with the

first case of Corollary 3.10, their assumptions “ M is complete, q-starshaped, f and g

are affine and continuous on M, T(M) ⊆ f(M) ∩ g(M), q Î F(f) ∩ F(g) and (T, f) and (T,

g) are R-subweakly commuting on M“ are replaced with “ M is a nonempty subset, F(f)

∩ F(g) is q-starshaped, clT (F(f) ∩ F(g)) ⊆ F(f) ∩ F(g)”.
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(2) By comparing Theorem 2.2(ii) of Hussain and Jungck [5] with the second case of

Corollary 3.10, their assumptions “ M is weakly compact, q-starshaped, f and g are

affine and continuous on M, T(M) ⊆ f(M) ∩ g(M), q Î F(f) ∩ F(g), f - T is demiclosed

at 0 and (T, f) and (T, g) are R-subweakly commuting on M“ are replaced with “ wcl(T

(M)) is weakly compact, F(f) ∩ F(g) is q-starshaped, wclT(F(f) ∩ F(g)) ⊆ F(f) ∩ F(g), id -

T is demiclosed at 0”.

(3) By comparing Theorem 2.13 of Hussain and Jungck [5] with the first case of Cor-

ollary 3.10 with g = f, their assumptions “ M is complete, q-starshaped, f(M) = M, f is

continuous on M, the pair (T, f) is compatible, f fv = fv for v Î C(f, T)” are replaced

with “ M is a nonempty subset, F(f) is q-starshaped, clT(F(f)) ⊆ F(f)”.

(4) By comparing Theorem 2.4 of Song [7] with the first case of Corollary 3.10, his

assumptions “ M is nonempty, q-starshaped, f g are continuous and affine with q Î F(f) ∩
F(g), clT(M) ⊂ f(M) ∩ g(M) and (T, f) and (T, g) are Cq-commuting on M“ are replaced

with “ M is a nonempty subset, F(f) ∩ F(g) is q-starshaped, clT(F(f) ∩ F(g)) ⊆ F(f) ∩ F(g)”.

Corollary 3.12. Let X be a normed [resp. Banach] space X and T, f and g be self-

maps of X. If u X, D ⊆ C, D0: = D ∩ F(f) ∩ F(g) is q-starshaped, cl(T(D0)) ⊆ D0 [resp.

wcl(T(D0)) ⊆ D0], cl(T(D)) is compact [resp. wcl(T(D)) is weakly compact], T is contin-

uous on D[resp.id - T is demiclosed at 0] and (3.4) holds for all x, y Î D, then PM(u) ∩
F(T) ∩ F(f) ∩ F(g) ≠ ∅.

Corollary 3.13. Let X be a normed [resp. Banach] space X and T, f and g be self-

maps of X. If u Î X, D ⊆ PM(u), D0: = D ∩ F(f) ∩ F(g) is q-starshaped, cl(T(D0)) ⊆ D0

[resp. wcl(T(D0)) ⊆ D0], cl(T(D)) is compact [resp. wcl(T(D)) is weakly compact], T is

continuous on D[resp.id - T is demiclosed at 0] and (3.4) holds for all x, y Î D, then

PM(u) ∩ F(T) ∩ F(f) ∩ F(g) ≠ ∅.

Remark 3.14. (1) Corollaries 3.12 and 3.13 improve and develop Theorems 2.8-2.11

of Hussain and Jungck [5] and Theorems 3.1-3.4 of Song [7].

Theorem 3.15. Let f, g, T be self-maps of a normed [resp. Banach] space X. If u Î X and

M Î ℑ0 such that T(Mu) ⊆ M, cl(T(Mu)) is compact [resp. wcl(T(Mu)) is weakly compact]

and ||Tx - u|| ≤ ||x - u|| for all x Î Mu, then PM(u) is nonempty, closed and convex with

T(PM(u)) ⊆ PM(u). If, in addition, D ⊆ PM(u), D0: = D ∩ F(f) ∩ F(g) is q-starshaped, cl(T

(D0)) ⊆ D0 [resp. wcl(T(D0)) ⊆ D0], T is continuous on D [resp.id - T is demiclosed at 0]

and (3.4) holds for all x, y Î D, then PM(u) ∩ F(T) ∩ F(f) ∩ F(g) ≠ ∅.

Proof. We utilize Corollary 3.13 instead of Corollary 2.13 in the proof of Theorem

2.15.

Remark 3.16 Theorem 3.15 extends Theorem 4.1 and 4.2 of [23], Theorem 2.6 of

[24], Theorem 8 of [25], Theorem 2.14 of [5], and Theorem 2.12 of [6].
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