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Abstract

It is well known that the rate of convergence of S-iteration process introduced by
Agarwal et al. (pp. 61-79) is faster than Picard iteration process for contraction
operators. Following the ideas of S-iteration process, we introduce some Newton-like
algorithms to solve the non-linear operator equation in Banach space setting. We
study the semi-local as well as local convergence analysis of our algorithms. The rate
of convergence of our algorithms are faster than the modified Newton method.
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1 Introduction
Let D be an open convex subset of a Banach space X and F be a Fréchet differentiable

operator at each point of D with values in a Banach space Y . In the sequel, given any

x Î X and r > 0, Br[x] will designate the set {y Î X : ||y - x || ≤ r}, Br(x) will designate

the set {y Î X : || y - x || <r}, B(Y, X) will designate the space of all bounded linear

operators from Y to X and N0 will designate the set N ∪ {0}.

Many applied problems can be formulated to fit the model of the nonlinear operator

equation

F (x) = 0, (1:1)

where F is Fréchet differentiable operator at each point of D with values in a Banach

space Y. A lot of problems about finding the solution of (1.1) are brought forward in

many sciences and engineering (see [1]). Undoubtedly, Newton method is the most

popular method for solving such problems. Starting with x0 Î X, the famous Newton

method is given by

xn+1 = xn − F′−1
xn F(xn), n ∈ N0, (1:2)

where F′
x denotes the Fréchet derivative of F at the point x Î D. There are numerous

generalizations of Newton method for solving nonlinear operator Equation (1.1).

Details can be found in Argyros [2], Wu and Zhao [3] and references therein.
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In Newton method (1.2), functional value of inverse of derivative is required at each

iteration. This bring us a natural question how to modify Newton iteration process

(1.2), so that the computation of the inverse of derivative at each step in Newton

method (1.2) can be avoided. Argyros [4], Bartle [5], Dennis [6] and Rheinboldt [7] dis-

cussed the modified Newton method

xn+1 = xn − F′−1
x0 F(xn), n ∈ N0. (1:3)

In [8], Argyros proved the following theorem for semilocal convergence analysis of

(1.3) to solve the operator Equation (1.1).

Theorem 1.1 Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. For some x0 Î D, let

F′−1
x0 ∈ B(Y, X) . Assume that F′−1

x0 and F satisfy the following conditions:

(i) ||F′−1
x0 || ≤ β , for some b > 0,

(ii) ||F′−1
x0 F(x0)|| ≤ η , for some h > 0,

(iii) ||F′
x − F′

y|| ≤ K0||x − y||, ∀x, y ∈ D and for some K0 > 0.

Assume that h = ηβK0 <
1
2
and Br[x0] ⊆ D, where r = 1−√

1−2h
h η . Then we have the

following:

(a) The Equation (1.1) has a unique solution x* Î Br[x0].

(b) The sequence {xn} generated by (1.3) is in Br[x0] and it converges to x*.

(c) The following error estimate holds:

||xn+1 − x∗|| ≤ γ n+1||x0 − x∗||, ∀n ∈ N0, (1:4)

where g = rbK0.

Let X be a Banach space and F a Fréchet differentiable operator on an open convex

subset D of X with values in a Banach space Y. Let x* Î D be a solution of (1.1) such

that F′−1
x∗ ∈ B(Y, X) . For some x0 Î D, assume that F′−1

x∗ and F satisfy the following:

||F′
x − F′

x0 || ≤ K0||x − x0||, ∀x ∈ D and for some K0 > 0, (1:5)

||F′−1
x∗

(
F′
x − F′

x0

) || ≤ K1||x − x0||, ∀x ∈ D and for some K1 > 0 (1:6)

and

||F′−1
x∗

(
F′
x − F′

x∗
) || ≤ K2||x − x∗||, ∀x ∈ D and for some K2 > 0. (1:7)

Ren and Argyros [9] studied the following local convergence analysis to solve the

operator Equation (1.1).

Theorem 1.2 Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. Let x* Î D be a solu-

tion of (1.1) such that F′−1
x∗ ∈ B(Y, X) . For some x0 Î D, let F′−1

x∗ and F satisfy (1.6)

and (1.7). Assume that Br1 (x∗) ⊆ D , where r1 = 2
K2
. Then, for any initial point x0 Î Br

(x*), where r = 2
2K2+3K1

, we have the following:
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(a) The sequence {xn} generated by (1.3) is in Br(x0) and it converges to the unique

solution x* in Br1 (x∗) .
(b) The following error estimate holds:

||xn+1 − x∗|| ≤ (δ0)n+1||x0 − x∗||, ∀n ∈ N0, (1:8)

where δ0 = ||x0−x∗||
r .

Recently, Agarwal et al. [10] have introduced the S-iteration process as follows: Let X

be a normed space, D a nonempty convex subset of X and A : D ® D an operator.

Then, for arbitrary x0 Î D, the S-iteration process is defined by{
xn+1 = (1 − αn)Axn + αnAyn,
yn = (1 − βn) xn + βnAxn, n ∈ N0,

(1:9)

where {an} and {bn} are sequences in (0, 1).

In [11], motivated by S-iteration process, the first author has introduced the normal

S-iteration process as follows: Let X be a normed space, D a nonempty convex subset

of X and A : D ® D an operator. Then, for arbitrary x0 Î D, the normal S-iteration

process is defined by

xn+1 = A ((1 − αn) xn + αnAxn) , n ∈ N0, (1:10)

where {an} be a sequence in (0, 1). Noticing that the normal S-iteration process is

applicable for finding solutions of constrained minimization problems and split feasibil-

ity problems (see Sahu [11]).

Following [[11], Theorem 3.6], we remark that the normal S-iteration process is fas-

ter than the Picard and Mann iteration processes for contraction mappings.

In the present article, motivated by normal S-iteration process, we introduce the S-

iteration processes of Newton-like for finding the solution of operator Equation (1.1).

Algorithm 1.3 Let a Î (0, 1). Starting with x0 Î X and after xn Î X is defined, we

define the next iterate xn+1 as follows:⎧⎨
⎩
xn+1 = zn − F′−1

x0 F (zn) ,
zn = (1 − α) xn + αyn,
yn = xn − F′−1

x0 F (xn) , n ∈ N0.
(1:11)

Algorithm 1.4 Let a Î (0, 1). Starting with x0 Î X and after xn Î X is defined, we

define the next iterate xn+1 as follows:⎧⎨
⎩
xn+1 = zn − F′−1

z0 F (zn) ,
zn = (1 − α) xn + αyn,
yn = xn − F′−1

x0 F (xn) , n ∈ N0.
(1:12)

The purpose of this article is to prove the semi-local as well as local convergence

analysis of Algorithms 1.3 and 1.4. It is shown that the rate of convergence of (1.11)

and (1.12) are faster than (1.3). Applications to initial value and boundary value pro-

blems are included.

2 Preliminaries
Definition 2.1 Let C be a nonempty subset of normed space X. A mapping T : C ® X

is said to be
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(i) Lipschitzian if there exists a constant L > 0 such that

||T (x) − T
(
y
) || ≤ L||x − y||, ∀x, y ∈ C;

(ii) contraction if there exists a constant L Î (0, 1) such that

||T (x) − T
(
y
) || ≤ L||x − y||, ∀x, y ∈ C;

(iii) quasi-contraction [12]if there exists a constant L Î (0, 1) and

F (T) = {x ∈ C : T (x) = x} 	= ∅

such that

||T (x) − p|| ≤ L||x − p||, ∀x ∈ C and p ∈ F (T) .

Definition 2.2 [11]Let C be a nonempty convex subset of a normed space X and T :

C ® C an operator. The operator G : C ® C is said to be S-operator generated by a Î
(0, 1) and T if

G = T [(1 − α) I + αT] ,

where I is the identity operator.

Before presenting our main results we need the following technical lemmas.

Lemma 2.3 [4,13,14]Let P be a bounded linear operator on a Banach space X. Then

the following are equivalent:

(a) There is a bounded linear operator Q on X such that Q-1 exists, and

||Q − P|| < 1
||Q−1|| .

(b) P -1 exists.

Further, if P -1 exists, then

||P−1|| ≤ ||Q−1||
1 − ||1 − Q−1P|| ≤ ||Q−1||

1 − ||Q−1|| ||Q − P|| .

Lemma 2.4 [9]Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. Let x* Î D be a solu-

tion of (1.1) such that F′−1
x∗ ∈ B(Y, X)and the operator F satisfies the conditions (1.7).

Assume that Br(x*) ⊆ D, where r =
1
K2

. Then, for any x Î Br (x*), F
′
x is invertible, and

the following estimate holds:

||(F′−1
x∗ F′

x

)−1|| ≤ 1
1 − K2||x − x∗|| .

Lemma 2.5 [15,16]Let (X, d) be a complete metric space and F : X ® X a contrac-

tion mapping. Then F has a unique fixed point in X.

Lemma 2.6 [[17], Theorem 9.4.2] Let F be a Fréchet differentiable operator defined

on an open convex subset D of a Banach space X with values in a Banach space Y.

Then, for all x, y Î D, we have

F (x) − F
(
y
)
=

1∫
0

F′
y+t(x−y)

(
x − y

)
dt.
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3 Convergence analysis for Algorithms 1.3 and 1.4
Before studying convergence analysis of Algorithm 1.3, we establish the following theo-

rem for existence of a unique solution of operator Equation (1.1).

Theorem 3.1 Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. For some x0 Î D, let

F′−1
x0 ∈ B(Y, X)and the operator F satisfies (1.5) and the following conditions:

(i) ||F′−1
x0 F (x0) || ≤ η , for some h > 0,

(ii) ||F′−1
x0 || ≤ β , for some b >0.

Assume that h = ηβK0 <
1
2
and Br[x0] ⊆ D, where r = 1−√

1−2h
h η . Then, for fixed a Î

(0, 1), we have the following:

(a) The operator A : Br[x0] ® X defined by

Ax = x − F′−1
x0 F (x) , x ∈ Br [x0] (3:1)

is a contraction self-operator on Br[x0] with Lipschitz constant brK0 and the operator

Equation (1.1) has a unique solution in Br[x0].

(b) The S-operator Aa : Br[x0] ® X generated by a and A is a contraction self-opera-

tor on Br[x0] with Lipschitz constant brK0(1 - a + abrK0).

Proof: (a) Set g : = brK0. Note that γ = 1 − √
1 − 2h < 1 . For x, y Î Br[x0], we have

||Ax − Ay|| = ||x − y − F′−1
x0

(
F (x) − F

(
y
)) ||

=

∥∥∥∥∥∥F′−1
x0

⎡
⎣ 1∫

0

F′
y+t(x−y)

(
x − y

)
dt −

1∫
0

F′
x0

(
x − y

)
dt

⎤
⎦
∥∥∥∥∥∥

≤ ||F′−1
x0 ||

1∫
0

||F′
y+t(x−y)

(
x − y

)− F′
x0

(
x − y

) ||dt

≤ β

1∫
0

K0
∥∥y + t

(
x − y

)− x0
∥∥ ∥∥x − y

∥∥ dt
≤ βrK0||x − y||
≤ γ ||x − y||.

Therefore, the operator A is a contraction with Lipschitz constant g.
Now we claim that A(Br[x0]) ⊆ Br[x0]. For x Î Br[x0], we have

||Ax − x0|| ≤ ||Ax − Ax0|| + ||Ax0 − x0||

≤ ||F′−1
x0 ||

1∫
0

||F′
x0 − F′

x0+t(x−x0)||||x − x0||dt + η

≤ β

1∫
0

K0||t (x − x0) ‖ ||x − x0||dt + η

≤ βK0||x − x0||2
1∫

0

tdt + η

≤ βr2K0

2
+ η

=
βK0

2

[
1 − √

1 − 2h
h

η

]2
+ η

= r.
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Hence, the operator A maps Br[x0] into itself. By Banach contraction principle (see

Lemma 2.5), A has a unique fixed point in Br[x0].

(b) For x, y Î Br[x0], we have

||Aαx − Aαy|| = ||A [(1 − α) x + αAx] − A
[
(1 − α) y + αAy

] ||
≤ γ || (1 − α) x + αAx − (1 − α) y − αAy||
≤ γ || (1 − α)

(
x − y

)
+ α

(
Ax − Ay

) ||
≤ γ [(1 − α) + αγ ] ||x − y||.

Therefore, the S-operator Aa generated by a and A is a contraction operator on Br

[x0] with Lipschitz constant brK0(1- a + abrK0). □
Next we formulate that the operator Al defined by (3.2) is quasi-contraction.

Theorem 3.2 Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. Assume that l Î (0, 1]

and x* Î D is a solution of (1.1) such that F′−1
x∗ ∈ B(Y, X) . For some x0 Î D, let

F′−1
x∗ and F satisfy the conditions (1.6) and (1.7). Assume that Br1 (x∗) ⊆ D , where

r1 = 2
K2
. For x0 Î Br(x*) with r = 2

2K2+3K1
, let Al be an operator defined by

Aλ (x) = x − λF′−1
x0 F (x) , ∀x ∈ Br

(
x∗) . (3:2)

Then, we have the following

(a) For x Î Br(x*), we have

||Aλ (x) − x∗|| ≤ (λδx + 1 − λ) ||x − x∗||, (3:3)

where

δx =
K1

2 (1 − rK2)

(||x − x∗|| + 2||x0 − x∗||) . (3:4)

(b) Al is a quasi-contraction and self-operator on Br(x*) with constant 1 - (1 -δ)l,

where δ = sup
x∈Br(x∗)

{δx}.
Proof: (a) For x Î Br (x*) with x ≠ x*, we have

||Aλx − x∗|| = ||x − λF′−1
x0 F (x) − x∗||

= ||λ (x − x∗)− λF′−1
x0

(
F (x) − F

(
x∗))− (1 − λ)

(
x − x∗) ||

≤ λ||F′−1
x0

[
F (x) − F

(
x∗)− F′

x0

(
x − x∗)] || + (1 − λ) ||x − x∗||

= λ

∥∥∥∥∥∥
(
F′−1
x∗ F′

x0

)−1
1∫

0

F′−1
x∗

(
F′
tx+(1−t)x∗

(
x − x∗)− F′

x0

(
x − x∗)) dt

∥∥∥∥∥∥ + (1 − λ) ||x − x∗||

≤ λ||(F′−1
x∗ F′

x0

)−1||
1∫

0

||F′−1
x∗

(
F′
tx+(1−t)x∗ − F′

x0

) ||||x − x∗||dt + (1 − λ) ||x − x∗||.

By (1.6) and Lemma 2.4, we have

||Aλx − x∗|| ≤ λK1

1 − K2||x0 − x∗||

1∫
0

||t (x − x∗) + (x∗ − x0
) ||||x − x∗||dt + (1 − λ) ||x − x∗||

≤ λK1

1 − K2||x0 − x∗||

1∫
0

(
t||x − x∗|| + ||x0 − x∗||)||x − x∗||dt + (1 − λ) ||x − x∗||

=
λK1

1 − K2||x0 − x∗||
(|| (x − x∗) || + ||x0 − x∗||)2 − ||x0 − x∗||2

2
+ (1 − λ) ||x − x∗||

≤ λK1

2 (1 − rK2)

(||x − x∗|| + 2||x0 − x∗||) ||x − x∗|| + (1 − λ) ||x − x∗||
≤ (λδx + 1 − λ) ||x − x∗||.
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(b) The operator Al is a quasi-contraction with constant 1 - (1 - δ)l. Indeed,

sup
x∈Br(x∗)

{δx} = K1

2 (1 − rK2)

(
sup

x∈Br(x∗)
||x − x∗|| + 2||x0 − x∗||

)

≤ K1

2 (1 − rK2)

(
r + 2||x0 − x∗||)

<
3rK1

2 (1 − rK2)

= 1.

This completes the proof. □
Corollary 3.3 Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. Let a Î (0, 1) and x* Î

D be a solution of (1.1) such that F′−1
x∗ ∈ B(Y, X) . For x0 Î D, let F′−1

x∗ and F satisfy the

conditions (1.6) and (1.7). Assume that Br1 (x∗) ⊆ D , where r1 = 2
K2
. For x0 in Br(x*)

with r = 2
2K2+3K1

, let A be an operator defined by (3.1) and let Aa be the S-operator gen-

erated by a and A. Then, the following hold:

||A (x) − x∗|| ≤ δx||x − x∗||, ∀x ∈ Br
(
x∗) , (3:5)

||Aα (x) − x∗|| ≤ δx (1 − α + αδx) ||x − x∗||, ∀x ∈ Br
(
x∗) , (3:6)

where δx is defined in (3.4).

Corollary 3.4 Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. Let x* Î D be a solu-

tion of (1.1) such that F′−1
x∗ ∈ B(Y, X) . For x0 Î D and a Î (0, 1), let F′−1

x∗ and F satisfy

the conditions (1.6) and (1.7). Assume that Br1 (x∗) ⊆ D , where r1 = 2
K2
. For x0 in Br(x*)

with r = 2
2K2+3K1

, let Ua be an operator defined by

Uα (x) = x − αF′−1
x0 F (x) , ∀x ∈ Br

(
x∗) . (3:7)

Then Ua is a quasi-contraction, self-operator on Br(x*) and the following holds:

||Uα (x) − x∗|| ≤ (αδx + 1 − α) ||x − x∗||, ∀x ∈ Br
(
x∗) . (3:8)

Now, we ready to study the semilocal convergence analysis of Algorithm 1.3.

Theorem 3.5 Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. For some x0 Î D, let

F′−1
x0 ∈ B(Y, X) . Assume that F′−1

x0 and F satisfy (1.5) with the following conditions:

(i) ||F′−1
x0 F (x0) || ≤ η , for some h > 0,

(ii) ||F′−1
x0 || ≤ β , for some b > 0.

Assume that a Î (0, 1), h = ηβK0 <
1
2
and Br[x0] ⊆ D, where r = 1−√

1−2h
h η . Then we

have the

following:

(a) The Equation (1.1) has a unique solution x*Î Br[x0].
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(b) The sequence {xn} generated by Algorithm 1.3 is in Br[x0] and it converges strongly

to x*.

(c) The following error estimate holds:

||xn+1 − x∗|| ≤ ρn+1||x0 − x∗||, ∀n ∈ N0, (3:9)

where r = g (1 - a + ag) and g = brK0.

Proof : (a) It follows from Theorem 3.1.

(b) From Algorithm 1.3, we have

||xn+1 − x∗|| = ||Aα (xn) − Aα

(
x∗) ||

≤ γ [(1 − α) + αγ ] ||xn − x∗||
≤ γ n+1[(1 − α) + αγ ]n+1||x0 − x∗||, ∀n ∈ N0.

(3:10)

Therefore, xn ® x* as n ® ∞.

(c) It follows from (3.10).

Remark 3.6 The condition (1.5) of Theorem 3.5 is weaker assumption than assump-

tion (iii) of Theorem 1.1. Also one can observe from (1.4) and (3.9) that

ρ = γ (1 − α + αγ ) < γ . (3:11)

The strict inequality (3.11) shows that the error estimate in Theorem 3.5 is sharper

than that of Theorem 1.1.

Now, we study the local convergence analysis for Algorithm 1.3.

Theorem 3.7 Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. Let a Î (0, 1) and let

x* Î D be a solution of (1.1) such that F′−1
x∗ ∈ B(Y, X) . For x0 Î D, let F′−1

x∗ and F

satisfy the conditions (1.6) and (1.7). Assume that Br1 (x∗) ⊆ D , where r1 = 2
K2
. Then,

we have the following:

(a) For initial x0 Î Br(x*) with r = 2
2K2+3K1

, the sequence {xn} generated by Algorithm

1.3 is in Br(x*) and it converges strongly to the unique solution x* in Br1 (x∗) .
(b) The following error estimate holds:

||xn+1 − x∗|| ≤ (ρ′)n+1||x0 − x∗||, ∀n ∈ N0, (3:12)

where r’ = δ0(1 - a + aδ0) and δ0 = ||x0−x∗||
r .

Proof : (a) First we show that x* is unique solution of (1.1) in Br1 (x∗) . For contradic-
tion, suppose that y* is another solution of (1.1) in Br1 (x∗) . Then, we have

0 = F
(
x∗)− F

(
y∗
)
=

1∫
0

F′
y∗+t(x∗−y∗)

(x∗ − y∗)dt.

Define an operator L by

L (h) =

1∫
0

F′
y∗+t(x∗−y∗)

hdt, ∀h ∈ X.
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Consequently, we have

||I − F′−1
x∗ L|| =

∥∥∥∥∥∥
1∫

0

F′−1
x∗

(
F′
x∗ − F′

y∗+t(x∗−y∗)

)
dt

∥∥∥∥∥∥
≤ K2

2
||x∗ − y∗||

<
r1K2

2
= 1.

It follows from Lemma 2.3 that the operator L is invertible and hence, x* = y*, a con-

tradiction. Thus, x* is the unique solution of (1.1) in Br1 (x∗) .
Next, we show that {xn} converges to x*. By Corollary 3.3, the operator Aa is a quasi-

contraction self-operator on Br(x*). Thus, xn Î Br(x*), ∀n Î N0. Now, we have

||xn+1 − x∗|| = ||Aα (xn) − x∗||
≤ δxn

[
(1 − α) + αδxn

] ||xn − x∗||, ∀n ∈ N0,
(3:13)

where δx is defined by (3.4). Since δxn < 1,∀n ∈ N0 , we have

0 ≤ ||xn+1 − x∗|| ≤ ||xn − x∗|| ≤ · · · ≤ ||x0 − x∗||, ∀n ∈ N0.

By definition of δx, we have

δxn =
K1

2 (1 − rK2)

(||xn − x∗|| + 2||x0 − x∗||)
≤ 3K1||x0 − x∗||

2 (1 − rK2)

≤ ||x0 − x∗||
r

= δ0, ∀n ∈ N0.

Thus, by (3.13), we have

||xn+1 − x∗|| ≤ [δ0 (1 − α + αδ0)]
n+1||x0 − x∗||, ∀n ∈ N0, (3:14)

which implies xn ® x* as n ® ∞.

(b) By (3.14), we get the error estimates. □
Remark 3.8 One can observe from (1.8) and (3.12) that

ρ′ = δ0 (1 − α + αδ0) < δ0. (3:15)

The strict inequality (3.15) shows that the error estimate in Theorem 3.7 is sharper

than that of Theorem 1.2.

Before presenting local convergence result for Algorithm 1.4, we need the following

theorem:

Theorem 3.9 Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. Let x* Î D be a solu-

tion of (1.1) such that F′−1
x∗ ∈ B(Y, X) . For x0 Î D and a Î (0, 1), let F′−1

x∗ and F satisfy

the conditions (1.6) and (1.7). Let Br1 (x∗) ⊆ D and y0 Î Br(x*), where r1 = 2
K2
and

r = 2
2K2+3K1

. Assume that
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||F′−1
x∗

(
F′
x − F′

y0

)
|| ≤ K3||x − y0||, ∀x ∈ Dand for someK3 > 0. (3:16)

Define an operator V by

V (x) = x − F′−1
y0 F (x) , ∀x ∈ Br

(
x∗) . (3:17)

Then, we have the following:

(a) For x Î Br(x*), we have

||V (x) − x∗|| ≤ δ′
x||x − x∗||,

where δ′
x =

K3

2 (1 − rK2)

(||x − x∗|| + 2||y0 − x∗||) , ∀x ∈ Br
(
x∗) .

(b) If K3 ≤ K1, then V is a quasi-contraction and self-operator on Br(x*) with constant

δ’, where δ′ = sup
x∈Br(x∗)

{
δ′
x

}
.

Proof: (a) For x Î Br(x*), we have

||Vx − x∗|| = ||x − F′−1
y0 F (x) − x∗||

= ||F′
y0

−1
(
F (x) − F

(
x∗)− F′

y0

(
x − x∗)) ||

=

∥∥∥∥∥∥
(
F′
x∗

−1F′
y0

)−1
1∫

0

F′
x∗

−1(F′
x∗+t(x−x∗)(x − x∗) − F′

y0(x − x∗))dt

∥∥∥∥∥∥
≤ K3

2
(
1 − K2||y0 − x∗||)

[(||x − x∗|| + ||y0 − x∗||)2 − ||y0 − x∗||2
]

≤ K3

2 (1 − rK2)

(||x − x∗|| + 2||y0 − x∗||) ||x − x∗||
= δ′

x||x − x∗||.

(b) The operator V is a quasi-contraction with constant δ’. Indeed,

sup
x∈Br(x∗)

{
δ′
x

}
=

K3

2 (1 − rK2)

(
sup

x∈Br(x∗)
||x − x∗|| + 2||y0 − x∗||

)

≤ K3

2 (1 − rK2)

(
r + 2||y0 − x∗||)

<
3rK1

2 (1 − rK2)

= 1.

That completes the proof. □
Now, we ready to study the local convergence analysis for Algorithm 1.4.

Theorem 3.10 Let F be a Fréchet differentiable operator defined on an open convex

subset D of a Banach space X with values in a Banach space Y. Let a Î (0, 1) and let

x* Î D be a solution of (1.1) such that F′−1
x∗ ∈ B(Y, X) . Assume that Br1 (x∗) ⊆ D ,

where r1 = 2
K2
. For any x0 Î Br(x*), where r = 2

2K2+3K1
, assume that F′−1

x∗ and F satisfy

the conditions (1.6), (1.7) and (3.16) and that K3 ≤ K1. Then we have the following:

(a) The sequence {xn} generated by Algorithm 1.4 is in Br(x*) and it converges strongly

to the unique solution x* in Br1 (x∗) .
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(b) The following error estimate holds:

||xn+1 − x∗|| ≤ (
ρ ′′)n+1||x0 − x∗||, ∀n ∈ N0, (3:18)

where ρ ′′ = (αδ0 + 1 − α) δ′
0and δ′

0 = 3K3
2(1−rK2)

||x0 − x∗||.
Proof: (a) Similarly, as in Theorem 3.7, x* is the unique solution of (1.1) in Br1 (x∗) .

Again, Corollary 3.4 shows that the operator Ua defined by (3.7) is a self-operator on

Br[x*]. Hence, from (1.12), we have

y0 = Uαx0 ∈ Br
(
x∗) .

It follows from Theorem 3.9 that the operator V defined by (3.17) is a self operator

on Br[x*]. Thus, 1.4 can be written as

xn+1 = VUα (xn) , ∀n ∈ N0.

Since,

||xn+1 − x∗|| = ||VUα (xn) − x∗||
≤ δ′

yn ||Uα (xn) − x∗

≤ (
αδxn + 1 − α

)
δ′
yn ||xn − x∗||, ∀n ∈ N0.

(3:19)

By definition of δ′
x , we have

δ′
yn =

K3

2 (1 − rK2)

(||Uα (xn) − x∗|| + 2||x0 − x∗||)
≤ K3

2 (1 − rK2)

((
αδxn + 1 − α

) ||xn − x∗|| + 2||x0 − x∗||)
≤ K3

2 (1 − rK2)

(||x0 − x∗|| + 2||x0 − x∗||)
=

3K3

2 (1 − rK2)
||x0 − x∗||

= δ′
0, ∀n ∈ N0.

By (3.19), we have

||xn+1 − x∗|| ≤ (
(αδ0 + 1 − α) δ′

0

)n+1||x0 − x∗||, ∀n ∈ N0, (3:20)

which implies xn ® x* as n ® ∞.

(b) From (3.20), we get the error estimates. □
Remark 3.11 One can observe from (1.8) and (3.18) that

ρ ′′ = (αδ0 + 1 − α) δ′
0

=
3K3 (αδ0 + 1 − α)

2 (1 − rK2)
||x0 − x∗||

≤ 3K1 (αδ0 + 1 − α)

2 (1 − rK2)
||x0 − x∗||

≤ δ0 (αδ0 + 1 − α)

= ρ′ < δ0.

(3:21)

The strict inequality (3.21) shows that the error estimate in Theorem 3.10 is sharper

than that of Theorems 1.2 and 3.7.
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4 Application to initial and boundary value problems
Throughout this section, let C0[1] be the space of real-valued continuous functions

defined on the interval 0[1] with norm

||x|| = max
0≤t≤1

|x(t)|.

4.1 Initial value problem

Consider initial value problem

dy (s)
ds

= f
(
s, y (s)

)
, y (0) = 0, 0 ≤ s ≤ 1. (4:1)

Let f ′
2

(
s, y (s)

)
= ∂

∂y f
(
s, y (s)

)
, the partial derivative of f with respect to second com-

ponent. Assume that f ′
2

(
s, y (s)

)
exists for all (s, y(s)) Î S ⊆ 0[1] × ℝ and

||f ′
2

(
s, y (s)

)− f ′
2

(
s, y (s)

) || ≤ K0||y − y0||, ∀y ∈ C1 [0, 1] and for some K0 > 0, (4:2)

where y0 Î C10[1] and C10[1] is the space of all real-valued continuously differenti-

able functions defined on 0[1].

Consider the operator F : C10[1] ® C0[1] defined by

F
(
y
)
(s) =

dy (s)
ds

− f
(
s, y (s)

)
. (4:3)

Then, solving problem (4.1) is equivalent to solving the Equation (1.1). One can

observe that the operator F defined by (4.3) is Fréchet differetiable and its Fréchet deri-

vative is given by

F′
yh (s) =

dh (s)
ds

− f ′
2

(
s, y (s)

)
h (s) , ∀h ∈ C1 [0, 1] .

Theorem 4.1 Let F : C10[1] ® C0[1]be an operator defined by (4.3). For some y0 Î

C10[1], assume that F′−1
y0 exists and f ′

2

(
s, y (s)

)
satisfies (4.2). Suppose that

h =
K0||F

(
y0
) ||

(1 − θ1)
2 <

1
2
, where θ1 = sups∈[0,1]|f ′

2

(
s, y0 (s)

) | . Then, we have the following:

(a) The initial value problem (4.1) has a unique solution y* in Br[y0], where

r = 1−√
1−2h
h η .

(b) For x0 = y0, the sequence {xn} generated by Algorithm 1.3 is in Br[y0] and it con-

verges strongly to y*.

Proof: Our goal is to find an upper bound for F′−1
y0 . Set

F′
y0h (s) =

dh (s)
ds

− f ′
2

(
s, y0 (s)

)
h (s) = u (s) .

Since F′−1
y0 exists, we can immediately write h (s) = F′−1

y0 u (s) and arrive at the first

order linear initial value problem
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⎧⎨
⎩

dh (s)
ds

= u (s) + f ′
2

(
s, y0 (s)

)
h (s) ;

h (0) = 0.
(4:4)

It should be noted that problem (4.4) is equivalent to the integral equation of Voltera

type of second kind (see [18])

h (s) =

s∫
0

[
u (τ ) + f ′

2

(
τ , y0 (τ )

)
h (τ )

]
dτ .

Again consider a operator L defined by

Lh (s) =

s∫
0

f ′
2

(
τ , y0 (τ )

)
h (τ ) dτ .

Clearly, the operator L is linear. We can write

(I − L) (h) (s) =

s∫
0

u (τ ) dτ .

Using max-norm in C0[1], the operator L is bounded and satisfies ||L|| ≤ θ1, where

θ1 = sups∈[0,1]|f ′
2

(
τ , y0 (τ )

) | . Consequently, if θ1 < 1, then by Lemma 2.3, the inverse

(I - L)-1 exists and ||(I − L)−1|| ≤ 1
1 − θ1

. Therefore, ||F′−1
y0 || ≤ 1

1 − θ1
. Indeed

||F′−1
y0 u|| = max

s∈[0,1]
|F′−1

y0 u (s) | = max
s∈[0,1]

∣∣∣∣∣∣(I − L)−1

s∫
0

u (τ )dτ

∣∣∣∣∣∣ ≤ 1
1 − θ1

||u||.

Next, by (4.2), we have

||F′
y − F′

y0 || ≤ K0||y − y0||, ∀y ∈ C1 [0, 1] .

Clearly, η =
||F (y0) ||
1 − θ1

and β =
1

1 − θ1
. By assumption, h = ηβK0 <

1
2
. Thus, all the

assumption of Theorem 3.5 are satisfied. Therefore, Theorem 4.1 follows from Theo-

rem 3.5. □

4.2 Boundary value problem

Consider the second-order boundary value problem

d2y (s)
ds2

= g
(
s, y (s)

)
, y (0) = 0, y (1) = 0. (4:5)

Assume that g′
2

(
s, y (s)

)
exists for all (s, y(s)) Î S ⊆ [0, 1]× ℝ and

||g′
2

(
s, y (s)

)− g′
2

(
s, y0 (s)

) || ≤ K0||y − y0||, (4:6)

where y0 Î C20[1] and C20[1] is the space of all real-valued second time continu-

ously differentiable functions defined on 0[1]. Consider the operator F : C20[1] ® C0

[1] defined by
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F
(
y
)
(s) =

d2y (s)
ds2

− g
(
s, y (s)

)
. (4:7)

Then, solving problem (4.5) is equivalent to solving the (1.1). As in the case of initial

value problem, one can observe that the operator F defined by (4.7) is Fréchet differen-

tiable and its Fréchet derivative at each y Î C20[1] is given by

F′
yh (s) =

d2h (s)
ds2

− g′
2

(
s, y (s)

)
h (s) , ∀h ∈ C2 [0, 1] , ∀s ∈ [0, 1] .

Theorem 4.2 Let F : C20[1] ® C0[1]be an operator defined by (4.7). For some y0 Î

C20[1], assume that F′−1
y0 exists and g′

2

(
s, y (s)

)
satisfies (4.6). Suppose that

h =
K0||F

(
y0
) ||

(8 − θ2)
2 <

1
2
, where θ2 = sups∈[0,1]|g′

2

(
s, y0 (s)

) |. Then, we have the following:

(a) The boundary value problem (4.5) has a unique solution y* in Br[y0], where

r = 1−√
1−2h
h η .

(b) For x0 = y0, the sequence {xn} generated by Algorithm 1.3 is in Br[y0] and it con-

verges strongly to y*.

Proof: To prove the theorem it is sufficient to find an upper bound of ||F′−1
y0 || . Set

F′
y0h(s) =

d2h(s)
ds2

− g′
2(s, y0(s))h(s) = u(s),

then h(s) = F′−1
y0 w(s) and we arrive at the linear boundary value problem

⎧⎨
⎩

d2h(s)
ds2

= u(s) + g′
2(s, y0(s))h(s);

u(0) = u(1) = 0.
(4:8)

Problem (4.8) may be written in the form of the integral equation of Fredholm type

of second kind (see [18]) as

h(s) = −
1∫

0

G(s, τ )[u(τ ) + g′
2(τ , y0(τ ))h(τ )]dτ ,

where

G(s, τ ) =
{

τ (1 − s), s ≥ τ ;
s(1 − τ ), s ≤ τ .

Consider the operator L defined by

L(h)(s) = −
1∫

0

G(s, τ )g′
2(τ , y0(τ ))h(τ )dτ

and consequently, we have

(I − L)(h)(s) = −
1∫

0

G(s, τ )u(τ )dτ .
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Using the max norm in C0[1], the operator L is bounded and

‖L‖ ≤ θ2

8
, where θ2 = sup

s∈[0,1]
|g′

2(s, y(s))|.

By Lemma 2.3, there exists (I - L)-1 if θ2 < 8 and

∥∥∥(I − L)−1
∥∥∥ ≤ 8

8 − θ2
.

Observe that

∥∥∥F′−1
y0

∥∥∥ ≤ 1
8 − θ2

and
∥∥∥F′−1

y0 F(y0)
∥∥∥ ≤

∥∥F(y0)∥∥
8 − θ2

.

Finally, by (4.6), we have∥∥∥F′
y − F′

y0

∥∥∥ ≤ K0
∥∥y − y0

∥∥ , ∀y ∈ C2[0, 1].

Clearly, η = ‖F(y0)‖
8−θ2

and β = 1
8−θ2

. By assumption, h = ηβK0 <
1
2
. Thus, all the

assumption of Theorem 3.5 are satisfied. Therefore, Theorem 4.2 follows from Theo-

rem 3.5. □

5 Numerical examples
First, we derive the following corollary from Theorem 3.5.

Corollary 5.1 For N Î N, let F : ℝN ® ℝN be a Fréchet differentiable operator at

each point of an open convex subset D of ℝN defined by

F(x) = (f1(x), f2(x), . . . , fN(x)), ∀x = (x1, x2, . . . , xN) ∈ D,

where fi : ℝ
N ® ℝ, for i = 1, 2,..., N. For some x0 Î D, assume that the Jacobian

matrix [JF (x0)] of F at x0 defined by

[JF(x0)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂f1(x0)
∂x1

∂f1(x0)
∂x2

· · · ∂f1(x0)
∂xN

∂f2(x0)
∂x1

∂f2(x0)
∂x2

· · · ∂f2(x0)
∂xN

· · · · · · · · · · · ·
∂fN(x0)

∂x1

∂fN(x0)
∂x2

· · · ∂fN(x0)
∂xN

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

is invertible. Suppose that the inverse matrix [JF(x0)]
-1 and F satisfy the following

conditions:

(i) ||[JF (x0)]
-1 F (x0) || ≤ h, for some h > 0,

(ii) || [JF (x0)]
-1 || ≤ b, for some b > 0,

(iii) || [JF (x)] - [JF (x0)]|| ≤ K0 ||x - x0 ||, ∀x Î D and for some K0 > 0.

Let a Î (0, 1), h = ηβK0 <
1
2
and Br[x0] ⊆ D, where r = 1−√

1−2h
h η . Then we have the

following:

(a) The Equation (1.1) has a unique solution x* Î Br[x0].
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(b) The sequence {xn} generated by⎧⎨
⎩
xn+1 = zn − [JF(x0)]

−1F(zn),
zn = (1 − α)xn + αyn,
yn = xn − [JF(x0)]

−1F(xn), n ∈ N0

(5:1)

is in Br[x0] and it converges to x*.

(c) The following error estimate holds:∥∥xn+1 − x∗∥∥ ≤ ρn+1
∥∥x0 − x∗∥∥ , ∀n ∈ N0,

where r = g (1 - a + ag) and g = brK0.

Following example shows numerically that (5.1) is faster than the modified Newton

method defined by (1.3).

Example 5.2 Let X = ℝ, D = (-1, 1) and F : D ® ℝ an operator defined by

F(x) = ex − 1, ∀x ∈ D.

Then F is Fréchet differentiable and its Fréchet derivative F′
x at any point x Î D is

given by

F′
x = ex.

For x0 = 0.26, we have

F′ −1
x0 =

1
e0.26

.

Set b = 0.771051585803566, h = 0.228948414196434 and K0 = 2.718281828459046,

we have h = ηβK0 <
1
2
and

∥∥F′
x0

−1
∥∥ ≤ β0,∥∥F′

x0
−1F(x0)

∥∥ ≤ η0,∥∥F′
x − F′

x0

∥∥ ≤ K0 ‖x − x0‖ .

Hence, all the condition of Corollary 5.1 are satisfied. Therefore, the sequence {xn}

generated by (5.1) is in Br[x0] and it converges to a unique x* Î Br[x0]. The Figure 1

and Table 1show that sequence {xn} generated by (5.1) is faster than the modified New-

ton method defined by (1.3).

For N = 2 in Corollary 5.1, the following example shows numerically the conver-

gence of (5.1).

Example 5.3 Let D = X = Y = ℝ2 under the norm

‖x‖ =
√
x2 + y2, ∀x = (x, y) ∈ R2

and induced matrix norm. Consider an operator F : ℝ2 ® ℝ2 defined by

F(x) =
(

−x2 +
1
3
, −y2 +

1
3

)
, ∀x = (x, y) ∈ R2.
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Clearly, the point
(

1√
3
, 1√

3

)
is the zero of F in D. It can be seen that F is Fréchet dif-

ferentiable at each point of D and its Jacobian matrix [JF (x)] at any point x = (x, y) Î
ℝ2 is given by

[JF(x)] =
[−2x 0

0 −2y

]
.

Now, for any x, x0 Î D, we have∥∥F′
x − F′

x0

∥∥ ≤ 2 ‖x − x0‖ .

For x0 = (1, 1), we get

[JF(x0)]−1 =
[− 1

2 0
0 − 1

2

]
.

Therefore, for β = 1√
2
, η =

√
2
3
and K0 = 2, we have h = bhK0 < 1/2 and

∥∥∥[JF(x0)]−1
∥∥∥ ≤ β ,∥∥∥[JF(x0)]−1F(x0)
∥∥∥ ≤ η,

and Br[x0], where r = 1−√
(1−2h)
h η = 3 −

√
3 , is contained in D = X. Hence, all the condi-

tions of Corollary 5.1 are satisfied. One can write sequence {xn} generated by (5.1) as

xn+1 =
[
xn+1
yn+1

]
=

⎡
⎣
(
1
3 − α2

72

)
+
(
1 − α

6

)
xn −

(
1
2 + α

2 − α2

12

)
x2n +

α
2 x

3
n − α2

8 x4n(
1
3 − α2

72

)
+
(
1 − α

6

)
yn −

(
1
2 + α

2 − α2

12

)
y2n +

α
2 y

3
n − α2

8 y
4
n

⎤
⎦ .

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2
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n

x n

 

 
 Newton Method
SIP of Newton−like

Newton method
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Figure 1 Comparison of the iteration processes defined by (1.3) and (1.11).

Sahu et al. Fixed Point Theory and Applications 2012, 2012:78
http://www.fixedpointtheoryandapplications.com/content/2012/1/78

Page 17 of 20



Therefore, in view of Corollary 5.1, the sequence {xn} is in Br[x0] and it converges to a

unique x* = (x*, y*) Î Br[x0]. The Figure 2 and Table 2show that sequence {xn} gener-

ated by (5.1) with a = 0.5 is faster than the modified Newton method defined by (1.3).

Now, we study the convergence of (1.11) for infinite dimensional cases,

Example 5.4 Let X = D = C0[1]be the space of real-valued continuous functions

defined on the interval 0[1]with norm

‖x‖ = max
0≤t≤1

|x(t)|.

Consider the integral equation F (x) = 0, where

F(x)(s) = −1 + x(s) + πx(s)

1∫
0

s
s + t

x(t)dt,

with s Î 0[1], x Î C0[1]and π Î (0, 2]. Integral equations of this kind called Chan-

drasekhar equations arise in elasticity or neutron transport problems [19]. The norm is

taken as sup-norm. Now it is easy to find the Fréchet derivative of F as

Table 1 Comparison of the iteration processes defined by (1

n Newton method SIP of Newton-like n Newton method SIP of Newton-like

1 0.260000000000000 0.260000000000000 9 0.000000955573754 0.000000000272069

2 0.031051585803566 0.010093382981211 10 0.000000218776743 0.000000000022642

3 0.006733609382298 0.000820742954637 11 0.000000050088570 0.000000000001884

4 0.001524129572619 0.000068174499880 12 0.000000011467698 0.000000000000157

5 0.000348051028303 0.000005672583045 13 0.000000002625511 0.000000000000013

6 0.000079639023162 0.000000472064696 14 0.000000000601107 0.000000000000001

7 0.000018230782847 0.000000039285051 15 0.000000000137622 0.000000000000000

8 0.000004173780688 0.000000003269291 16 0.000000000031508 0.000000000000000

0 2 4 6 8 10 120.5

0.6

0.7

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67  

n
x

n

 

y n

Newton method
SIP of Newton−like

Newton method

SIP of Newton−like

Figure 2 Comparison of the iteration processes defined by (1.3) and (5.1).
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Now one can easily compute

∥∥F(x0)∥∥ =

∥∥∥∥∥∥−1 + x0(s) + πx0(s)

1∫
0

s
s + t

x0(t)dt

∥∥∥∥∥∥
≤ ‖x0 − 1‖ + |π | max

s∈[0,1]

∣∣∣∣∣∣
1∫

0

s
s + t

dt

∣∣∣∣∣∣ ‖x0‖2
≤ ‖x0 − 1‖ + π log 2‖x0‖2.

Also notice that

∥∥I − F′
x0

∥∥ =

∥∥∥∥∥∥π
1∫

0

s
s + t

x0(t)dt + πx0(s)

1∫
0

s
s + t

dt

∥∥∥∥∥∥
≤ 2π max

s∈[0,1]

∣∣∣∣∣∣
1∫

0

s
s + t

dt

∣∣∣∣∣∣ ‖x0‖
≤ 2π log 2 ‖x0‖

Now, we have

∥∥F′
x − F′

x0

∥∥ =

∥∥∥∥∥∥π
1∫

0

s
s + t

x(t)dt + πx(s)

1∫
0

s
s + t

dt − π

1∫
0

s
s + t

x0(t)dt − πx0(s)

1∫
0

s
s + t

dt

∥∥∥∥∥∥
= |π |

∥∥∥∥∥∥
1∫

0

s
s + t

(x(t) − x0(t)dt + (x(s) − x0(s))

1∫
0

s
s + t

dt

∥∥∥∥∥∥
≤ 2π max

s∈[0,1]

∣∣∣∣∣∣
1∫

0

s
s + t

dt

∣∣∣∣∣∣ ‖x − x0‖

≤ 2π log 2 ‖x − x0‖

Table 2 Comparison of the iteration processes defined by (1

N Newton method SIP of Newton-like n Newton method SIP of Newton-like

1 1 1 7 0.578358062815874 0.577513680188369

1 1 0.578358062815874 0.577513680188369

2 0.666666666666667 0.652777777777778 8 0.577775705070475 0.577399387702240

0.666666666666667 0.652777777777778 0.577775705070475 0.577399387702240

3 0.611111111111111 0.598061698654261 9 0.577529989052300 0.577365035376011

0.611111111111111 0.598061698654261 0.577529989052300 0.577365035376011

4 0.591049382716049 0.583424704288997 10 0.577426211591592 0.577354708436348

0.591049382716049 0.583424704288997 0.577426211591592 0.577354708436348

5 0.583046362978205 0.579163300958378 11 0.577382363341750 0.577351603803299

0.583046362978205 0.579163300958378 0.577382363341750 0.577351603803299

6 0.579741498953815 0.577894163483913 12 0.577363833259364 0.577350670428927

0.579741498953815 0.577894163483913 0.577363833259364 0.577350670428927
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and, if 2|π | log 2|| x0|| < 1, then by Lemma 2.3, we obtain

∥∥F′
x0

−1
∥∥ ≤ 1

1 − 2π log 2||x0|| .

Hence, we have

∥∥F′
x0

−1F(x0)
∥∥ ≤ ‖x0 − 1‖ + π | log 2| ‖x0‖2

1 − 2π log 2 ‖x0‖ .

Now, forπ = 1
4and the initial point x0 = x0(s) = 1, we obtain

||∥∥F′
x0

−1
∥∥ ≤ β = 1.17718382,

∥∥F′
x0

−1F(x0)
∥∥ ≤ η = 0.08859191,K0 = 0.346573590279973.

Hence, h = βηK0 = 0.036143800345579 <
1
2
. So the hypotheses of Theorem 3:5 are

satisfied. Therefore, the sequence {xn} generated by Algorithm 1.3 is in Br[x0] and it con-

verges to a unique solution x* Î Br[x0] of the integral equation.
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