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Abstract
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1 Introduction and preliminaries
Browder and Petryshyn introduced the concept of asymptotic regularity of a self-map

at a point in a metric space.

Definition 1 [1] A self-map T on a metric space (X , d) is said to be asymptotically

regular at a point x ∈ X if limn→∞d(T nx,T n+1x) = 0.

Recall that the set O(x0;T ) = {T nx0 : n = 0, 1, 2, . . .} is called the orbit of the self-

map T at the point x0 ∈ X .

Definition 2 [2] A metric space (X , d) is said to be T -orbitally complete if every

Cauchy sequence contained in O(x;T ) (for some x in X ) converges in X .

Here, it can be pointed out that every complete metric space is T -orbitally complete

for any T , but a T -orbitally complete metric space need not be complete.

Definition 3 [1] A self-map T defined on a metric space (X , d) is said to be orbitally

continuous at a point z in X if for any sequence {xn} ⊂ O(x;T ) (for some x ∈ X), xn
® z as n ® ∞ implies T xn → Tz as n ® ∞.

Clearly, every continuous self-mapping of a metric space is orbitally continuous, but

not conversely.

Sastry et al. [3] extended the above concepts to two and three mappings and

employed them to prove common fixed point results for commuting mappings. In

what follows, we collect such definitions for three maps.

Definition 4 Let S,T ,R be three self-mappings defined on a metric space (X , d).

1. If for a point x0 ∈ X , there exits a sequence {xn} in X such that

Rx2n+1 = Sx2n,Rx2n+2 = T x2n+1,n = 0, 1, 2, . . ., then the set

O(x0;S,T ,R) = {Rxn : n = 1, 2, . . .} is called the orbit of (S,T ,R) at x0.
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2. The space (X , d) is said to be (S,T ,R)-orbitally complete at x0 if every Cauchy

sequence in O(x0;S,T ,R) converges in X .

3. The map R is said to be orbitally continuous at x0 if it is continuous on

O(x0;S,T ,R).

4. The pair (S,T ) is said to be asymptotically regular (in short a.r.) with

respect to R at x0 if there exists a sequence {xn} in X such that

Rx2n+1 = Sx2n,Rx2n+2 = T x2n+1,n = 0, 1, 2, . . ., and d(Rxn,Rxn+1) → 0 as n ® ∞.

5. If R is the identity mapping on X , we omit ′′R′′ in respective definitions.

On the other hand, fixed point theory has developed rapidly in metric spaces

endowed with a partial ordering. The first result in this direction was given by Ran

and Reurings [4] who presented its applications to matrix equations. Subsequently,

Nieto and López [5] extended this result for nondecreasing mappings and applied it to

obtain a unique solution for a first-order ordinary differential equation with periodic

boundary conditions. Thereafter, several authors obtained many fixed point theorems

in ordered metric spaces. For more details, see [6-15] and the references cited therein.

Recently, Nashine and Altun (HK Nashine and I Altun, unpublished work) proved

the following ordered version of a result of Zhang [16]:

Theorem 1 Let (X , d,�) be a complete partially ordered metric space and let

S,T : X → X be two weakly increasing mappings such that

F(d(T x,Sy)) ≤ ψ(F(�[T ,S](x, y)))

holds for each comparable x, y ∈ X , where F, ψ : [0, +∞) ® [0, +∞) are functions such that

(i) F is nondecreasing, continuous, and F(0) = 0 <F(t) for every t > 0;

(ii) ψ is nondecr easing, right continuous, and ψ(t) <t for every t > 0, and

�[T ,S](x, y) = max{d(x, y), d(x,T x), d(y,Sy), 1
2
[d(x,Sy) + d(y,T x)]}.

If S or T is continuous, then S and T have a unique common fixed point.

In this article, we generalize this theorem of Nashine and Altun (HK Nashine and I

Altun, unpublished work) (and, hence, some other related common fixed point results)

in two directions. The first is treated in Section 3, where a pair of asymptotically regu-

lar mappings in an orbitally complete ordered metric space is considered. The exis-

tence and (under additional assumptions) uniqueness of their common fixed point is

obtained under assumptions that these mappings are strictly weakly isotone increasing,

one is orbitally continuous and they satisfy a generalized weakly contractive condition.

In Section 4, we consider the case of three self-mappings S,T ,R where the pair

S,T is R-relatively asymptotically regular and relatively weakly increasing, while the

contractive condition is given with the help of two control functions.

We furnish suitable examples to demonstrate the validity of the hypotheses of our

results.

2 Notation and definitions
First, we introduce some further notation and definitions that will be used later.

If (X ,�) is a partially ordered set then x, y ∈ X are called comparable if x ≼ y or y ≼ x

holds. A subset K of X is said to be well ordered if every two elements of K are compar-

able. If T : X → X is such that, for x, y ∈ X , x ≼ y implies T x � T y, then the mapping T
is said to be nondecreasing.

Ding et al. Fixed Point Theory and Applications 2012, 2012:85
http://www.fixedpointtheoryandapplications.com/content/2012/1/85

Page 2 of 14



Definition 5 Let (X ,�) be a partially ordered set and S,T : X → X .

1. The mapping T is called dominating if x � T x for each x ∈ X [17].

2. The pair (S,T ) is called weakly increasing if Sx � T Sx and T x � ST x for all

x ∈ X[18,19].

3. The mapping S is said to be T -weakly isotone increasing if for all x ∈ X we have

Sx � T Sx � ST Sx[18-20].
4. The mapping S is said to be T -strictly weakly isotone increasing if, for all x ∈ X

such that x ≺ Sx, we have Sx ≺ T Sx ≺ ST Sx (HK Nashine, B Samet, and C Vetro,

unpublished work).

5. Let R : X → X be such that T X ⊆ RX and SX ⊆ RX , and denote

R−1(x) := {u ∈ X : Ru = x}, for x ∈ X . We say that T and S are weakly increasing

with respect to R if and only if for all x ∈ X , we have [10]:

T x � Sy, ∀y ∈ R−1(T x)

and

Sx � T y, ∀y ∈ R−1(Sx).

Example 1 [17] Let X = [0, 1] be endowed with the usual ordering. Let T : X → X
be defined by T x = n

√
x. Since x ≤ n

√
x = T x for all x ∈ X ,T is a dominating map.

Remark 1(1) None of two weakly increasing mappings need be nondecreasing. There

exist some examples to illustrate this fact in [21].

(2) If S,T : X → X are weakly increasing, then S is T -weakly isotone increasing.

(3) S can be T -strictly weakly isotone increasing, while some of these two map-

pings can be not strictly increasing (see the following example).

(4) If R is the identity mapping (Rx = x for all x ∈ X), then T and S are weakly

increasing with respect to R if and only if they are weakly increasing mappings.

Example 2 Let X = [0, +∞) be endowed with the usual ordering and define

S,T : X → X as

Sx =
{
2x, if x ∈ [0, 1],
3x, if x > 1;

T x =
{
2, if x ∈ [0, 1],
2x, if x > 1.

Clearly, we have x ≺ Sx ≺ T Sx ≺ ST Sx for all x ∈ X , and so, S is T -strictly weakly

isotone increasing; T is not strictly increasing.

Definition 6 [22,23]. Let (X , d) be a metric space and f , g : X → X .

1. If w = fx = gx, for some x ∈ X , then x is called a coincidence point of f and g, and

w is called a point of coincidence of f and g.If w = x, then x is a common fixed point

of f and g.

2. The mappings f and g are said to be compatible if limn®∞ d(fgxn, gfxn) = 0, when-

ever {xn} is a sequence in X such that limn®∞ fxn = limn®∞gxn = t for some t ∈ X .

Definition 7 Let X be a nonempty set. Then (X , d,�) is called an ordered metric

space if

(i) (X , d) is a metric space,

(ii) (X ,�) is a partially ordered set.
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The space (X , d,�) is called regular if the following hypothesis holds: if {zn} is a non-

decreasing sequence in X with respect to ≼ such that zn → z ∈ X as n ® ∞, then zn ≼ z.

3 Common fixed points for T -strictly weakly isotone increasing mappings
In this section, we improve the results of Nashine and Altun (HK Nashine and I Altun,

unpublished work) by considering the following:

1. a pair of asymptotically regular mappings;

2. orbital continuity of one of the involved maps;

3. strictly weakly isotone increasing condition;

4. generalized weakly contractive condition, and

5. an ordered orbitally complete metric space.

We will denote by F and Ψ the set of functions F, ψ : [0, +∞) ® [0, +∞), respec-

tively, such that:

(i) F is nondecreasing, continuous, and F(0) = 0 <F(t) for every t > 0;

(ii) ψ is nondecreasing, right continuous, and ψ(0) = 0.

The first main result of this section is as follows:

Theorem 2 Let (X , d,�) be an ordered metric space. Let S,T : X → X be two map-

pings satisfying

F(d(T x,Sy)) ≤ F(�[T ,S](x, y))) − ψ(F(�[T ,S](x, y))) (3:1)

for all x, y ∈ O(x0;S,T ) (for some x0) such that x and y are comparable, where

F ∈ F , ψ Î Ψ and

�[T ,S](x, y) = max{d(x, y), d(x,T x), d(y,Sy), 1
2
(d(x,Sy) + d(y,T x))}. (3:2)

We assume the following hypotheses:

(i) (T ,S) is a.r. at x0;
(ii) X is (S,T ) -orbitally complete at x0;

(iii) S or T is (S,T )-orbitally continuous at x0;

(iv) S is T -strictly weakly isotone increasing;

(v) there exists an x0 ∈ X such that x0 ≺ Sx0.
Then S and T have a common fixed point. Moreover, the set of common fixed points

of S,T in O(x0;S,T ) is well ordered if and only if it is a singleton.

Proof First of all we show that, if S or T has a fixed point, then it is a common fixed

point of S and T . Indeed, let z be a fixed point of S. Now assume d(z,T z) > 0. If we

use the inequality (3.1), for x = y = z, we have

F(d(T z, z)) = F(d(T z,Sz)) ≤ F(�[T ,S](z, z)) − ψ(F(�[T ,S](z, z)))
= F(d(T z, z)) − ψ(F(d(T z, z))),

wherefrom ψ(F(d(T z, z))) = 0, which is a contradiction. Thus d(z,T z) = 0 and so z

is a common fixed point of S and T . Analogously, one can observe that if z is a fixed

point of T , then it is a common fixed point of S and T .

Since (T ,S) is a.r. at x0 in X , there exists a sequence {xn} in X such that

x2n+1 = Sx2n and x2n+2 = T x2n+1 for n ∈ {0, 1, . . .} (3:3)
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and

lim
n→∞ d(xn, xn+1) = 0. (3:4)

If xn0 = Sxn0 or xn0 = T xn0 for some n0, then the proof is finished. So assume xn ≠ xn

+1 for all n.

Since S is T -strictly weakly isotone increasing, we have

x1 = Sx0 ≺ T Sx0 = T x1 = x2 ≺ ST Sx0 = ST x1 = Sx2 = x3,

x3 = Sx2 ≺ T Sx2 = T x3 = x4 ≺ ST Sx2 = ST x3 = Sx4 = x5,

and continuing this process we get

x1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · . (3:5)

Next, we claim that {xn} is a Cauchy sequence in the metric space O(x0;S,T ). We

proceed by negation and suppose that {xn} is not a Cauchy sequence. That is, there

exists ε > 0 such that d(xn,xm) ≥ ε for infinitely many values of m and n with m <n.

This assures that there exist two sequences {m(k)}, {n(k)} of natural numbers, with m

(k) <n(k), such that for each k Î N

d(x2m(k), x2n(k)+1) > ε. (3:6)

It is not restrictive to suppose that n(k) is the least positive integer exceeding m(k)

and satisfying (3.6). We have

ε < d(x2m(k),x2n(k)+1)

≤ d(x2m(k), x2n(k)−1) + d(x2n(k)−1, x2n(k)) + d(x2n(k), x2n(k)+1)

≤ ε + d(x2n(k)−1, x2n(k)) + d(x2n(k), x2n(k)+1)

and letting k ® ∞, we have d(x2m(k), x2n(k)+1) ® ε. We note that

d
(
x2m(k), x2n(k)+1

) − d
(
x2m(k), x2m(k)+1

) − d
(
x2n(k)+2,x2n(k)+1

)
≤ d

(
x2m(k)+1, x2n(k)+2

)
≤ d

(
x2m(k), x2n(k)+1

)
+ d

(
x2m(k),x2m(k)+1

)
+ d

(
x2n(k)+2,x2n(k)+1

)
,

and thus d
(
x2m(k)+1, x2n(k)+2

) → ε as k ® ∞. We have

� [T ,S]
(
x2n(k)+1, x2m(k)

)
= max

{
d
(
x2n(k)+1, x2m(k)

)
, d

(
x2n(k)+1, x2n(k)+2

)
, d

(
x2m(k),x2m(k)+1

)
,

1
2

[
d
(
x2n(k)+1, x2m(k)+1

)
+ d

(
x2m(k),x2n(k)+2

)]}
≤ max

{
d
(
x2n(k)+1, x2m(k)

)
, d

(
x2n(k)+1, x2n(k)+2

)
, d

(
x2m(k),x2m(k)+1

)
,

d
(
x2n(k)+1, x2m(k)

)
+ 1

2

[
d
(
x2m(k), x2m(k)+1

)
+ d

(
x2n(k)+1, x2n(k)+2

)]}

and so letting k ® ∞, we have limk→∞� [T ,S]
(
x2n(k)+1, x2m(k)

) ≤ ε. Therefore, we

have

F
(
d
(
x2m(k)+1, x2n(k)+2

))
= F

(
d
(
Sx2m(k),T x2n(k)+1

))
≤ F

(
Θ[T ,S]

(
x2n(k)+1, x2m(k)

)) − ψ
(
F

(
Θ [T ,S]

(
x2n(k)+1, x2m(k)

)))

and letting k ® ∞ in the above equation, F being continuous and ψ right continuous,

we get
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F(ε) ≤ F(ε) − ψ(F(ε)) < F(ε),

a contradiction. Therefore, {xn} is a Cauchy sequence in O(x0;S,T ). Since X is

(T ,S)-orbitally complete at x0, there exists z ∈ X with limn®∞ xn = z.

If S or T is orbitally continuous, then clearly z = Sz = T z
Theorem 3 Let (X , d,�) and S,T : X → X satisfy all the conditions of Theorem 2,

except that condition (iii) is substituted by

(iii’) X is regular.

Then the same conclusions as in Theorem 2 hold.

Proof Following the proof of Theorem 2, we have that {xn} is a Cauchy sequence in

(X , d) which is (S,T )-orbitally complete at x0. Then, there exists z ∈ X such that

lim
n→∞ xn = z.

Now suppose that d (z,Sz) > 0. From regularity of X , we have x2n � z for all n Î N.

Hence, we can apply the considered contractive condition. Then, setting x = x2n and y

= z in (3.1), we obtain:

F (d (x2n+2,Sz)) = F (d (T x2n+1,Sz))
≤ F

(
Θ[T ,S]

(
x2n+1,z

) − ψ
(
FΘ[T ,S]

(
x2n+1,z

))
,

where

Θ[T ,S]
(
x2n+1,z

)
= max

{
d
(
x2n+1,z

)
, d (x2n+1,T x2n+1) , d(z,Sz),

1
2

[
d (x2n+1,Sz) + d (z,T x2n+1)

]}
= max

{
d (x2n+1, z) , d (x2n+1, x2n+2) , d(z,Sz) ,
1
2

[
d (x2n+1,Sz) + d (z, x2n+2)

]}
.

Letting n ® ∞ in the above inequality and using the continuity of F and right conti-

nuity of ψ, we have

F(d(z,Sz)) ≤ F(d(z,Sz)) − ψ(F(d(z,Sz))) < F(d(z,Sz))

a contradiction. Therefore, d (z,Sz) = 0 and thus z = Sz. Hence, z is a common fixed

point of T and S.
Corollary 1 Let (X , d,�) be an ordered metric space. Let T : X → X be a mapping

satisfying

F(d(T x,T y)) ≤ F(Θ1[T ](x, y)) − ψ(F(Θ1[T ](x, y))) (3:7)

for all x, y ∈ O(x0;T ) (for some x0) such that x and y are comparable, where F ∈ F ,

ψ Î Ψ and

Θ1[T ](x, y) = max
{
d(x, y), d (T x, x) , d

(
T y, y

)
,
1
2

(
d
(
x,T y

)
+ d

(
T x, y

))}
.

We assume the following hypotheses:

(i) T is a.r. at some point x0;
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(ii) X is T -orbitally complete at x0;

(iii) T is orbitally continuous at x0 or X is regular.

Also suppose that T x ≺ T (T x) for all x ∈ X such that x ≺ T x and there exists an

x0 ∈ X such that x0 ≺ T x0 . Then T has a fixed point. Moreover, the set of fixed points

of T in O(x0;T ) is well ordered if and only if it is a singleton.

We also state a corollary of Theorem 2 involving a contraction of integral type.

Corollary 2 Let S and T satisfy the conditions of Theorem 2, except that condition

(3.1) is replaced by the following: there exists a positive Lebesgue integrable function u

on ℝ+ such that
∫ ε

0 u(t)dt > 0 for each ε > 0 and that

∫ F(d(Sx,T y))

0
u(t)dt ≤

∫ F(Θ[T ,S](x,y))

0
u(t)dt −

∫ ψ(F(Θ[T ,S](x,y)))

0
u(t)dt.

Then, S and T have a common fixed point. Moreover, the set of common fixed points

of S and T in O(x0;S,T ) is well ordered if and only if it is a singleton.

We present an example showing how our results can be used.

Example 3 Let X = {0} ∪ A ∪ B, where A = { 1n |n ∈ N} and B = (1, +∞), be equipped

with Euclidean metric d and the order ≼ given by

x � y ⇔ x = y or
(
x, y ∈ A and x ≥ y

)
.

Consider the mappings S,T : X → X given by

Sx =

⎧⎨
⎩
0, x = 0,
1

n+1 , x =
1
n ,

3x, x ∈ B,
n ∈ N, T x =

⎧⎨
⎩
0, x = 0,
1

n+1 , x =
1
n ,

2x, x ∈ B.
n ∈ N,

It is easy to check that S and T satisfy conditions (i)-(v) of Theorem 2 with x0 = 1
2.

Take F ∈ F defined by

F(t) =

⎧⎨
⎩
0, t = 0,
t1/t, 0 < t < 1,
t, t ≥ 1,

and ψ Î Ψ, given as ψ(t) = 1
2 t. In order to check the contractive condition (3.1), take

x, y ∈ O(x0;S,T ) with, say x ≺ y, i.e., x >y (the case x = y is trivial). Then x = 1
n and

y = 1
m for some m, n Î N, m >n. We get that d

(
T x,Sy

)
= 1

n+1 − 1
m+1 = m−n

(n+1)(m+1) and

F
(
d
(
T x,Sy

))
=

(
m − n

(n + 1)(m + 1)

)(n + 1)(m + 1)
m − n

=
(

m − n
(n + 1)(m + 1)

)n +m + 1
m − n

(
nm

(n + 1)(m + 1)

) nm
m − n

(
m − n
nm

) nm
m − n

<
1
2

· 1 ·
(
m − n
nm

) nm
m−n

=
1
2
F

(
d(x, y)

) ≤ 1
2
F

(
Θ[T ,S](x, y)

)

= F
(
Θ[T ,S](x, y)

) − ψ
(
F

(
Θ[T ,S](x, y)

))
.

Hence, (3.1) is fulfilled. Applying Theorem 2, we conclude that S and T have a

(unique) common fixed point (z = 0).

Note that S and T do not satisfy the contractive condition for arbitrary x, y ∈ X .
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4 Common fixed points for relatively weakly increasing mappings
In this section, we improve and generalize the results of Nashine and Altun (HK

Nashine and I Altun, unpublished work) by taking into account the following for three

maps R,S,T :

1. (S,T ) is a pair of asymptotically regular mappings with respect to R;

2. orbital continuity of one of the involved maps;

3. (S,T ) is a pair of weakly increasing mappings with respect to R;

4. (S,T ) is a pair of dominating maps;

5. (S,T ) is a pair of compatible maps, and

6. the basic space is an ordered orbitally complete metric space.

We will denote by F the set of functions � : [0 + ∞) ® [0, +∞), such that � is right

continuous, �(0) = 0 and �(t) <t for every t > 0.

The first result of this section is the following.

Theorem 4 Let (X , d,�) be a regular ordered metric space and let T ,S and R be

self-maps on X satisfying

F(d(T x,Sy)) ≤ ϕ(F(M[T ,S,R](x, y))) (4:1)

for all x, y ∈ O (x0;S,T ,R) (for some x0) such that Rx and Ry are comparable,

where F ∈ F , � Î F and

M [T ,S,R] (x, y) = max
{
d
(
Rx,Ry

)
, d (T x,Rx) , d

(
Sy,Ry

)
,

1
2

[
d
(
Rx,Sy

)
+ d

(
T x,Ry

)]
.
}

(4:2)

We assume the following hypotheses:

(i) (S,T ) is a.r. with respect to R at x0 ∈ X ;

(ii) X is (S,T ,R)-orbitally complete at x0;

(iii) T and S are weakly increasing with respect to R;

(iv) T and S are dominating maps;

(v) R is monotone and orbitally continuous at x0.

Assume either

(a) S and R are compatible; or

(b) T and R are compatible.

Then S,T and R have a common fixed point. Moreover, the set of common fixed

points of S,T and R in O (x0;S,T ,R) is well ordered if and only if it is a singleton.

Proof Since (S,T ) is a.r. with respect to R at x0 in X , there exists a sequence {xn} in

X such that

Rx2n+1 = Sx2n, Rx2n+2 = T x2n+1, ∀n ∈ N0 = {0, 1, 2, ...}, (4:3)

and

lim
n→∞ d (Rxn,Rxn+1) = 0 (4:4)

holds. We claim that

Rxn � Rxn+1, ∀n ∈ N0. (4:5)

To this aim, we will use the increasing property with respect to R satisfied by the

mappings T and S. From (4.3), we have
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Rx1 = Sx0 � T y, ∀y ∈ R−1 (Sx0) .

Since Rx1 = Sx0, then x1 ∈ R−1 (Sx0), and we get

Rx1 = Sx0 � T x1 = Rx2.

Again,

Rx2 = T x1 � Sy, ∀y ∈ R−1 (T x1) .

Since x2 ∈ R−1 (T x1), we get

Rx2 = T x1 � Sx2 = Rx3.

Hence, by induction, (4.5) holds. Therefore, we can apply (4.1) for x = xp and y = xq
for all p and q.

Now, we assert that {Rxn} is a Cauchy sequence in the metric space O(x0;S,T ,R).

We proceed by negation and suppose that {Rx2n} is not Cauchy. Then, there exists ε >

0 for which we can find two sequences of positive integers {m(k)} and {n(k)} such that

for all positive integers k,

n(k) > m(k) > k, d
(
Rx2m(k),Rx2n(k)

) ≥ ε, d
(
Rx2m(k),Rx2n(k)−2

)
< ε. (4:6)

From (4.6) and using the triangular inequality, we get

ε ≤ d
(
Rx2m(k),Rx2n(k)

)
≤ d

(
R2m(k),Rx2n(k)−2

)
+ d

(
Rx2n(k)−2,Rx2n(k)−1

)
+ d

(
Rx2n(k)−1,Rx2n(k)

)
< ε + d

(
Rx2n(k)−2,Rx2n(k)−1

)
+ d

(
Rx2n(k)−1,Rx2n(k)

)
.

Letting k ® ∞ in the above inequality and using (4.4), we obtain

lim
k→∞

d
(
Rx2m(k),Rx2n(k)

)
= ε. (4:7)

Again, the triangular inequality gives us
∣∣d (

Rx2n(k),Rx2m(k)−1
) − d

(
Rx2n(k),Rx2m(k)

)∣∣ ≤ d
(
Rx2m(k)−1,Rx2m(k)

)
.

Letting k ® ∞ in the above inequality and using (4.4) and (4.7), we get:

lim
k→+∞

d
(
Rx2n(k),Rx2m(k)−1

)
= ε. (4:8)

On the other hand, we have

d
(
Rx2n(k),Rx2m(k)

) ≤ d
(
Rx2n(k),Rx2n(k)+1

)
+ d

(
Rx2n(k)+1,Rx2m(k)

)
= d

(
Rx2n(k),Rx2n(k)+1

)
+ d

(
Sx2n(k),T x2m(k)−1

)
.

Letting k ® ∞ in the above inequality and using (4.4), (4.7) and properties of F ∈ F ,

we have

F(ε) ≤ lim
k→∞

F
(
d
(
Sx2n(k),T x2m(k)−1

))
. (4:9)

Applying (4.1), we get:

F
(
d
(
Sx2n(k),T x2m(k)−1

)) ≤ ϕ
(
F

(
M [T ,S,R]

(
x2m(k)−1, x2n(k)

)))
. (4:10)
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One can check easily that for k large enough, we have:

M [T ,S,R]
(
x2m(k)−1, x2n(k)

)
= d

(
Rx2n(k),Rx2m(k)−1

)
+ dk,

where dk ≥ 0 and dk ® 0 as k ® ∞. From (4.10), for k large enough, we have

F
(
d
(
Sx2n(k),T x2m(k)−1

)) ≤ ϕ
(
F

(
d
(
Rx2n(k),Rx2m(k)−1

)
+ dk

))
. (4:11)

Letting k ® ∞ in (4.11) and using properties of F and �, we have

lim
k→+∞

F
(
d
(
Sx2n(k),T x2m(k)−1

)) ≤ ϕ (F (ε)) < F(ε). (4:12)

Combining (4.9) and (4.12), we get F(ε) <F(ε), a contradiction.

Hence, we deduce that {Rxn} is a Cauchy sequence in O(x0;S,T ,R). Since X is

(S,T ,R)-orbitally complete at x0, there exists some z ∈ X such that

Rxn → z as n → ∞. (4:13)

We will prove that z is a common fixed point of the three mappings S,T and R.

We have

Sx2n = Rx2n+1 → z as n → ∞ (4:14)

and

T x2n+1 = Rx2n+2 → z as n → ∞. (4:15)

Suppose that (a) holds, i.e., S and R are compatible. Then, using condition (v),

lim
n→∞SRx2n+2 = lim

n→∞RSx2n+2 = Rz. (4:16)

From (4.13) and the orbitally continuity of R, we have also

R (Rxn) → Rz as n → ∞. (4:17)

Now, using (iv), x2n+1 � T x2n+1 = Rx2n+2 and since R is monotone, Rx2n+1 and

RRx2n+2 are comparable. Thus, we can apply (4.1) to obtain

F (d (SRx2n+2,T x2n+1)) ≤ ϕ
(
F

(
M[T ,S,R] (Rx2n+2, x2n+1)

))
, (4:18)

where

M[T ,S,R](Rx2n+2, x2n+1)

= max{d(RRx2n+2,Rx2n+1), d(RRx2n+2,SRx2n+2), d(Rx2n+1,T x2n+1),
1
2 [d(RRx2n+2,T x2n+1) + d(SRx2n+2,Rx2n+1)]}.

Letting n ® ∞ in (4.18), using (4.13)-(4.17), we obtain

F (d (Rz, z)) ≤ ϕ (F (d (Rz, z))) < F (d (Rz, z)) ,

unless

Rz = z. (4:19)

Now, x2n+1 � T x2n+1 and T x2n+1 → z as n ® ∞, so by the assumption we have x2n+1
≼ z and Rx2n+1 and Rz are comparable. Hence (4.1) gives

Ding et al. Fixed Point Theory and Applications 2012, 2012:85
http://www.fixedpointtheoryandapplications.com/content/2012/1/85

Page 10 of 14



F(d(Sz,T x2n+1)) ≤ ϕ(F(max{d(Rz,Rx2n+1), d(Sz,Rz), d(T x2n+1,Rx2n+1),
1
2 [d(Rz,T x2n+1) + d(Sz,Rx2n+1)]})).

Passing to the limit as n ® ∞ in the above inequality and using (4.19), it follows that

F(d(Sz, z)) ≤ ϕ(F(max{0, d(Sz, z), 0, 1
2d(Sz, z)}))

≤ ϕ(F(d(Sz, z))) < F(d(Sz, z)),

which holds unless

Sz = z. (4:20)

Similarly, x2n � Sx2n and Sx2n → z as n ® ∞, implies that x2n � z, hence Rx2n and

Rz are comparable. From (4.1) we get

F(d(Sx2n,T z)) ≤ ϕ(F(max{d(Rx2n,Rz), d(Rx2n ,Sx2n), d(Rz,T z),
1
2 (d(Rx2n,T z) + d(Sx2n,Rz))})).

Passing to the limit as n ® ∞, we have

F (d (z,T z)) ≤ ϕ (F (max {0, 0, d (z,T z) , d (z,T z)}))
≤ ϕ (F (d (z,T z))) < F (d (z,T z)) ,

which gives that

z = T z. (4:21)

Therefore, Sz = T z = Rz = z, hence z is a common fixed point of R,S and T .

Similarly, the result follows when condition (b) holds.

Now, suppose that the set of common fixed points of S,T and R in O (x0;S,T ,R)

is well ordered. We claim that there is a unique common fixed point of S,T and R in

O (x0;S,T ,R). Assume to the contrary that Su = T u = Ru = u and Sv = T v = Rv = v
but u ≠ v. By supposition, we can replace x by u and y by v in (4.1) to obtain

F(d(u, v)) = F(d(Su,T v))

≤ ϕ(F(max{d(Ru,Rv), d(Ru,Su), d(Rv, T v)
1
2 [d(Ru,T v) + d(Su,Rv)]}))

= ϕ(F(max{d(u, v), 0, 0, d(u, v)})) < F(d(u, v)),

a contradiction. Hence, u = v. The converse is trivial.

We obtain the following corollaries from Theorem 4.

Corollary 3 Let (X , d,�) be a regular ordered metric space and let T and S be self-

maps on X satisfying

F
(
d
(
T x,Sy

)) ≤ ϕ
(
F

(
M1[T ,S](x, y)

))
,

for all x, y ∈ O(x0;S,T ) (for some x0) such that x and y are comparable, where

F ∈ F , � Î F and

M1[T ,S](x, y) = max{d(x, y), d(T x, x), d(Sy, y), 1
2
[d(x,Sy) + d

(
T x, y

)
]}.

We assume the following hypotheses:

(i) (S,T ) is a.r. at some point x0 ∈ X ;
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(ii) X is (S,T ) -orbitally complete at x0;

(iii) T and S are weakly increasing;

(iv) T and S are dominating maps.

Then T and S have a common fixed point. Moreover, the set of common fixed points

of T and S in O(x0;S,T ) is well ordered if and only if it is a singleton.

Corollary 4 Let (X , d,�) be a regular ordered metric space and let T and R be self-

maps on X satisfying

F(d(T x,T y)) ≤ ϕ(F(M2[T ,R](x, y))),

for all x, y ∈ O (x0;T ,T ,R) (for some x0) such that Rx and Ry are comparable,

where F ∈ F , � Î F and

M2[T ,R](x, y) = max
{
d(Rx,Ry), d(T x,Rx), d(T y,Ry),

1
2
[d(Rx,T y) + d(T x,Ry)]}.

We assume the following hypotheses:

(i) T is a.r. with respect to R at x0 ∈ X ;

(ii) X is (T ,R) -orbitally complete at x0;

(iii) T is weakly increasing with respect to R;

(iv) T is a dominating map;

(v) R is monotone and orbitally continuous at x0.

Then T and R have a common fixed point. Moreover, the set of common fixed points

of T and R in O (x0;T ,T ,R) is well ordered if and only if it is a singleton.

Corollary 5 Let (X , d,�) be a regular ordered metric space and let T be a self-map

on X satisfying for all x, y ∈ O(x0;T ) such that x and y are comparable,

F(d(T x,T y)) ≤ ϕ(F(M3[T ](x, y))),

where F ∈ F , � Î F and

M3[T ](x, y) = max{d(x, y), d(T x, x), d(T y, y),
1
2
[d(x,T y) + d(T x, y)]}.

We assume the following hypotheses:

(i) T is a.r. at some point x0 of X ;

(ii) X is T -orbitally complete at x0;

(iii) T x � T (T x) for all x ∈ X ;

(iv) T is a dominating map.

Then T has a fixed point. Moreover, the set of fixed points of T in O(x0;T ) is well

ordered if and only if it is a singleton.

We also state a corollary of Theorem 4 involving a contraction of integral type.

Corollary 6 Let S,T and R satisfy the conditions of Theorem 4, except that condi-

tion (4.1) is replaced by the following: there exists a positive Lebesgue integrable func-

tion u on ℝ+ such that
∫ ε

0 u(t)dt > 0 for each ε > 0 and that

∫ F(d(Sx,T y))

0
u(t)dt ≤

∫ ϕ(F(M[T ,S,R](x,y)))

0
u(t)dt.
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Then, S,T and R have a common fixed point. Moreover, the set of common fixed

points of S,T and R in O (x0;S,T ,R) is well ordered if and only if it is a singleton.

Example 4 Let the set X = [0, +∞) be equipped with the usual metric d and the

order defined by

x � y ⇔ x ≥ y.

Consider the following self-mappings on X :

Rx = 6x, Sx =
{ 1

2x, 0 ≤ x ≤ 1
2

x, x > 1
2 ,

, T x =
{ 1

3x, 0 ≤ x ≤ 1
3

x, x > 1
3 .

,

Take x0 = 1
2. Then it is easy to show that

O (x0;S,T ,R) ⊂
{

1
2k · 3l : k, l ∈ N

}

and O (x0;S,T ,R) = O (x0;S,T ,R) ∪ {0}, and all the conditions (i)-(v) and (a)-(b)

of Theorem 4 are fulfilled (condition (iii) on O (x0;S,T ,R). Take ψ(t) = 1
6 t and

F ∈ F of the form F(t) = kt, k > 0. Then contractive condition (4.1) takes the form
∣∣∣∣12x − 1

3
y

∣∣∣∣ ≤ 1
6
max

{∣∣6x − 6y
∣∣ , 11

2
x,

17
3
y,
1
2

[∣∣∣∣6x − 1
3
y

∣∣∣∣ +
∣∣∣∣6y − 1

2
x

∣∣∣∣
]}

,

for x, y ∈ O (x0;S,T ,R). Using substitution y = tx, t ≥ 0, the last inequality reduces

to

|3 − 2t| ≤ max
{
6 |1 − t| , 112 , 173 t, 12

[∣∣6 − 1
3 t

∣∣ + ∣∣6t − 1
2

∣∣]} ,
and can be checked by discussion on possible values for t ≥ 0. Hence, all the condi-

tions of Theorem 4 are satisfied and S,T ,R have a unique common fixed point in

O (x0;S,T ,R) (which is 0).

Remark 2 It was shown by examples in [24] that (in similar situations):

(1) if the contractive condition is satisfied just on O(x0;S,T ,R), there might not

exist a (common) fixed point;

(2) under the given hypotheses (common) fixed point might not be unique in the

whole space X .
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