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Abstract

In this article, by using the concept of W-mapping introduced by Atsushiba and
Takahashi and K-mapping introduced by Kangtunyakarn and Suantai, we define W(T,

N)-iteration and K(T,N)-iteration for finding a fixed point of continuous mappings on an
arbitrary interval. Then, a necessary and sufficient condition for the strong
convergence of the proposed iterative methods for continuous mappings on an
arbitrary interval is given. We also compare the rate of convergence of those
iterations. It is proved that the W(T,N)-iteration and K(T,N)-iteration are equivalent and
the K(T,N)-iteration converges faster than the W(T,N)-iteration. Moreover, we also
present numerical examples for comparing the rate of convergence between W(T,N)-
iteration and K(T,N)-iteration.
MSC: 26A18; 47H10; 54C05.
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1 Introduction
There are several classical methods for approximation of solutions of nonlinear equa-

tion of one variable

f (x) = 0 (1:1)

where f : E ® E is a continuous function and E is a closed interval on the real line.

Classical fixed point iteration method is one of the methods used for this problem. To

use this method, we have to transform (1.1) to the following equation:

g(x) = x (1:2)

where g : E ® E is a contraction. Then, Picard’s iteration can be applied for finding a

solution of (1.2).

Question: If g : E ® E is continuous but not contraction, what iteration methods

can be used for finding a solution of (1.2) (that is a fixed point of g) and how about

the rate of convergence of those methods.

There are many iterative methods for finding a fixed point of g. For example, the

Mann iteration (see [1]) is defined by x1 Î E and
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xn+1 = (1 − αn)xn + αng(xn) (1:3)

for all n ≥ 1, where {αn}∞n=1 is a sequence in [0,1]. The Ishikawa iteration (see [2]) is

defined by x1 Î E and{
yn = (1 − βn)xn + βng(xn)
xn+1 = (1 − αn)xn + αng(yn)

(1:4)

for all n ≥ 1, where {αn}∞n=1 , {βn}∞n=1 are sequences in [0,1]. The Noor iteration (see

[3]) is defined by x1 Î E and⎧⎨
⎩
zn = (1 − γn)xn + γng(xn)
yn = (1 − βn)xn + βng(zn)
xn+1 = (1 − αn)xn + αng(yn)

(1:5)

for all n ≥ 1, where {αn}∞n=1 , {βn}∞n=1 , and {γn}∞n=1 are sequences in [0,1]. Clearly

Mann and Ishikawa iterations are special cases of Noor iteration. The SP-iteration (see

[4]) is defined by x1 Î E and⎧⎨
⎩
zn = (1 − γn)xn + γng(xn)
yn = (1 − βn)zn + βng(zn)
xn+1 = (1 − αn)yn + αng(yn)

(1:6)

for all n ≥ 1, where {αn}∞n=1 , {βn}∞n=1 , and {γn}∞n=1 are sequences in [0,1]. Clearly

Mann iteration is special cases of SP-iteration.

In 1976, Rhoades [5] proved the convergence of the Mann and Ishikawa iterations to

a solution of (1.2) when E = [0,1]. He also proved the Ishikawa iteration converges fas-

ter than the Mann iteration for the class of continuous and nondecreasing functions.

Later in 1991, Borwein and Borwein [6] proved the convergence of the Mann iteration

of continuous functions on a bounded closed interval. In 2006, Qing and Qihou [7]

extended their results to an arbitrary interval and to the Ishikawa iteration and gave

some control conditions for the convergence of Ishikawa iteration on an arbitrary

interval. Recently, Phuengrattana and Suantai [4] obtained a similar result for the new

iteration, called the SP-iteration, and they proved the Mann, Ishikawa, Noor and SP-

iterations are equivalent and the SP-iteration converges faster than the others for the

class of continuous and nondecreasing functions.

In this article, we are interested to employ the concept of W-mappings and K-map-

pings for approximation of a solution of (1.2) for a continuous function on an arbitrary

interval and compare which one converges faster. The concept of W-mapping was first

introduced by Atsushiba and Takahashi [8]. They defined W-mapping as follows. Let C

be a subset of a Banach space X and T : C ® C be a mapping. A point x Î C is a fixed

point of T if Tx = x. The set of all fixed points of T is denoted by F(T). Let {Ti}Ni=1 be a

finite family of mappings of C into itself. Let Wn : C ® C be a mapping defined by

Sn,0 = I,

Sn,1 = λn,1T1Sn,0 + (1 − λn,1)I,

Sn,2 = λn,2T2Sn,1 + (1 − λn,2)I,

...

Sn,N−1 = λn,N−1TN−1Sn,N−2 + (1 − λn,N−1)I,

Wn = Sn,N = λn,NTNSn,N−1 + (1 − λn,N)I,

(1:7)
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where I is the identity mapping of C and ln,i Î [0,1] for all i = 1, 2,..., N. Such a

mapping Wn is called the W-mapping generated by T1, T2,..., Tn and ln,1, ln,2,..., ln,N.
Many researchers have studied and applied this mapping for finding a common fixed

point of nonexpansive mappings, for instance, see [8-23].

In 2009, Kangtunyakarn and Suantai [24] introduced a new concept of the K-mapping

in a Banach space as follows. Let Kn : C ® C be a mapping defined by

Un,0 = I,

Un,1 = λn,1T1Un,0 + (1 − λn,1)Un,0,

Un,2 = λn,2T2Un,1 + (1 − λn,2)Un,1,

...

Un,N−1 = λn,N−1TN−1Un,N−2 + (1 − λn,N−1)Un,N−2,

Kn = Un,N = λn,NTNUn,N−1 + (1 − λn,N)Un,N−1,

(1:8)

where I is the identity mapping of C and ln,i Î [0,1] for all i = 1, 2,..., N. Such a

mapping Kn is called the K-mapping generated by T1,T2,..., Tn and ln,1, ln,2,..., ln,N.
They showed that if C is a nonempty closed convex subset of a strictly convex Banach

space X and {Ti}Ni=1 is a finite family of nonexpansive mappings of C into itself, then

F(Kn) =
⋂N

i=1 F(Ti) and they also introduced an iterative method by using the concept

of K-mapping for finding a common fixed point of a finite family of nonexpansive

mappings and a solution of an equilibrium problem. Applications of K-mappings for

fixed point problems and equilibrium problems can be found in [23-26].

By using the concept of W-mappings and K-mappings, we introduce two new itera-

tions for finding a fixed point of a mapping T : E ® E on an arbitrary interval E as

follows.

The W(T,N) -iteration is defined by u1 Î E and

un+1 = W(T,N)
n un ∀n ≥ 1, (1:9)

where N ≥ 1 and W(T,N)
n is a mapping of E into itself generated by

Sn,0 = I,

Sn,1 = λn,1TSn,0 + (1 − λn,1)I,

Sn,2 = λn,2TSn,1 + (1 − λn,2)I,

...

Sn,N−1 = λn,N−1TSn,N−2 + (1 − λn,N−1)I,

W(T,N)
n = Sn,N = λn,NTSn,N−1 + (1 − λn,N)I,

(1:10)

where I is the identity mapping of E and ln,i Î [0,1] for all i = 1, 2,..., N. We call a

mapping W(T,N)
n as the W-mapping generated by T and ln,1, ln,2,..., ln,N. Clearly W

(T,1)-iteration is Mann iteration, W(T,2)-iteration is Ishikawa iteration and W(T,3)-itera-

tion is Noor iteration.

The K(T,N)-iteration is defined by x1 Î E and

xn+1 = K(T,N)
n xn ∀n ≥ 1, (1:11)
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where N ≥ 1 and K(T,N)
n is a mapping of E into itself generated by

Un,0 = I,

Un,1 = λn,1TUn,0 + (1 − λn,1)Un,0,

Un,2 = λn,2TUn,1 + (1 − λn,2)Un,1,

...

Un,N−1 = λn,N−1TUn,N−2 + (1 − λn,N−1)Un,N−2,

K(T,N)
n = Un,N = λn,NTUn,N−1 + (1 − λn,N)Un,N−1,

(1:12)

where I is the identity mapping of E and ln,i Î [0,1] for all i = 1, 2,..., N. We call a

mapping K(T,N)
n as the K-mapping generated by T and ln,1,ln,2, ..., ln,N. Clearly K(T,1)-

iteration is Mann iteration and K(T,3)-iteration is SP-iteration.

Obviously the mappings (1.10) and (1.12) are special cases of the W-mapping and K-

mapping, respectively.

The purpose of this article is to give a necessary and sufficient condition for the

strong convergence of the W(T,N)-iteration and K(T,N)-iteration of continuous mappings

on an arbitrary interval. We also prove that the K(T,N)-iteration and W(T,N)-iteration are

equivalent and the K(T,N)-iteration converges faster than the W(T,N)-iteration for the

class of continuous and nondecreasing mappings. Moreover, we present numerical

examples for the K(T,N)-iteration to compare with the W(T,N)-iteration. Our results

extend and improve the corresponding results of Rhoades [5], Borwein and Borwein

[6], Qing and Qihou [7], Phuengrattana and Suantai [4], and many others.

2 Convergence theorems
We first give a convergence theorem for the K(T,N)-iteration for continuous mappings

on an arbitrary interval.

Theorem 2.1 Let E be a closed interval on the real line and T : E ® E be a continu-

ous mapping. For x1 Î E, let the K(T,N)-iteration {xn}∞n=1 defined by (1.11), where

{λn,i}∞n=1 (i = 1, 2, ..., N) are sequences in [0,1] satisfying the following conditions:

(C1)
∑∞

n=1 λn,i < ∞ for all i = 1, 2,..., N - 1;

(C2) limn®∞ ln,N = 0 and
∑∞

n=1 λn,N = ∞ .

Then {xn}∞n=1 is bounded if and only if {xn}∞n=1 converges to a fixed point of T.

Proof. It is obvious that if {xn}∞n=1 converges to a fixed point of T, then it is

bounded. Now, assume that {xn}∞n=1 is bounded. We will show that {xn}∞n=1 converges

to a fixed point of T. First, we show that {xn}∞n=1 is convergent. To show this, we sup-

pose not. Then there exist a, b Î ℝ, a = lim infn®∞ xn, b = lim supn®∞ xn and a <b.

Next, we show that

if m ∈ (a, b), then Tm = m. (2:1)

To show this, suppose that Tm ≠ m for some m Î (a,b). Without loss of generality,

we may assume that Tm - m > 0. By continuity of T, there exists δ Î (0, b - a) such

that

Tx − x > 0 for |x − m| ≤ δ. (2:2)
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By boundedness of {xn}∞n=1 , we have {xn}∞n=1 belongs to a bounded closed interval.

Continuity of T implies that {Txn}∞n=1 belongs to another bounded closed interval, so

{Txn}∞n=1 is bounded. Since Un ,1 xn = ln,1 Txn + (1- ln,1)xn, we get {Un,1xn}∞n=1 is

bounded, and thus {TUn,1xn}∞n=1 is bounded. Similarly, by using (1.11), we have

{Un,ixn}∞n=1 and {TUn,ixn}∞n=1 are bounded for all i = 2, 3,..., N - 1. It follows by (1.11)

that Un,i xn - Un,i-1 xn = ln,i (TUn,i-1xn - Un,i-1xn) for all i = 1,2,..., N. By condition (C1)

and (C2), we get limn®∞ |Un,i xn - Un,i-1 xn|=0 for all i = 1, 2,..., N.

Since

|xn+1 − xn| =
∣∣Un,Nxn − Un,0xn

∣∣
≤ ∣∣xn+1 − Un,N−1xn

∣∣ + ∣∣Un,N−1xn − Un,N−2xn
∣∣ + · · · + ∣∣Un,1xn − Un,0xn

∣∣ ,
it implies that limn®∞ |xn+1 - xn| = 0. Thus, there exists M0 such that

|xn+1 − xn| <
δ

N
and

∣∣Un,ixn − Un,i−1xn
∣∣ <

δ

N
(i = 1, 2, ...,N − 1), (2:3)

for all n >M0. Since b = lim supn®∞ xn >m, there exists k1 >M0 such that xk1 > m .

Let k = k1, then xk >m. If xk ≥ m + δ
N , then by (2.3), we have xk+1 > xk − δ

N ≥ m , so xk

+1 >m. If xk ∈ (m,m + δ
N ) , then by (2.3), we have

m − δ

N
i < Uk,ixk < m +

δ

N
(i + 1) for all i = 1, 2, ...,N − 1.

So we have

|xk − m| < δ and
∣∣Uk,ixk − m

∣∣ < δ for all i = 1, 2, ...,N − 1.

This implies by (2.2) that

Txk − xk > 0 and TUk,ixk − Uk,ixk > 0 for all i = 1, 2, ...,N − 1. (2:4)

Using (1.11), we obtain

xk+1 = λk,NTUk,N−1xk + (1 − λk,N)Uk,N−1xk
= Uk,N−1xk + λk,N(TUk,N−1xk − Uk,N−1xk)

= Uk,N−2xk + λk,N−1(TUk,N−2xk − Uk,N−2xk) + λk,N(TUk,N−1xk − Uk,N−1xk)

...

= xk +
N∑
i=1

λk,i(TUk,i−1xk − Uk,i−1xk).

(2:5)

By (2.4), we have xk+1 >xk. Thus, xk+1 >m.

By using the above argument, we obtain xk+j >m for all j ≥ 2. Thus we get xn >m for

all n >k. So a = lim infn®∞ xn ≥ m, which is a contradiction with a <m. Thus Tm = m.

Therefore, we obtain (2.1).

For the sequence {xn}∞n=1 , we consider the following two cases:

Case 1: There exists xM̄ such that a < xM̄ < b . Then TxM̄ = xM̄ . By using (1.11), we

obtain that UM̄,ixM̄ = xM̄ for all i = 1, 2,..., N. Thus, we have xM̄+1 = xM̄ . By induction,
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we obtain xM̄ = xM̄+1 = xM̄+2 = ..., so xn → xM̄ . This implies that xM̄ = a and xn ® a,

which contradicts with our assumption.

Case 2: For all n, xn ≤ a or xn ≥ b. Because b - a > 0 and limn®∞ |xn+1 - xn| = 0,

there exists M1 such that |xn+1 − xn| < b−a
N for all n >M1. It implies that either xn ≤ a

for all n >M1 or xn ≥ b for all n >M1. If xn ≤ a for n >M1, then b = lim supn®∞ xn ≤ a,

which is a contradiction with a <b. If xn ≥ b for n >M1, so we have a = lim infn®∞ xn
≥ b, which is a contradiction with a <b.

Hence, we have {xn}∞n=1 is convergent.

Finally, we show that {xn}∞n=1 converges to a fixed point of T. Let limn®∞, xn = p and

suppose Tp ≠ p. Since {Un,ixn}∞n=1 is bounded for all i = 1, 2,..., N - 1, it implies by

(1.11), condition (C1) and (C2) that limn®∞ Un,ixn = p for all i = 1, 2,..., N - 1. Let hk,i
= TUk,i-1xk - Uk,i-1xk for all i = 1, 2,..., N. Continuity of T implies that limk®∞ hk,i = Tp

- p ≠ 0 for all i = 1, 2,..., N. Put w = Tp - p. Then w ≠ 0. By (2.5), we have

n−1∑
k=1

(xk+1 − xk) =
n−1∑
k=1

(
λk,1hk,1 + λk,2hk,2 + · · · + λk,Nhk,N

)
.

This implies that

xn = x1 +
n−1∑
k=1

(
λk,1hk,1 + λk,2hk,2 + · · · + λk,Nhk,N

)
. (2:6)

By condition (C1), (C2), and limk®∞ hk,i = w ≠ 0 for all i = 1, 2,..., N, we get that∑∞
k=1 λk,ihk,i is convergent for all i = 1, 2,..., N - 1 and

∑∞
k=1 λk,Nhk,N is divergent. It

follows by (2.6) that {xn}∞n=1 is divergent, which is a contradiction. Hence, {xn}∞n=1 con-

verges to a fixed point of T.

We now obtain the convergence theorem of W(T,N)-iteration. The proof is omitted

because it is similar as above theorem and Theorem 2.2 of [4].

Theorem 2.2 Let E be a closed interval on the real line and T : E ® E be a continu-

ous mapping. For x1 Î E, let the W(T,N)-iteration {xn}∞n=1 defined by (1.9), where

{λn,i}∞n=1 (i = 1,2,...,N) are sequences in [0,1] satisfying the following conditions:

(C1) limn®∞ ln,i = 0 for all i = 1,2,..., N;

(C2)
∑∞

n=1 λn,N = ∞ .

Then {xn}∞n=1 is bounded if and only if {xn}∞n=1 converges to a fixed point of T.

The following results are obtained direclty from Theorem 2.1.

Corollary 2.3 ([4, Theorem 2.1]) Let E be a closed interval on the real line and T :

E ® E be a continuous mapping. For x1 Î E, let the SP-iteration {xn}∞n=1 defined by

(1.6), where {λn,1}∞n=1 , {λn,2}∞n=1 , and {λn,3}∞n=1 are sequences in [0,1] satisfying the fol-

lowing conditions:

(C1)
∑∞

n=1 λn,1 < ∞ and
∑∞

n=1 λn,2 < ∞ ;

(C2) limn®∞ ln,3 = 0 and
∑∞

n=1 λn,3 = ∞ .

Then {xn}∞n=1 is bounded if and only if {xn}∞n=1 converges to a fixed point of T.

Corollary 2.4 ([7, Theorem 3]) Let E be a closed interval on the real line and T : E

® E be a continuous mapping. For x1 Î E, let the Mann iteration {xn}∞n=1 defined by
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(1.3), where {λn,1}∞n=1 is a sequence in [0,1] satisfying limn®∞, ln ,1 = 0 and∑∞
n=1 λn,1 = ∞ . Then {xn}∞n=1 is bounded if and only if {xn}∞n=1 converges to a fixed

point of T.

The following results are obtained directly from Theorem 2.2.

Corollary 2.5 ([4, Theorem 2.2]) Let E be a closed interval on the real line and T :

E ® E be a continuous mapping. For x1 Î E, let the Noor iteration {xn}∞n=1 defined by

(1.5), where {λn,1}∞n=1 , {λn,2}∞n=1 , {λn,3}∞n=1 are sequences in [0,1] satisfying the following

conditions:

(C1) limn®∞ ln,1 = 0, limn®∞ ln,2 = 0 and limn®∞ ln,3 = 0;

(C2)
∑∞

n=1 λn,3 = ∞ .

Then {xn}∞n=1 is bounded if and only if {xn}∞n=1 converges to a fixed point of T.

Corollary 2.6 ([7]) Let E be a closed interval on the real line and T : E ® E be a

continuous mapping. For x1 Î E, let the Ishikawa iteration {xn}∞n=1 defined by (1.4),

where {λn,1}∞n=1 are sequences in [0,1] satisfying the following conditions:

(C1) limn®∞ ln,1 = 0 and limn®∞ ln,2 = 0;

(C2)
∑∞

n=1 λn,2 = ∞ .

Then {xn}∞n=1 is bounded if and only if {xn}∞n=1 converges to a fixed point of T.

3 Rate of convergence and numerical examples
There are many articles have been published on the iterative methods using for

approximation of fixed points of nonlinear mappings, see for instance [1-7]. However,

there are only a few articles concerning comparison of those iterative methods in

order to establish which one converges faster. As far as we know, there are two ways

for comparison of the rate of convergence. The first one was introduced by Berinde

[27]. He used this idea to compare the rate of convergence of Picard and Mann itera-

tions for a class of Zamfirescu operators in arbitrary Banach spaces. Popescu [28] also

used this concept to compare the rate of convergence of Picard and Mann iterations

for a class of quasi-contractive operators. It was shown in [29] that the Mann and Ishi-

kawa iterations are equivalent for the class of Zamfirescu operators. In 2006, Babu and

Prasad [30] showed that the Mann iteration converges faster than the Ishikawa itera-

tion for this class of operators. Two years later, Qing and Rhoades [31] provided an

example to show that the claim of Babu and Prasad [30] is false.

However, this concept is not suitable or cannot be applied to a class of continuous

self-mappings defined on a closed interval. In order to compare the rate of conver-

gence of continuous self-mappings defined on a closed interval, Rhoades [5] introduced

the other concept which is slightly different from that of Berinde to compare iterative

methods which one converges faster as follows.

Definition 3.1 Let E be a closed interval on the real line and T : E ® E be a contin-

uous mapping. Suppose that {xn}∞n=1 and {un}∞n=1 are two iterations which converge to

the fixed point p of T. We say that {xn}∞n=1 converges faster than {un}∞n=1 if

∣∣xn − p
∣∣ ≤ ∣∣un − p

∣∣ for all n ≥ 1.
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In this section, we study the rate of convergence of W(T,N)-iteration and K(T,N)-itera-

tion for continuous and nondecreasing mappings on an arbitrary interval in the sense

of Rhoades. The following lemmas are useful and crucial for our following results.

Lemma 3.2 Let E be a closed interval on the real line and T : E ® E be a continuous

and nondecreasing mapping such that F(T) is nonempty and bounded with x1 > sup{p

Î E : p = Tp}. Let {xn}∞n=1 be defined by W(T,N)-iteration or K(T,N)-iteration. If Tx1 >x1,

then {xn}∞n=1 does not converge to a fixed point of T.

Proof. We prove only the case that {xn}∞n=1 is defined by K(T,N)-iteration because the

other case can be proved similarly.

Let Tx1 >x1. Since x1 > sup{p Î E : p = Tp} and by using (1.11) and mathematical

induction, we can show that xn ≥ sup{p Î E : p = Tp} for all n ≥ 1. It is clear that Txn
≥ xn for all n ≥ 1. Using (1.11), we have

Un,1xn = λn,1Txn + (1 − λn,1)xn ≥ xn for all n ≥ 1.

Since T is nondecreasing, we have TUn,1xn ≥ Txn ≥ xn. Using (1.11) again, we have

Un,2xn = λn,2TUn,1xn + (1 − λn,2)Un,1xn ≥ xn for all n ≥ 1.

This implies that TUn,2xn ≥ Txn ≥ xn. By continuity in this way, we can show that

xn+1 = K(T,N)
n xn = Un,Nxn ≥ xn for all n ≥ 1. Thus {xn}∞n=1 is nondecreasing. But x1 >

sup{p Î E : p = Tp}, it implies that {xn}∞n=1 does not converges to a fixed point of T.

By using the same argument of proof as in above lemma, we get the following result.

Lemma 3.3 Let E be a closed interval on the real line and T : E ® E be a continuous

and nondecreasing mapping such that F(T) is nonempty and bounded with x1 < inf{p Î

E : p = Tp}. Let {xn}∞n=1 be defined by W(T,N)-iteration or K(T,N)-iteration. If Tx1 <x1,

then {xn}∞n=1 does not converge to a fixed point of T.

We now get the following theorem for compare rate of convergence between W(T,N)-

iteration and K(T,N)-iteration.

Theorem 3.4 Let E be a closed interval on the real line and T : E ® E be a continu-

ous and nondecreasing mapping such that F(T) is nonempty and bounded. For u1 = x1
Î E, let {un}∞n=1 and {xn}∞n=1 are the sequences defined by (1.9) and (1.11), respectively.

Let {λn,i}∞n=1 be sequences in [0,1) for all i = 1,2,..., N. Then, the W(T,N)-iteration {un}∞n=1
converges to the fixed point p of T if and only if the K(T,N)-iteration {xn}∞n=1 converges to

p. Moreover, the K(T,N)-iteration converges faster than the W(T,N)-iteration.

Proof. Put L = inf{p Î E : p = Tp} and U = sup{p ÎE : p = Tp}.

(⇒) Suppose that the W(T,N)-iteration {un}∞n=1 converges to the fixed point p of T.

We divide our proof into the following three cases:

Case 1: u1 = x1 >U. By Lemma 3.2, we have Tu1 <u1 and Tx1 <x1. We now show that

xn ≤ un for all n ≥ 1. Assume that xk ≤ uk. Thus, Txk ≤ Tuk. Since x1 >U and by using

(1.11) and mathematical induction, we can show that xn ≥ U for all n ≥ 1. It is clear

that Txk ≤ xk. This implies that Txk ≤ Uk,1xk ≤ xk. Since T is nondecreasing, TUk,1xk ≤

Txk. Thus, we have

TUk,1xk ≤ Uk,2xk ≤ Uk,1xk. (3:1)

Phuengrattana and Suantai Fixed Point Theory and Applications 2012, 2012:9
http://www.fixedpointtheoryandapplications.com/content/2012/1/9

Page 8 of 14



It follows that Uk,2xk ≤ xk. By (3.1) and T is nondecreasing, we have TUk,2xk ≤ TUk,1

xk ≤ Uk,2 xk. This implies that

TUk,2xk ≤ Uk,3xk ≤ Uk,2xk.

Thus, we have Uk,3xk ≤ xk. By continuity in this way, we can show that

Uk,ixk ≤ xk for all i = 1, 2, ...,N.

Using (1.9) and (1.11), we get

Uk,1xk − Sk,1uk = λk,1(xk − uk) + (1 − λk,1)(Txk − Tuk) ≤ 0.

Since T is nondecreasing, we have TUk,1xk ≤ TSk,1uk. It follows that

Uk,2xk − Sk,2uk = λk,2
(
Uk,1xk − uk

)
+ (1 − λk,2)(TUk,1xk − TSk,1uk)

≤ λk,2(Uk,1xk − xk) + (1 − λk,2)(TUk,1xk − TSk,1uk)

≤ 0.

That is Uk,2xk ≤ Sk,2uk. Since T is nondecreasing, we have TUk,2xk ≤ TSk,2uk. This

implies that

Uk,3xk − Sk,3uk = λk,3
(
Uk,2xk − uk

)
+ (1 − λk,3)(TUk,2xk − TSk,2uk)

≤ λk,3(Uk,2xk − xk) + (1 − λk,3)(TUk,2xk − TSk,2uk)

≤ 0.

That is Uk,3xk ≤ Sk,3uk. By continuity in this way we can show that Uk,Nxk ≤ Sk,Nuk.

Thus, xk+1 ≤ uk+1. Hence, by mathematical induction, we obtain xn ≤ un for all n ≥ 1.

By xn ≥ U for all n ≥ 1, we get 0 ≤ xn - p ≤ un - p, so
∣∣xn − p

∣∣ ≤ ∣∣un − p
∣∣ for all n ≥ 1. (3:2)

Since limn®∞, un = p, it implies that limn®∞ xn = p. That is, the K(T,N)-iteration

{xn}∞n=1 converges to the same fixed point p. Moreover, by (3.2), we see that the K(T,N)-

iteration {xn}∞n=1 converges faster than the W(T,N)-iteration {un}∞n=1 .
Case 2: u1 = x1 <L. By Lemma 3.3, we have Tu1 >u1 and Tx1 >x1. By using (1.9),

(1.11) and the same argument as in Case 1, we can show that xn ≥ un for all n ≥ 1. We

note that x1 <L and by using (1.11) and mathematical induction, we can show that xn≤

L for all n ≥ 1. Thus, we have |xn - p| ≤ |un - p| for all n ≥ 1. It follows that limn®∞

xn = p and the K(T,N)-iteration {xn}∞n=1 converges faster than the W(T,N)-iteration

{un}∞n=1 .
Case 3: L ≤ u1 = x1 ≤ U. Suppose that Tu1 ≠ u1. Without loss of generality, we sup-

pose Tu1 <u1. It follows by (1.9) that un ≤ u1 for all n ≥ 1. Since limn®∞ un = p, we

must get p <u1 = x1. By the same argument as in Case 1, we have p ≤ xn ≤ un for all n

≥ 1. It follows that |xn - p| ≤ |un - p| for all n ≥ 1. Hence, limn®∞ xn = p and the K(T,

N)-iteration {xn}∞n=1 converges faster than the W(T,N)-iteration {un}∞n=1 .
(⇐) Suppose that the K(T,N)-iteration {xn}∞n=1 converges to the fixed point p of T. Put

ln,i = 0 for all i = 1, 2,..., N - 1 and n ≥ 1, we get the sequence {xn}∞n=1 generated by

xn+1 = λn,NTxn + (1 − λn,N)xn for all n ≥ 1 (3:3)
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that converges to p. We will show that W(T,N)-iteration {un}∞n=1 converges to p. We

shall prove only the case x1 = u1 >U, because other cases can be proved similarly as

the first part. By Proposition 3.5 in [4], we get Tx1 <x1 and Tu1 <u 1. Assume that uk
≤ xk. Thus Tuk ≤ Txk. Since u1 >U and by using (1.9) and mathematical induction, we

can show that un ≥ U for all n ≥ 1. It is clear that Tuk ≤ uk. This implies that Tuk ≤

Sk,1uk ≤ uk. Since T is nondecreasing, TSk,1uk ≤ Tuk ≤ Sk,1uk. Thus, TSk,1uk ≤ uk ≤ xk. It

follows that TSk,1uk ≤ Sk,2uk ≤ uk. Since T is nondecreasing, TSk,2uk ≤ Tuk ≤ Sk,1uk.

Thus, TSk,2uk ≤ uk ≤ xk. By continuity in this way, we have TSk,iuk ≤ xk for all i = 1,

2,..., N. By (1.9) and (3.3), we obtain

Sk,iuk − xk = λk,i(uk − xk) + (1 − λk,i)(TSk,i−1uk − xk) ≤ 0,

for all i = 2, 3,..., N - 1. Since T is nondecreasing, we have

TSk,iuk ≤ Txk for all i = 2, 3, ...,N − 1.

It follows by (1.9) and (3.3) that

uk+1 − xk+1 = λk,N(uk − xk) + (1 − λk,N)(TSk,N−1uk − Txk) ≤ 0.

By mathematical induction, we have un ≤ xn for all n ≥ 1. We note that x1 >U and by

using (3.3) and mathematical induction, we can show that xn ≥ U for all n ≥ 1. Thus,

we have 0 ≤ un - p ≤ xn - p for all n ≥ 1. Since limn®∞ xn = p, it follows that limn®∞

un = p That is, the W(T,N)-iteration {un}∞n=1 converges to the same fixed point p.

We also consider the speed of convergence of the K(T,N)-iteration which depends on

the choice of control sequences {λn,i}∞n=1 (i = 1,2,..., N) as the following theorem.

Theorem 3.5 Let E be a closed interval on the real line and T : E ® E be a continu-

ous and nondecreasing mapping such that F(T) is nonempty and bounded. Let {λn,i}∞n=1,
{λ∗

n,i}∞n=1 are the sequences in [0,1) such that λn,i ≤ λ∗
n,i for all i = 1,2,..., N. Let {xn}∞n=1

be a sequence defined by x1 Î E and

xn+1 = K(T,N)
n xn ∀n ≥ 1, (3:4)

where K(T,N)
n is the K-mapping generated by T and ln,1, ln,2,..., ln,N, and

{
x∗
n

}∞
n=1 be a

sequence defined by x∗
1 = x1 ∈ E and

x∗
n+1 = K̄(T,N)

n x∗
n ∀n ≥ 1, (3:5)

where K̄(T,N)
n is the K-mapping generated by T and λ∗

n,1,λ
∗
n,2, ...,λ

∗
n,N .

If {xn}∞n=1 converges to the fixed point p of T, then
{
x∗
n

}∞
n=1 converges to p. Moreover,{

x∗
n

}∞
n=1 converges faster than {xn}∞n=1 .

Proof. Put L = inf{p Î E : p = Tp} and U = sup{p Î E : p = Tp}. Suppose that

{xn}∞n=1 converges to a fixed point p of T. We divide our proof into the following three

cases:

Case 1: x∗
1 = x1 > U . By Lemma 3.2, we have Tx∗

1 < x∗
1 and Tx1 <x1. Assume that

Tx∗
k ≤ Uk,1x∗

k ≤ x∗
k . Thus, Tx∗

k ≤ Tx∗
k . Since x∗

1 > U and by using (3.5) and
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mathematical induction, we can show that x∗
n ≥ U for all n ≥ 1. It is clear that

Tx∗
k ≤ x∗

k . This implies that Tx∗
k ≤ Uk,1x∗

k ≤ x∗
k . Since T is nondecreasing,

TUk,1x
∗
k ≤ Tx∗

k . Thus, we have

TUk,1x
∗
k ≤ Uk,2x

∗
k ≤ Uk,1x

∗
k .

It follows that TUk,2x∗
k ≤ TUk,1x∗

k ≤ Uk,2x∗
k . This implies that

TUk,2x
∗
k ≤ Uk,3x

∗
k ≤ Uk,2x

∗
k .

By continuity in this way, we can show that

TUk,ix
∗
k ≤ Uk,ix

∗
k for all i = 0, 1, ...,N. (3:6)

Using (3.4), (3.5), and (3.6), we have

Uk,1x∗
k − Uk,1xk =

(
Uk,0x∗

k − Uk,0xk
)
+ λ∗

k,1

(
TUk,0x∗

k − Uk,0x∗
k

)
+ λk,1

(
Uk,0xk − TUk,0xk

)
≤ (

Uk,0x
∗
k − Uk,0xk

)
+ λ∗

k,1

(
TUk,0x

∗
k − Uk,0x

∗
k

)
+ λ∗

k,1

(
Uk,0xk − TUk,0xk

)
= (1 − λ∗

k,1)
(
Uk,0x∗

k − Uk,0xk
)
+ λ∗

k,1

(
TUk,0x∗

k − TUk,0xk
)

≤ 0.

This implies TUk,1x∗
k ≤ TUk,1xk . It follows that

Uk,2x∗
k − Uk,2xk =

(
Uk,1x∗

k − Uk,1xk
)
+ λ∗

k,2

(
TUk,1x∗

k − Uk,1x∗
k

)
+ λk,2

(
Uk,1xk − TUk,1xk

)
≤ (

Uk,1x
∗
k − Uk,1xk

)
+ λ∗

k,2

(
TUk,1x

∗
k − Uk,1x

∗
k

)
+ λ∗

k,2

(
Uk,1xk − TUk,1xk

)
= (1 − λ∗

k,2)
(
Uk,1x∗

k − Uk,1xk
)
+ λ∗

k,2

(
TUk,1x∗

k − TUk,1xk
)

≤ 0.

By continuity in this way, we can show that

K̄(T,N)
k x∗

k − K(T,N)
k xk = Uk,Nx

∗
k − Uk,Nxk ≤ 0.

That is, x∗
k+1 ≤ xk+1 . By mathematical induction, we obtain x∗

n ≤ xn for all n ≥ 1.

Since x∗
n ≥ U for all n ≥ 1, we get 0 ≤ x∗

n − p ≤ xn − p , so
∣∣x∗

n − p
∣∣ ≤ ∣∣xn − p

∣∣ for all n

≥ 1. It follows that limn→∞x∗
n = p and

{
x∗
n

}∞
n=1 converges faster than {xn}∞n=1 .

Case 2: x∗
1 = x1 < L . By Lemma 3.3, we have Tx∗

1 > x∗
1 and Tx1 >x1. By using (3.4),

(3.5) and the same argument as in Case 1, we can show that x∗
n ≥ xn for all n ≥ 1. We

note that x∗
1 < L and by using (3.5) and mathematical induction, we can show that

x∗
n ≤ L for all n ≥ 1. Thus, we have

∣∣x∗
n − p

∣∣ ≤ ∣∣xn − p
∣∣ for all n ≥ 1. It follows that

limn→∞x∗
n = p and

{
x∗
n

}∞
n=1 converges faster than {xn}∞n=1 .

Case 3: L ≤ x∗
1 = x1 ≤ U . Suppose that Tx∗

1 	= x∗
1 . Without loss of generality, we sup-

pose Tx∗
1 < x∗

1 . It follows by (3.5) that xn+1 ≤ xn for all n ≥ 1. Since limn®∞ xn = p, we

must get p < x∗
1 = x1 . By the same argument as in Case 1, we have p ≤ x∗

n ≤ xn for all

n ≥ 1. It follows that
∣∣x∗

n − p
∣∣ ≤ ∣∣xn − p

∣∣ for all n ≥ 1. Hence, limn→∞x∗
n = p and{

x∗
n

}∞
n=1 converges faster than {xn}∞n=1 .

Finally, we present two numerical examples for comparing rate of convergence

between W(T,N)-iteration and K(T,N)-iteration.
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Example 3.6 Let T : [0,8] ® [0,8] be defined by Tx = − sin( x−3
2 ) + x + 1

2 . Then T is a

continuous and nondecreasing mapping. The comparison of the rate of convergence of

the W(T,N)-iteration {un}∞n=1 and K(T,N)-iteration {xn}∞n=1 to a fixed point of T are given

in Table 1, with the initial point u1 = x1 = 1 when N = 10.

From Table 1, we see that the K(T,10)-iteration converges faster than the W(T,10)-itera-

tion under the same control conditions. We also observe that x45 = 4.047155172 is an

approximation of the fixed point of T with accuracy at 6 significant digits.

Example 3.7 Let T : [-7, 7] ® [-7, 7] be defined by

Tx =

⎧⎪⎨
⎪⎩
0.7x + e−0.8 + 0.8, if x ∈ [−7,−4)

e
x
5 − 2, if x ∈ [−4, 5)

(x − 5)2 + e − 2, if x ∈ [5, 7].

Then T is a continuous and nondecreasing mapping. The comparison of the rate of

convergence of the W(T,N)-iteration {un}∞n=1 and K(T,N)-iteration {xn}∞n=1 to a fixed point

of T are given in Table 2, when N = 12.

In Example 3.7, the mapping T is continuous on [-7,7] but it not differentiable at x =

-4 and x = 5. In Table 2, we observe that the K(T,12)-iteration and W(T,12)-iteration with

the initial point is x = 5 converge to a fixed point p ≈ -1.215863862 of T. Moreover,

the K(T,12)-iteration converges faster than the W(T,12)-iteration.

Table 1 Comparison of the rate of convergence between W(T,10)-iteration and the K(T,10)-

iteration for the mapping given in Example 3.6, for λn,i = 1
n1.5+1 (i = 1,2,...,9) and

λn,10 = 1
n0.5+1

W(T,10)-iteration K(T,10)-iteration

n un |Tun-un|
∣∣∣ un−un−1

un

∣∣∣ xn |Txn - xn|
∣∣∣ xn−xn−1

xn

∣∣∣
5 3.148579041 4.2578E-01 5.1938E-02 4.038406568 3.8114E-03 1.3069E-03

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
41 4.007635152 1.7228E-02 6.1858E-04 4.047140965 2.4503E-05 1.0900E-06

42 4.009942844 1.6218E-02 5.7549E-04 4.047144996 2.2757E-05 9.9604E-07

43 4.012093026 1.5277E-02 5.3593E-04 4.047148686 2.1159E-05 9.1160E-07

44 4.014098247 1.4400E-02 4.9954E-04 4.047152068 1.9695E-05 8.3559E-07

45 4.015969896 1.3582E-02 4.6605E-04 4.047155172 1.8351E-05 7.6704E-07

Table 2 Comparison of the rate of convergence between the W(T,12)-iteration and K(T,12)-

iteration for the mapping given in Example 3.7, for λn,i = 1
n2+1

(i = 1, 2,..., 11) and

λn,12 = 1
n0.5+1 , with the initial point u1 = x1 = 5

W(T,12)-iteration K(T,12)-iteration

n un |Tun-un|
∣∣∣ un−un−1

un

∣∣∣ xn |Txn - xn|
∣∣∣ xn−xn−1

xn

∣∣∣
5 -0.343578991 7.2283E-01 8.7516E-01 -1.215808886 4.6467E-05 4.2767E-05

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
27 -1.202983546 1.0858E-02 1.6864E-03 -1.215863785 1.7805E-07 2.9928E-08

28 -1.204709686 9.4031E-03 1.4328E-03 -1.215863815 1.5237E-07 2.5043E-08

29 -1.206182603 8.1616E-03 1.2211E-03 -1.215863841 1.3080E-07 2.1041E-08

30 -1.207442871 7.0994E-03 1.0437E-03 -1.215863862 1.1261E-07 1.7746E-08
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Open Problem: Is it possible to prove the convergence theorem of a finite family of

continuous mappings on an arbitrary interval by using W-mappings and K-mappings

and how about the rate of convergence of those methods?
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