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Abstract

We show that the l1 sum of the van Dulst space with itself possesses the fixed point
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1. Introduction
Let C be a subset of a Banach space (X, ||·||). A mapping T: C ® X is called nonex-

pansive whenever ||Tx - Ty|| ≤ ||x - y|| for all x, y Î C. The space (X, ||·||) has the

fixed point property (FPP) if every nonexpansive self-mapping of each nonempty

bounded closed convex subset C of X has a fixed point. If the same property holds for

every weakly compact convex subset of X we say that (X, ||·||) has the weak fixed point

property (WFPP for short).

It has been known from the outset of the study of this property (around the early

sixties of last century) that it depends strongly on ¨nice¨ geometrical properties of the

space. A seminal work for this theory, due to Kirk [1] established that those Banach

spaces with normal structure (NS), have the (WFPP). In particular uniformly convex

Banach spaces have normal structure. A long time open major question in metric fixed

point theory is: Does every reflexive Banach space have (FPP)? (See [2] for more about

this problem). A special case of this question is: Does every superreflexive Banach space

have (FPP)? Although superreflexive spaces have the fixed point property for isometries

[3] the question for general nonexpansive mappings remains still unsolved.

Since 1965 considerable effort has been made in order to find sufficient conditions

for (WFPP). Maybe the most relevant of those geometrical conditions are the following

(see definitions below). We indicate along with the name of each property the year it

was proved that it implies (WFPP).

(1) Asymptotic normal structure (ANS) (1981).

(2) Orthogonal convexity (OC) (1993).

(3) Prus-Szczepanik condition (PS) (2005).

(4) E-convexity (2008).

(5) Property WORTH (2010).
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Each one of these properties is implied by other more or less known geometrical

conditions. For instance, uniformly nonsquare Banach spaces satisfy both, (PS) and

E-convexity, and uniform convexity implies (1), (2), (3) and (4).

Another seemingly open question in this field is whether (WFPP) is preserved by

direct sums. Many partial affirmative answers have been obtained during the last three

decades.

The aim of these notes is to give a product Banach space with the following charac-

teristics:

(1) It enjoys (FPP).

(2) It fails all of the above conditions (1)-(5).

(3) It is the l1 product of two Banach spaces with (FPP) but it falls out of the scope

of all known results guaranteeing the (FPP) for such products.

2. Sufficient conditions for (WFPP)
From here on, we will use the standard notation in Banach space theory, in particular

B [x, r] denotes the closed ball with center x Î X and radius r > 0. BX and SX denote

the unit ball and the unit sphere in X. The weak convergence of the sequence (xn) to x

will be denoted by xn →
w
x .

2.1. Asymptotic normal structure (ANS)

This property was introduced by Baillon and Schöneberg [4].

Definition 1. A Banach space (X, ||·||) has (ANS) if for every nonempty bounded,

closed and convex subset K of X consisting of more than one point, and every sequence

(xn) ⊂ K with limn (xn - xn+1) = 0, there exists x Î K such that lim infn ||xn - x|| <

diamK.

(ANS) is weaker than normal structure (NS). Among many others, the following geo-

metrical conditions in turn imply (NS):

(a) Uniform convexity (UC), (Belluce, Kirk, 1967).

(b) ε0 (X) <1. (Goebel, 1970). Here ε0 (X) denotes the characteristic of convexity of

X.

(c) Uniform smoothness (Turett, 1982).

(d) Uniform convexity in every direction (Garkavi, 1962).

(e) Opial condition (Gossez and Lami Dozo, 1972).

(f) Near uniform convexity (van Dulst, 1981).

Theorem 1. [4] Every reflexive Banach space with asymptotic normal structure has

the (FPP).

2.2. Orthogonal convexity (OC)

This property is independent of (ANS) and weaker than uniform convexity. It was

introduced in 1988 (see [5,6]). James space J, c0, c and Banach spaces with the Schur

property like l1, are (OC). To define (OC) we need some further notation. For x, y Î X,

Mβ(x, y) = B[x, 1+β

2

∥∥x − y
∥∥] ∩ B[y, 1+β

2

∥∥x − y
∥∥].
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If A is a bounded subset of X, |A| = sup{||x||: x Î A}.

If (xn) is a bounded sequence in X, D[(xn)] = lim supm(lim supn ||xm - xn||).

Definition 2. A Banach space (X, ||.||) is orthogonally convex (OC) if for every weakly

null sequence (xn) with D[(xn)] >0, there exists b > 0 such that

lim sup
n

(
lim sup

m

∣∣Mβ(xn, xm)
∣∣) < D[(xn)].

Theorem 2. Every Banach space satisfying (OC) has (WFPP).

2.3. Prus-Szczepanik condition (PS)

This condition was introduced by Prus and Szczepanik [7]. Given a Banach space X, x

Î X, ε > 0 put

d(1, x) = inf
(ym)∈NX

lim sup
m

∥∥x + ym
∥∥ − ‖x‖ ,

and

b1(1, x) = sup
(ym)∈Mx

lim inf
m

∥∥x + ym
∥∥ − ‖x‖ ,

where NX =
{
(xn) : xn ∈ SX,n = 1, 2, . . . , xn →

w
0
}

and

MX = {(xn) : xn ∈ BX ,n = 1, 2, . . . ,D[(xn)] ≤ 1, xn →
w
0} .

Definition 3. Let X be a non-Schur space. If there exists ε Î (0, 1) such that for every

x Î SX it is the case that b1 (1, x) <1 - ε or d (1, x) > ε we say that (X, ||.||) satisfies

the (PS) condition.

Theorem 3. Every non-Schur reflexive Banach space satisfying (PS) condition has

(FPP).

Properties stronger than (PS) condition are the following:

(a) Uniform convexity.

(b) Uniform noncreasyness, introduced by Prus (see [8]) and its generalizations (see

[9-11]).

(c) Property M (X) >1 (see [12]). In particular this condition covers the uniformly

nonsquare Banach spaces (see [13,14]). Other reflexive Banach spaces with M (X)

>1 are those satisfying R(X) <2 (see [15]).

2.4. Conditions depending on the dual space

Very recently the authors in [16] deduced that spaces with O-convex dual have the

(FPP) from the result proved in [13] that ε̃n0(X) < 2 implies that X* has the (FPP). The

fact that E-convex spaces have the (FPP) was proved in a different manner in [17].

The geometrical properties of O and E-convexity were coined by Naidu and Sastry

[18] who proved several consequences of these properties. For instance they showed

that O-convex spaces are superreflexive and that they include uniformly nonsquare

Banach spaces.
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Definition 4. Let 0 <ε < 2, n ≥ 2. (X, ||·||) is O (n, ε) convex, if for every x1, x2, . . .,

xn in BX (SX) there exist i ≠ j Î {1, . . ., n} such that

min
(∥∥xi + xj

∥∥ , ∥∥xi − xj
∥∥) ≤ 2 − ε.

X is O (n) convex, if it is O (n, ε) convex for some ε > 0 and O-convex if it is O (n)

convex for some n Î N. A Banach space X is E-convex if and only if its dual space X*

is O-convex.

Theorem 4. [17,16]. If X* is O-convex, that is if X is E-convex, then the Banach space

X has the fixed point property for nonexpansive mappings.

2.5. Property WORTH

A Banach space has the WORTH property (Rosenthal, 1983; Sims 1988) if limn | ||xn -

x|| - ||xn + x|| | = 0 for all x Î X and all weakly null sequences (xn) in X.

In [19] a coefficient was defined which in some sense quantifies how far a Banach

space is from possessing this property. This coefficient is given by

μ (X) = inf
{
r > 0 : lim supn ‖xn + x‖ ≤ r lim supn ‖xn − x‖ , (xn) inX, xn →

w
0, x ∈ X

}
.

Clearly μ(X) = 1 if and only if X has WORTH.

Sims raised the question whether reflexive spaces with WORTH property have (FPP).

Recently Fetter and Gamboa [20] solved this problem. That is,

Theorem 5. (Fetter Gamboa 2010). If X is reflexive and μ(X) = 1, then X enjoys

(FPP).

3. The van Dulst space
Let V be the space l2 equipped with the following equivalent norm:

‖|x|‖ = max
{
1
3

‖x‖2, sup
n≥1

∣∣x(1) + x(n) + x(n + 1)
∣∣ : n ≥ 2

}
.

This space was introduced in 1982 by van Dulst. It is (OC) [6] but it fails to have

asymptotic normal structure [21]. Moreover, for every x Î l2,

1
3

‖x‖2 ≤ |‖x‖| ≤
√
3‖x‖2.

We enumerate several geometrical properties of this space in the following result.

Proposition 1. For the van Dulst space V, one has

(1) V fails (ANS).

(2) V is (OC).

(3) V fails (PS) condition.

(4) V fails to have O-convex dual.

(5) μ(V) ≥ 2 and hence V fails WORTH property.

Proof. See [21] for (1) and [6] to see (2).

To see (3), for every positive integer n put

xn =

⎛
⎝0. . . . , 0,

4n+1
1
2

,
1
2
, 0, . . .

⎞
⎠ . (3:1)
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Note that | ||xn|| | = 1 and that, for m > n,

|‖xm − xn‖| =

∣∣∣∣
∥∥∥∥
(
0, . . . , 0,−1

2
,−1

2
, 0, . . . , 0,

1
2
,
1
2
, 0, . . .

)∥∥∥∥
∣∣∣∣ = 1.

Then (xn) ∈ MV =
{
(yn) : yn ∈ BV n = 1, . . . ,D(yn) ≤ 1, yn →

w
0
}
. Moreover, e1 Î SV

and for every n > 1,

|‖e1 + xn‖| =
∣∣∣∣
∥∥∥∥
(
1, 0, . . . 0,

1
2
,
1
2
, . . .

)∥∥∥∥
∣∣∣∣ = 2. (3:2)

Therefore, for every ε Î (0, 1),

b1(1, e1) = sup
(yn)∈MV

lim inf
n

∣∣∥∥e1 + yn
∥∥∣∣− |‖e1‖|

≥ lim inf
n

|‖e1 + xn‖| − |‖e1‖|
= 2 − 1 > 1 − ε.

In the same way, if we consider the sequence (-xn), it is clear that

(−xn) ∈ NV =
{
(xn) : xn ∈ SV n = 1, 2, . . . , xn →

w
0
}
. For n > 1,

|‖e1 − xn‖| =

∣∣∣∣
∥∥∥∥
(
1, 0, . . . 0,−1

2
,−1

2
, . . .

)∥∥∥∥
∣∣∣∣ = max

{
1
3

√
3
2
, 1

}
= 1, (3:3)

and

d(1, e1) = inf
(yn)∈NV

lim sup
n

∣∣∥∥e1 + yn
∥∥∣∣− |‖e1‖|

≤ lim sup
n

|‖e1 − xn‖| − |‖e1‖|

= 1 − 1 = 0 < ε.

Thus for every ε Î (0, 1) e1 Î SV, b1 (1, e1) >1 - ε and d (1, e1) < ε which implies

that V fails condition (PS).

(4) To see that V* is not O-convex, consider for any positive integer n the functional

fn Î V* defined on V by fn(x) = x(1) + x(2n) + x(2n + 1).

For every x Î V∣∣fn(x)∣∣ ≤ ∣∣x(1) + x(2n) + x(2n + 1)
∣∣ ≤ |‖x‖| .

Moreover, | ||e2n|| | = 1 and fn (e2n) = 1. Thus
∥∥fn∥∥V∗ = 1 .

Let m > n and take vm,n = 1
2 (e2n+1 + e2n − e2m+1 − e2m) ,

wm,n = 1
2 (e2n+1 + e2n + e2m+1 + e2m) .

Clearly | ||vm, n|| | = | ||wm, n|| | = 1. Since (fn - fm) (vm, n) = 2,
∥∥fn − fm

∥∥
V∗ = 2 .

Therefore, A = {fn : n = 1, 2, . . .} is a countable 2-separated subset of the unit sphere

SV∗ . Moreover, (fn + fm) (wm, n) = 2 which implies that
∥∥fn + fm

∥∥
V∗ = 2 . Thus A is a

countable 2-symmetrically separated subset of SV∗ and hence V* is not O-convex.
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Finally, to see (5) take xn as in (3.1). Then (xn) is weakly null and by (3.2) and

(3.3), for n > 1, | ||e1 + xn|| | = 2 and | ||e1 - xn|| | = 1. Since e1 Î SV , it follows

that μ(V) ≥ 2. ■

4. The space V ⊕1 V
In this section we will be concerned with the space W = V ⊕1 V, that is the product

space l2 × l2 endowed with the norm

‖(u, v)‖ = |‖u‖| + |‖v‖| .

Now consider the space Z to be l2 with the following norm:

‖x‖ = max

⎧⎨
⎩ 1

3

(∑∞
n=1

x(2n)2
)1
2 , supn≥1

∣∣x(2) + x(2n + 2) + x(2n + 4)
∣∣
⎫⎬
⎭ +

max

⎧⎨
⎩ 1

3

(∑∞
n=1

x(2n − 1)2
)1
2 , supn≥1

∣∣x(1) + x(2n + 1) + x(2n + 3)
∣∣
⎫⎬
⎭ .

Let (en) be the canonical basis of l2 and Px =
∑∞

n=1 x(2n)e2n and

Qx =
∑∞

n=1 x(2n − 1)e2n−1 . Then we may write

‖x‖ = max
{
1
3

‖Px‖2, sup
n≥1

∣∣x(2) + x(2n + 2) + x(2n + 4)
∣∣} +

max
{
1
3

‖Qx‖2, sup
n≥1

∣∣x(1) + x(2n + 1) + x(2n + 3)
∣∣} .

This implies that

‖x‖ = ‖Px‖ + ‖Qx‖ . (4:1)

Since 1
3

(‖Px‖22 + ‖Qx‖22
) 1
2 ≤ 1

3 (‖Px‖2 + ‖Qx‖2) ≤ ‖x‖ and since

∑n
i=1 ai ≤ √

n
(∑n

i=1 a
2
i

) 1
2 we have

1
3

‖x‖2 ≤ ‖x‖ ≤
√
6‖x‖2. (4:2)

Clearly the function F: Z ® W given by

F(x) =

( ∞∑
n=1

x(2n)en,
∞∑
n=1

x(2n − 1)en

)

is an isometry between the two spaces. We will work mostly with the space Z.

Proposition 2. Let W = V ⊕1 V. Then

(1) W fails (ANS).

(2) W fails to be (OC).

(3) W fails (PS) condition.

(4) W fails to have O-convex dual.

(5) μ(W) ≥ 2 and hence W fails WORTH property.
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Proof. Since the van Dulst space V is isometric to a closed subspace of W, and

asymptotic normal structure (ANS), Prus-Szczepanik condition (PS) and WORTH are

inherited by closed subspaces, W fails (ANS), (PS) and WORTH.

For every n Î N let Fn Î Z* be given by Fn(x) = x(1) + x(2n + 1) + x(2n + 3). Then,

since Fn (e1) = 1 and clearly ‖Fn‖Z∗ ≤ 1 , we have that ‖Fn‖Z∗ = 1 . If

wm,n = 1
2(e2n+1 + e2n+3 + e2m+1 + e2m+3) , wm,n = 1

2(e2n+1 + e2n+3 + e2m+1 + e2m+3) for n ≠

m, then ||vm, n|| = ||wm, n|| = 1 and (Fn - Fm) (vm, n) = (Fm + Fn) (wm, n) = 2; thus

‖Fn − Fm‖Z∗ = ‖Fn + Fm‖Z∗ = 2 .

Hence {Fn : n = 1, 2, . . .} is a symmetrically separated subset of SZ∗ , the space Z*

cannot be O-convex and statement (4) is proven.

On the other hand consider the weakly null sequence (ek) in Z. It is obvious that ||

ek|| = 1, that ||en - em|| ≤ 2 for n ≠ m and that ||en - em|| = 2 whenever m and n have

different parity. Thus D(en) = lim supm (lim supn ||en - em||) = 2. If b > 0, and m and

n have different parity, since

∥∥(em + en) − en
∥∥ = 1 =

1
2

‖en − em‖ =
∥∥(em + en) − em

∥∥ ,
we have that em + en Î Mb (en, em). Since ||en + em|| = 2, then∣∣Mβ(en, em)

∣∣ ≥ ‖em + en‖ = 2

and therefore for every b > 0,

lim sup
m

[
lim sup

n

∣∣Mβ(en, em)
∣∣] ≥ 2 = D[(en)].

which implies that W fails to be (OC), that is, statement (2) holds. This completes

the proof. ■
Remark 1. It seems to be an open problem whether X1 ⊕1 X2 has the (WFPP) pro-

vided that X1, X2 are two Banach spaces with the (WFPP). There are several affirmative

partial answers in the literature. For instance in [22] it was shown that X1 ⊕1 X2 enjoys

(WFPP) whenever X1 is uniformly convex in every direction and X2 is a Banach space

such that ℝ × X2 with the l1-norm has the (WFPP). In the same paper it was pointed

out that this last condition holds whenever X2 has either uniformly normal structure or

many other well known sufficient conditions for (FPP).

In 2002, A. Wiśnicki proved that X1 ⊕1 X2 has the (WFPP) provided that X1 and X2

are uniformly noncreasy Banach spaces. The notion of uniformly noncreasy spaces was

introduced by S. Prus to describe a large class of superreflexive Banach spaces with the

(WFPP).

In [23] it was shown that X1 ⊕1 X2 has the (WFPP) provided that X1 is a Banach

space with both, the weak Banach- Saks property and the (WFPP) while X2 has asymp-

totic (P). Asymptotic (P) is a geometric property which implies normal structure, which

in turn implies (ANS) and (WFPP), introduced by B. Sims and M.A. Smyth in 1995.

Very recently in [24], A. Wiśnicki proved that the assumption of the Banach- Saks prop-

erty could be dropped in the above result.

The van Dulst space V which has the weak Banach- Saks property and (WFPP), does

not have normal structure. Hence it fails uniform normal structure and asymptotic (P).
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(In fact it fails (ANS) which is even weaker than (NS)). Moreover, V is not uniformly

noncreasy, because it fails (PS) condition which is more general than uniformly

noncreasyness.

Thus we can see that for the space W = V ⊕1 V, (WFPP) is preserved beyond the

scope of the above theorems regarding the (WFPP) of l1 direct sums.

So we will turn our attention to show that Z and thus W has the (FPP). The proof is

rather technical and we first need the following lemma which was first proved by

Maurey [25].

We recall that if T: K ® X where K ⊂ X, a sequence (xn) in K is called almost fixed

point (afp) sequence (afps) for T provided that ||xn - Txn|| ® 0.

Lemma 1. Let X be a Banach space and T: K ® K, where K ⊂ X is a weakly com-

pact convex set, be a nonexpansive mapping. If
(
x1n
)
and

(
x2n
)
are afp sequences for T,

then there exists an afp sequence (zn) ⊂ K such that for i = 1, 2

lim supn

∥∥zn − xin
∥∥ ≤ 1

2 lim supn

∥∥x1n − x2n
∥∥.

Theorem 6. The space Z enjoys the (FPP).

Proof. We shall argue by contradiction using as our main tool the well known Goe-

bel-Karlovitz lemma [26,27] whose statement is as follows: Let X be a Banach space

and T: K ® K be a nonexpansive mapping, where K is a minimal nonempty T -invar-

iant convex subset of X. If K is weakly compact and (xn) is an afps for T, then for any

x Î K, limn ||xn - x|| = diamK, where diamK is the diameter of K. From this it follows

that there exists a subsequence
(
xnk

)
of (xn) such that limk

∥∥xnk − xnk+1
∥∥ = diamK .

So suppose that Z lacks the (FPP). Then there exists a nonexpansive mapping T: K

® K where K ⊂ Z is a nonempty weakly compact convex set and T does not have a

fixed point. Let us assume that K is minimal for T. Let (xn) ⊂ K be an afps for T. By

standard arguments, we may suppose that 0 Î K, xn →
w
0 , diamK = 1. By passing to an

appropriate subsequence of (xn), still called (xn), we may suppose that there is a basic

block sequence (un) such that u1 (1) = u1 (2) = 0, limn ||xn - un|| = 0 and, if supp un =

{i: un (i) ≠ 0}, then max supp un + 4 <min supp un+1. By taking another appropriate

subsequence we may suppose further

i) limn ||Pxn||, limn ||Pxn||2, limn||Qxn||2 exist.

By passing to another subsequence, we also assume, by the Goebel- Karlovitz lemma,

that ||xn - xn+1|| ® 1.

Let x1n = x2n−1 , x2n = x2n . By Lemma 1, there exists an afps (zn) such that

lim supn

∥∥zn − xin
∥∥ ≤ 1

2 lim supn

∥∥x1n − x2n
∥∥ ≤ 1

2 .

If we take any subsequence
(
znk

)
, since x1nk = x2nk−1 and x2nk = x2nk , we get that

limk
∥∥x1nk − x2nk

∥∥ = 1 . Hence for i = 1, 2 we must have that limk
∥∥znk − xink

∥∥ = 1
2 . For con-

venience we call the afps
(
znk

)
k and

(
xink

)
k again (zk) and

(
xik
)
. By passing to appropriate

subsequences of (zn) we finally get afp sequences
(
x1n
)
,
(
x2n
)
and (zn) such that

(a) limn
∥∥Px1n∥∥ = limn

∥∥Px2n∥∥ , limn
∥∥Px1n∥∥2 = limn

∥∥Px2n∥∥2 , limn
∥∥Qx1n

∥∥
2 = limn

∥∥Qx2n
∥∥
2.

(b) limn
∥∥x1n − x2n

∥∥ = 1 .
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(c) limn ||Pzn||, limn ||Pzn||2, limn ||Qzn||2 exist.

(d) limn
∥∥zn − xin

∥∥ = 1
2 for i = 1, 2.

(e) limn
∥∥P(zn − xin)

∥∥ , limn
∥∥P(zn − xin)

∥∥
2 , limn

∥∥Q(zn − xin)
∥∥
2 exist.

(f) limn
∥∥x1n + x2n − zn

∥∥ , limn
∥∥P(x1n + x2n − zn)

∥∥ , limn
∥∥P(x1n + x2n − zn)

∥∥
2 and

limn
∥∥Q(x1n + x2n − zn)

∥∥
2 exist.

Consequently, again appealing to the Goebel- Karlovitz lemma,

1 = lim
n

∥∥x2n∥∥ ≤ lim
n

∥∥zn − x1n
∥∥ + lim

n

∥∥x1n + x2n − zn
∥∥ =

1
2
+ lim

n

∥∥x1n + x2n − zn
∥∥ . (4:3)

Thus limn
∥∥x1n + x2n − zn

∥∥ ≥ 1
2 . Hence

lim
n

∥∥x1n + x2n − zn
∥∥
2 = a > 0. (4:4)

Now let u1n = u2n−1 , u2n = u2n .

By the assumption on the supports of u1n and u2n , for fixed n and for any j Î N,

there exists r (n, j) Î {1, 2} such that 1, 2j + 1, 2j + 3 do not belong to supp ur(n,j)n .

But then

1
3

∥∥∥P(zn − ur(n,j)n )
∥∥∥
2
+
∣∣zn(1) + zn(2j + 1) + zn(2j + 3)

∣∣ =

1
3

∥∥∥P(zn − ur(n,j)n )
∥∥∥
2
+
∣∣∣(zn − ur(n,j)n

)
(1) +

(
zn − ur(n,j)n

)
(2j + 1)

+
(
zn − ur(n,j)n

)
(2j + 3)

∣∣∣ ≤
∥∥∥P (zn − ur(n,j)n

)∥∥∥ +
∥∥∥Q(zn − ur(n,j)n )

∥∥∥
=
∥∥∥zn − ur(n,j)n

∥∥∥ .
Thus,

∣∣zn(1) + zn(2j + 1) + zn(2j + 3)
∣∣ ≤∥∥∥zn − ur(n,j)n

∥∥∥ − 1
3

∥∥∥P (zn − ur(n,j)n

)∥∥∥
2

(4:5)

and similarly for any k Î N, there exists s (n, k) Î {1, 2} such that 1, 2k, 2k + 2 do

not belong to supp us(n,k)n and

∣∣zn(2) + zn(2k) + zn(2k + 2)
∣∣ ≤∥∥∥zn − us(n,k)n

∥∥∥ − 1
3

∥∥∥Q(
zn − us(n,k)n

)∥∥∥
2
.

(4:6)

Therefore,

lim sup
n

∣∣zn(1) + zn(2j + 1) + zn(2j + 3)
∣∣ ≤ 1

2

and lim
n

sup
∣∣zn(2) + zn(2k) + zn(2k + 2)

∣∣ ≤ 1
2
.

(4:7)
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Observe that, since the uin have disjoint supports, the inner product 〈u1n, u2n〉 = 0 , and

‖zn‖22 =
∥∥zn − u1n

∥∥2
2 +

∥∥zn − u2n
∥∥2
2

− ∥∥u1n + u2n − zn
∥∥2
2 + 2〈u1n, u2n〉 =∥∥zn − u1n

∥∥2
2 +

∥∥zn − u2n
∥∥2
2 − ∥∥u1n + u2n − zn

∥∥2
2 .

(4:8)

The above also implies

‖Pzn‖22
=
∥∥P(zn − u1n)

∥∥2
2 +

∥∥P(zn − u2n)
∥∥2
2 − ∥∥P(u1n + u2n − zn)

∥∥2
2 .

(4:9)

By (4.2) and by d), for i = 1, 2 it holds that limn
∥∥zn − uin

∥∥2
2 ≤ 9

4
. From this and

(4.8), we obtain for an =
∥∥u1n + u2n − zn

∥∥
2, that if limn an = a, where by (4.4) a > 0,

lim
n

(‖Pzn‖22 + ‖Qzn‖22
) 1
2 = lim

n
‖zn‖2 ≤

(
18
4

− a2
) 1

2
. (4:10)

There are three possible cases: (I) There exists a subsequence of (zn) with∥∥znk∥∥ = 1
3

(∥∥Pznk∥∥2 + ∥∥Qznk
∥∥
2

)
, (II) there exists a subsequence such that∥∥znk∥∥ = 1

3

∥∥Pznk∥∥2 + ∣∣znk (1) + znk(2jk + 1) + znk(2jk + 3)
∣∣ for some sequence (jk) in N (or∥∥znk∥∥ =

∣∣znk(2) + znk(2jk) + znk(2jk + 2)
∣∣ + 1

3

∥∥Qznk
∥∥
2 for some sequence (jk) in N) or

(III) there exist (jn) and (kn) so that

‖zn‖ =
∣∣zn(1) + zn(2jn + 1) + zn(2jn + 3)

∣∣ + ∣∣zn(2) + zn(2kn) + zn(2kn + 2)
∣∣ .

In any of those cases we will call the subsequence (zn) again. Again, by the Goebel-

Karlovitz lemma,

lim
n

‖zn‖ = 1. (4:11)

(I) By (4.10) limn
1
3 (‖Pzn‖2 + ‖Qzn‖2) ≤

√
2
3

( 9
2 − a2

)1
2 =

(
1 − 2a2

9

)
< 1 . So (zn)

cannot be an afps.

(II) Now suppose that ‖zn‖ = 1
3‖Pzn‖2 +

∣∣zn(1) + zn(2jn + 1) + zn(2jn + 3)
∣∣ for some

sequence (jn) in N. By passing to a subsequence if necessary we may suppose that

2jn + 1 and 2jn + 3 are not in the support of u1n (or of u2n ), Define

cn =
∥∥Pu1n + Pu2n − Pzn

∥∥2
2
,

An =
∥∥Pzn − Pu1n

∥∥
2,Bn =

∥∥Pzn − Pu2n
∥∥
2 ,

Dn =
∣∣zn(1) + zn(2jn + 1) + zn(2jn + 3)

∣∣ =
∣∣(zn − u1n)(1) + (zn − u1n)(2jn + 1) + (zn − u1n)(2jn + 3)

∣∣ .
If An + Bn = 0; we have Pzn = Pu1n = Pu2n and this is only possible if Pzn = 0. Hence,

if we had Ank + Bnk = 0 , k = 1, 2, . . ., by (4.7)
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lim
n

∥∥znk∥∥ = lim
k

(
1
3

∥∥Pznk∥∥2 + ∣∣znk(1) + znk(2jnk + 1) + znk(2jnk + 3)
∣∣)

= lim
k

∣∣znk(1) + znk(2jnk + 1) + znk(2jnk + 3)
∣∣ ≤ 1

2

and again
(
znk

)
would not be an afps.

Thus we assume that there exists N0 so that for n > N0, An +Bn ≠ 0, then, since
1
3An +Dn ≤ ∥∥zn − u1n

∥∥, by (4.9),

lim
n

‖zn‖ = lim
n

(
1
3

√∥∥Pzn − Pu1n
∥∥2
2 +

∥∥Pzn − Pu2n
∥∥2
2 − cn+∣∣zn(1) + zn(2jn + 1) + zn(2jn + 3)

∣∣)
= lim

n

(
1
3

√
A2
n + B2

n − cn +Dn

)
=

=
1
3
lim
n

(
An + Bn − 2AnBn + cn

An + Bn +
√
A2
n + B2

n − cn

)
+ lim

n
Dn

≤ lim
n

(∥∥zn − u1n
∥∥ + 1

3
Bn − 1

3
2AnBn + cn

An + Bn +
√
A2
n + B2

n − cn

)

≤ lim
n

(
1
2
+
1
2

− 1
3

2AnBn + cn
An + Bn +

√
A2
n + B2

n − cn

)
≤ 1.

We obtain limn ||zn|| = 1 if and only if a)
1
3 limnBn = limn

1
3

∥∥Pzn − Pu2n
∥∥
2 = 1

2 = limn
∥∥zn − u2n

∥∥ and b) limn 2AnBn + cn = 0. Thus

from a) limn
∥∥Q(zn − u2n)

∥∥ = 0 . This means that zn = Pzn +Qu2n + vn where vn ® 0.

From b) limn 2AnBn = - limn cn and since all the quantities involved are nonnegative

and limn Bn ≠ 0, then limn An = limn cn = 0. This implies on one hand that

zn = Pu1n +Qzn + wn where wn ® 0 and on the other zn = Pu1n + Pu2n +Qzn + τn where

τn ® 0. Putting all of this together we obtain: zn = Pu1n +Qu2n + ρn where rn ® 0 and

Pu2n → 0 . But then
∥∥Qu2n

∥∥ → 1 and therefore Pu1n → 0 and zn = Qu2n + σn where sn

® 0. Hence

1 = lim
n

∥∥u1n − u2n
∥∥ = lim

n

∥∥u1n − Pu2n − zn + σn
∥∥ = lim

n

∥∥zn − u1n
∥∥ =

1
2

and this is a contradiction. The remaining cases are done similarly.

(III) Last suppose that there exist (jn) and (kn) so that

‖zn‖ =
∣∣zn(2) + zn(2kn) + zn(2kn + 2)

∣∣ + ∣∣zn(1) + zn(2jn + 1) + zn(2jn + 3)
∣∣

= ‖Pzn‖ + ‖Qzn‖ .

Then, by (4.7) limn ‖Pzn‖ ≤ 1
2 and also limn ‖Qzn‖ ≤ 1

2 . So, in order for limn ||zn||

= 1, it is necessary that

lim
n

‖Pzn‖ =
1
2
and lim

n
‖Qzn‖ =

1
2
. (4:12)
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Assume that for a subsequence called (zn) again, 2jn + 1, 2jn + 3 are not in the sup-

port of u1n and suppose first that 2kn and 2kn + 2 do not belong to the support of u1n .

Then |zn (2) + zn (2kn) + zn (2kn + 2)|+∣∣zn (1) + zn
(
2jn + 1

)
+ zn

(
2jn + 3

)∣∣ ≤ ∥∥zn − u1n
∥∥ and

since limn
∥∥zn − u1n

∥∥ = 1
2 , in this case limn ‖zn‖ ≤ 1

2 .

Thus suppose that either 2kn or 2kn + 2 belongs to the support of u1n and hence

{2kn, 2kn + 2} is disjoint with the support of u2n . We have by (4.12),

1
2
= lim

n

∣∣zn(2) + zn(2kn) + zn(2kn + 2)
∣∣ ≤

lim
n

(∥∥zn − u2n
∥∥ − 1

3

∥∥Q(zn − u2n)
∥∥
2

)
≤ 1

2
,

and

1
2
= lim

n

∣∣zn(1) + zn(2jn + 1) + zn(2jn + 3)
∣∣ ≤

lim
n

(∥∥zn − u1n
∥∥ − 1

3

∥∥P(zn − u1n)
∥∥
2

)
≤ 1

2
.

Thus limn
∥∥P(zn − u1n)

∥∥
2 = 0 and limn

∥∥Q(zn − u2n)
∥∥
2 = 0. Hence, since ||·||·and ||·||2

are equivalent, we get limn
∥∥P(zn − u1n)

∥∥ = 0 , limn
∥∥Q(zn − u2n)

∥∥ = 0 and

lim
n

‖Pzn‖ = lim
n

∥∥Pu1n∥∥ =
1
2
and lim

n
‖Qzn‖ = lim

n

∥∥Qu2n
∥∥ =

1
2
.

By a) limn
∥∥Qu1n

∥∥ = 1
2 and limn

∥∥Pu2n∥∥ = 1
2 also. Now let

y1n = x1n, y
2
n = zn, v1n = u1n = Pu1n +Qu1n, v

2
n = Pu1n +Qu2n.

Then
(
y1n
)
and

(
y2n
)
are two afp sequences in K.

By the above, limn
∥∥y1n − v1n

∥∥ = limn
∥∥y2n − v2n

∥∥ = 0 . Also,

limn
∥∥y1n − y2n

∥∥ = limn
∥∥x1n − zn

∥∥ = 1
2. Applying Lemma 1 there exists an afps (wn) ⊂ K

such that for i = 1, 2 we have lim supn

∥∥wn − vin
∥∥ ≤ 1

4. But since

limn
∥∥v1n − v2n

∥∥ = limn
∥∥y1n − y2n

∥∥ = 1
2 , we get that for i = 1, 2

lim
n

∥∥wn − vin
∥∥ = 1

4 .

We may assume by passing to a subsequence, that limn||Pwn||, limn||Pwn||2, lim ||

Qwn||2 and for i = 1, 2, limn
∥∥P(wn − vin)

∥∥ , limn
∥∥P(wn − vin)

∥∥
2 , limn

∥∥Q(wn − vin)
∥∥
2

all exist. Then

lim
n

‖Pwn‖ ≤ lim
n

(∥∥Pwn − Pv1n
∥∥ + ∥∥Pv1n∥∥)

≤ 1
4
+ lim

n

∥∥Pu1n∥∥ =
3
4
.

(4:13)

From limn
∥∥u1n + u2n

∥∥ = limn
∥∥u1n − u2n

∥∥ = 1 , limn
∥∥Qu1n +Qu2n

∥∥ ≥ limn
∥∥Qu1n

∥∥ = 1
2,

limn
∥∥Pu1n + Pu2n

∥∥ ≥ limn
∥∥Pu1n∥∥ = 1

2 , we obtain limn
∥∥Qu1n +Qu2n

∥∥ = limn
∥∥Pu1n + Pu2n

∥∥ = 1
2.
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Similarly limn
∥∥Qu1n − Qu2n

∥∥ = limn
∥∥Pu1n − Pu2n

∥∥ = 1
2 . Then

lim
n

‖Qwn‖ ≤ lim
n

(∥∥∥∥Qwn − Qv1n
2

∥∥∥∥ +

∥∥∥∥Qwn − Qv2n
2

∥∥∥∥ +
∥∥∥∥Qv1n +Qv2n

2

∥∥∥∥
)

≤ 1
8
+
1
8
+ lim

n

∥∥∥∥Qu1n +Qu2n
2

∥∥∥∥ ≤ 1
4
+
1
2
1
2
=
1
2
.

Also, since 〈Qv1n,Qv2n〉 = 〈Qu1n,Qu2n〉 = 0,

lim
n

‖Qwn‖22 = lim
n
(
∥∥Q(wn − v1n)

∥∥2
2 +

∥∥Q(wn − v2n)
∥∥2
2

− ∥∥Q(v1n + v2n − wn)
∥∥2
2 + 2〈Qv1n, Qv2n〉)

≤ 9
1
16

+ 9
1
16

=
9
8
.

(4:14)

By a) there exists c such that limn
∥∥Pu1n∥∥2 = limn

∥∥Pu2n∥∥2 = c and since

limn
∥∥Pu1n∥∥ = 1

2 , we get that c > 0. Further,

1
2

≥ 1
3
lim
n

∥∥P(u1n − u2n)
∥∥
2

=
1
3
lim
n

√∥∥Pu1n∥∥22 + ∥∥Pu2n∥∥22 =

√
2
3

c.

Hence limn
∥∥Puin∥∥2 ≤ 3

2
√
2
and

lim
n

‖Pwn‖22 = lim
n
(
∥∥P(wn − v1n)

∥∥2
2 +

∥∥P(wn − v2n)
∥∥2
2

− ∥∥P(v1n + v2n − wn)
∥∥2
2 + 2〈Pv1n, Pv2n〉)

≤ 9
1
16

+ 9
1
16

+ 2 lim
n

∥∥Pu1n∥∥22 =
9
8
+
18
8

=
27
8

and therefore 1
3 limn‖Pwn‖2 ≤

√
3
8 . Hence by (4.14)

lim
n

1
3

(‖Pwn‖2 + ‖Qwn‖2) ≤ 1 +
√
3√

8
< 1. (4:15)

As before, since the supports of Qv1n and Qv2n are disjoint, for j there exists i such

that 2j + 1, 2j + 3 do not belong to the support of Qvin Suppose that ||wn|| = ||Pwn||

+ |wn(1) +w(2jn + 1) + wn(2jn + 3)| and that for a subsequence of (wn) we have 2jn +

1, 2jn + 3 do not belong to the support of Qv1n and limn|wn(1) + w(2jn + 1) + wn(2jn +

3)| exists. As usual call it (wn) again. Then

1
3
lim
n

∥∥P(wn − v1n)
∥∥
2 + lim

n

∣∣wn(1) + w(2jn + 1) + wn(2jn + 3)
∣∣

≤ lim
n

∥∥wn − v1n
∥∥ ≤ 1

4
.

(4:16)

Thus, if limn
1
3

∥∥P(wn − v1n)
∥∥
2 = a > 0 , by (4.13)

lim
n

‖Pwn‖ + lim
n

∣∣wn(1) + w(2jn + 1) + wn(2jn + 3)
∣∣ ≤ 3

4
+
1
4

− a < 1. (4:17)
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If limn
∥∥P(wn − v1n)

∥∥ = 0 , then by (4.13), limn ‖Pwn‖ = limn
∥∥Pv1n∥∥ = 1

2 and then by

(4.16),

lim
n
(‖Pwn‖ +

∣∣wn(1) + w(2jn + 1) + wn(2jn + 3)
∣∣) ≤ 1

2
+
1
4

< 1. (4:18)

By (4.15), (4.17) and (4.18) the only remaining possible case is that

‖wn‖ =
∣∣wn(2) + wn(2in) + wn(2in + 2)

∣∣ + 1
3

‖Qwn‖2 (4:19)

for some sequence (in) in N.

Let limm
∥∥Qu1m

∥∥
2 = d > 0 and ε > 0 so that

d2−ε

(9
8 +d

2
)1
2 + 3√

8
+ε

− ε = γ > 0
.

Let n be fixed and define wr
n =

∑r

j=1
wn(j)ej . Suppose that r(n) is such that

max

⎧⎪⎨
⎪⎩
(

‖Qwn‖22 −
∥∥∥Qwr(n)

n

∥∥∥2
2

)1
2 ,

∥∥∥Q(wn − wr(n)
n )

∥∥∥
2

⎫⎪⎬
⎪⎭ < ε.

There is M (r (n)) so that for m > M (r (n)), min supp
(
u1m

)
> max(r(n), 2in + 2)

and

∥∥Qu1m
∥∥2
2 − ε(

9
8 +

∥∥Qu1m
∥∥2
2

) 1
2 + 3√

8
+ ε

− ε >
1
2

γ .

Then∥∥P(wn − u1m)
∥∥ ≥ max

i
|wn(2) + wn(2in) + wn(2in + 2)| = ‖Pwn‖ . (4:20)

By (4.14) ‖Qwn‖2 ≤
√

9
8 + ε < 3√

8
+ ε for sufficiently large n. Therefore, for such n

and m >M (r (n)) we obtain

∥∥Q(wn − u1m)
∥∥
2 ≥

∥∥∥Q(wr(n)
n − u1m)

∥∥∥
2

− ε =
(∥∥∥Qwr(n)

n

∥∥∥2
2
+
∥∥Qu1m

∥∥2
2

)1
2 − ε ≥

(
‖Qwn‖22 − ε +

∥∥Qu1m
∥∥2
2

)1
2 − ε ≥

‖Qwn‖2 +
∥∥Qu1m

∥∥2
2 − ε(

‖Qwn‖22 − ε +
∥∥Qu1m

∥∥2
2

) 1
2 + ‖Qwn‖2

− ε ≥

‖Qwn‖2 +
∥∥Qu1m

∥∥2
2 − ε(

9
8 +

∥∥Qu1m
∥∥2
2

) 1
2 + 3√

8
+ ε

− ε ≥ ‖Qwn‖ 2 +
γ

2
.

(4:21)
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Using (4.20), (4.21) and (4.19),

∥∥wn − u1m
∥∥ ≥ ∥∥P(wn − u1m)

∥∥ +
1
3

∥∥Q(wn − u1m)
∥∥
2

≥ ‖Pwn‖ +
1
3

‖Qwn‖2 +
γ

6
=

= ‖wn‖ +
γ

6
.

Hence, for every n, since
(
x1n
)

is an afps,

1 = limm
∥∥wn − x1m

∥∥ = limm
∥∥wn − u1m

∥∥ ≥ ‖wn‖ + γ

6 . Thus lim supn||wn|| < 1.

Therefore, (wn) cannot be an afps. The other case is done similarly and this finishes

the proof. ■
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