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Abstract

This paper is concerned with mixed g-monotone mappings in partially ordered
metric spaces. We establish several coupled coincidence and coupled common fixed
point theorems, which generalize and complement some known results. Especially,
our main results complement some recent results due to Lakshmikantham and Ćirić.
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1 Introduction
The existence of fixed points for monotone mappings in partially ordered metric

spaces was initialed in [1], and such problems have been of great interest for many

mathematicians (see, e.g, [2-6] and references therein).

The existence of coupled fixed points for mixed monotone mappings in partially

ordered metric spaces was firstly studied by Bhaskar and Lakshmikantham [7], where

some applications to periodic boundary value problems are studied. Since then, several

authors have made contributions on such problems (see, e.g., [8-16]). Especially, Laksh-

mikantham and Ćirić [13] introduced a new concept of mixed g-monotone mapping:

Definition 1.1. Let (X, ≤) be a partially ordered set, F: X × X ® X and g: X ® X. We

say F has the mixed g-monotone property if F is monotone g-non-decreasing in its first

argument and is monotone g-non-increasing in its second argument, that is, for any x,

y Î X,

x1, x2 ∈ X, g(x1) ≤ g(x2) implies F(x1, y) ≤ F(x2, y),

and

y1, y2 ∈ X, g(y1) ≤ g(y2) implies F(x, y1) ≥ F(x, y2).

Moreover, Lakshmikantham and Ćirić [13] established several coupled coincidence

and coupled fixed point theorems for mixed g-monotone mappings in a partially

ordered metric space. In [13], one of the key assumption on the mixed g-monotone

mapping F is:
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d(F(x, y), F(u, v)) ≤ ϕ

(
d(g(x), g(u)) + d(g(y), g(v))

2

)
(1:1)

for all x, y, u, v Î X with g(x) ≤ g(u) and g(y) ≥ g(v), where � : [0, +∞) ® [0, +∞)

satisfies �(t) <and lim
r→t+

ϕ(t) < t for each t >0.

The aim of this paper is to extend and complement the main results in [13] by replacing

the contraction assumption (1.1) by a more general condition (see (A1) in Theorem 1). As

one will see, our main results are generalizations and complements of some earlier results

(see Examples and Remark 1). For some details see [17,18].

2 Main results
Throughout the rest of this paper, we denote by N the set of positive integers, and by

(X, ≤, d) a complete partially ordered metric space, i.e., ≤ is a partial order on the set X,

and d is a complete metric on X. Moreover, we endow the product space X × X with the

following partial order: (u, v) ≤ (x, y) ⇔ x ≥ u, y ≤ v.

Now, let us present one of our main results.

Theorem 2.1. Assume that g: X ® X is a continuous mapping, and F: X × X ® X is

a continuous mapping with the mixed g-monotone property on X. Suppose that the fol-

lowing assumptions hold:

(A1) there exists a non-decreasing function j : [0, +∞) ® [0, +∞) such that

lim
n→∞ φn(t) = 0 for each t >0, and d(F(x, y), F(u, v)) ≤ j[MF,g(x, y, u, v)] for all x, y, u, v Î

X with gx ≥ gu and gy ≤ gv, where

MF,g(x, y, u, v) = max{d(gx, gu), d(gy, gv), d(gx, F(x, y)), d(gu, F(u, v)), d(gy, F(y, x)), d(gv, F(v, u)),
d(gx, F(u, v)) + d(gu, F(x, y))

2
,
d(gy, F(v, u)) + d(gv, F(y, x))

2

}
.

(A2) there exist x0, y0 Î X such that gx0 ≤ F (x0, y0) and F(y0, x0) ≤ gy0;

(A3) F(X ×X) ⊆ g(X), and g and F are commuting, i.e., g(F(x, y)) = F(gx, gy) for all

x, y Î X.

Then F and g have a coupled coincidence point, i.e., there exist x*, y* Î X such that F

(x*, y*)= gx* and F(y*, x*) = gy*.

Proof. First, we claim that j (t) < t for each t >0. In fact, if j (t0) ≥ t0 for some t0 >0,

then, since j is non-decreasing, jn (t0) ≥ t0 for all N, which contradicts with

lim
n→∞ φn(t0) = 0 . In addition, it is easy to see that j (0) = 0. Since F (X × X) ⊆ g (X), one

can construct two sequences {xn}, {yn} in X such that gxn = F (xn-1, yn-1), gyn = F (yn-1, xn-

1), n Î N. Observing that F has the mixed g-monotone property on X, by (A2), we get

gx0 ≤ gx1 ≤ ... ≤ gxn ≤ gxn+1 ≤ ... and ...≤ gyn+1 ≤ gyn ≤ ... ≤ gy1 ≤ gy0.

Now, by (A1), we have

d(gxn+1, gxn) = d(F(xn, yn), F(xn−1, yn−1)) ≤ φ(MF,g(xn, yn, xn−1, yn−1)),

and

d(gyn, gyn+1) = d(F(yn−1, xn−1), F(yn, xn)) ≤ φ(MF,g(yn−1, xn−1, yn, xn)),
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where

MF,g(xn, yn, xn−1, yn−1) = MF,g(yn−1, xn−1, yn, xn)

= max{d(gxn, gxn−1), d(gyn, gyn−1), d(gxn, F(xn, yn)), d(gxn−1, F(xn−1, yn−1)),

d(gyn, F(yn, xn)), d(gyn−1, F(yn−1, xn−1)),
d(gxn, F(xn−1, yn−1)) + d(gxn−1, F(xn, yn))

2
,

d(gyn, F(yn−1, xn−1)) + d(gyn−1, F(yn, xn))
2

}

= max{d(gxn, gxn−1), d(gyn, gyn−1), d(gxn, gxn+1), d(gyn, gyn+1),

d(gxn−1, gxn+1)
2

,
d(gyn−1, gyn+1)

2

}
.

Next, let us consider five cases.

Case I. MF,g (xn, yn, xn-1, yn-1) = max {d(gxn, gxn-1), d(gyn, gyn-1)}.

We have

d(gxn+1, gxn) ≤ φ[max{d(gxn, gxn−1), d(gyn, gyn−1)}], (2:1)

and

d(gyn, gyn+1) ≤ φ[max{d(gxn, gxn−1), d(gyn, gyn−1)}]. (2:2)

Case II. MF,g (xn, yn, xn-1, yn-1) = d(gxn, gxn+1).

We claim that MF,g (xn, yn, xn-1, yn-1) = d(gxn, gxn+1) = 0. In fact, if d(gxn, gxn+1) ≠ 0,

then d(gxn+1, gxn) ≤ j [d(gxn+1, gxn)] < d(gxn+1, gxn), which is contradiction. Since MF,g

(xn, yn, xn-1, yn-1) = 0, we also have d (gyn, gyn+1) = 0. Then, it is obvious that (2.1) and

(2.2) hold.

Case III. MF,g (xn, yn, xn-1, yn-1) = d (gyn, gyn+1).

Similar to the proof of Case II, one can also show that (2.1) and (2.2) hold.

Case IV. MF,g(xn, yn, xn−1, yn−1) =
d(gxn−1,gxn+1)

2
.

We also claim that d(gxn-1, gxn+1) = 0. In fact, if d(gxn-1, gxn+1) ≠ 0, then

d(gxn+1, gxn) ≤ φ

[
d(gxn−1, gxn+1)

2

]

<
d(gxn−1, gxn+1)

2

≤ d(gxn−1, gxn)
2

+
d(gxn, gxn+1)

2
,

which gives that d (gxn+1, gxn) < d (gxn-1, gxn). Thus,

MF(xn, yn, xn−1, yn−1) =
d(gxn−1, gxn+1)

2
< d(gxn−1, gxn),

which contradicts with the definition of MF (xn, yn, xn-1, yn-1). So

MF(xn, yn, xn−1, yn−1) =
d(gxn−1, gxn+1)

2
= 0.

Thus, d (gxn, gxn+1) = d (gyn, gyn+1) = 0, which means that (2.1) and (2.2) hold.

Case V. MF,g(xn, yn, xn−1, yn−1) =
d(gyn−1,gyn+1)

2
.

By using a similar argument to Case IV, one can also show that (2.1) and (2.2) hold.

Now, by (2.1) and (2.2), we have for all n Î N,
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max{d(gxn+1, gxn), d(gyn, gyn+1)}
≤ φ[max{d(gxn, gxn−1), d(gyn, gyn−1))}]
≤ φn[max{d(gx1, gx0), d(gy1, gy0))}].

(2:3)

Let ε >0 be fixed. Without loss of generality, one can assume that

max{d(gx1, gx0), d(gy1, gy0))} �= 0.

In fact, if this is not true, then

gx0 = gx1 = F(x0, y0), gy0 = gy1 = F(y0, x0),

i.e., x0, y0 is a coupled coincidence point of F and g. Since limn®∞ j n (t) = 0 for

each t >0, by using (2.3), there exists N Î N such that for all n > N,

max{d(gxn+1, gxn), d(gyn, gyn+1)} < ε − φ(ε). (2:4)

Next, let us prove that for all n > N,

max{d(gxn+p, gxn), d(gyn, gyn+p)} ≤ ε,∀p ∈ N, (2:5)

and

max{d(gxn+p−1, gxn+1), d(gyn+1, gyn+p−1)} ≤ φ(ε),∀p ≥ 3. (2:6)

For p = 1, it follows directly from (2.4) that (2.5) holds. For p = 2, (2.5) follows from

max{d(gxn+2, gxn), d(gyn+2, gyn)}
≤ max{d(gxn+2, gxn+1), d(gyn+2, gyn+1)} + max{d(gxn+1, gxn), d(gyn+1, gyn)}
≤ φ[max{d(gxn+1, gxn), d(gyn+1, gyn)}] + ε − φ(ε)

≤ φ(ε) + ε − φ(ε) = ε,

where (2.3) and (2.4) are used. Let us show that (2.5) and (2.6) hold for p = 3. Firstly,

by (2.3) and (2.4), we have

max{d(gxn+2, gxn+1), d(gyn+2, gyn+1)} ≤ φ[max{d(gxn+1, gxn), d(gyn+1, gyn)}] ≤ φ(ε),

which means that (2.6) holds for p = 3. Secondly, by (A1), we have

max{d(gxn+3, gxn+1), d(gyn+1, gyn+3)} ≤ φ[zn], (2:7)

where

zn = max{d(gxn+2, gxn), d(gyn, gyn+2), d(gxn+2, gxn+3), d(gyn+2, gyn+3), d(gxn, gxn+1), d(gyn, gyn+1),
d(gxn+2, gxn+1) + d(gxn, gxn+3)

2
,
d(gyn+2, gyn+1) + d(gyn, gyn+3)

2

}
.

We claim that zn ≤ ε. In fact, if zn = max {d(gxn+2, gxn), d(gyn, gyn+2)}, then by

(2.5) (p = 2), zn ≤ ε; if zn = max {d(gxn+2, gxn+3), d(gyn+2, gyn+3)}, then by (2.3)

and (2.4), zn ≤ j 2 (ε) ≤ ε; if zn = max {d(gxn, gxn+1), d(gyn, gyn+1)}, then (2.4)

gives that zn ≤ ε; if zn = d(gxn+2,gxn+1)+d(gxn,gyn+3)
2

, then by (2.7), there holds

d(gxn+3, gxn+1) ≤ d(gxn+2,gxn+1)+d(gxn,gyn+3)
2 ≤ φ(ε)+d(gxn,gyn+3)

2
, which yields that
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d(gxn, gxn+3) ≤ d(gxn+3, gxn+1) + d(gxn+1, gxn)

≤ φ(ε) + d(gxn, gxn+3)
2

+ ε − φ(ε)

= ε − φ(ε)
2

+
d(gxn, gxn+3)

2
,

and thus, zn = d(gxn+2,gxn+1)+d(gxn,gxn+3)
2 ≤ φ(ε)

2 +
d(gxn, gxn+3)

2
≤ ε ; if

zn = d(gyn+2,gyn+1)+d(gyn,gyn+3)
2

, one can similarly show that zn ≤ ε. Hence, in all cases, zn ≤ ε.

Then, by (2.4) and (2.7), we get

max{d(gxn+3, gxn), d(gyn, gyn+3)}
≤ max{d(gxn+3, gxn+1), d(gyn+1, gyn+3)} + max{d(gxn+1, gxn), d(gyn, gyn+1)}
≤ φ(ε) + ε − φ(ε) = ε,

i.e., (2.5) holds for p = 3.

Now, suppose that (2.5) and (2.6) hold for all p ≤ k - 1. Let us prove that (2.5) and

(2.6) hold for p = k. By (A1), (2.3), (2.4), (2.5) for p = k - 2, k - 1 and for p = k - 1 we

conclude

max{d(gxn+k−1, gxn+1), d(gyn+1, gyn+k−1)}
≤ φ

[
max

{
d(gxn+k−2, gxn), d(gyn, gyn+k−2), d(gxn+k−2, gxn+k−1), d(gyn+k−2, gyn+k−1),

d(gxn, gxn+1), d(gyn, gyn+1),
d(gxn+k−2, gxn+1) + d(gxn, gxn+k−1)

2
,

d(gyn+k−2, gyn+1) + d(gyn, gyn+k−1)
2

}]

≤ φ

[
max

{
ε,φk−2(ε),

φ(ε) + ε

2

}]
≤ φ(ε),

i.e., (2.6) holds for p = k. In addition, since max {d(gxn+k, gxn+1), d(gyn+1, gyn+k)} ≤ j
[wn], where wn = max {d(gxn+k-1, gxn), d(gyn, gyn+k-1), d(gxn+k-1, gxn+k), d(gyn+k-1, gyn+k),

d(gxn, gxn+1),

wn = max{d(gxn+k−1, gxn), d(gyn, gyn+k−1), d(gxn+k−1, gxn+k), d(gyn+k−1, gyn+k), d(gxn, gxn+1),

d(gyn, gyn+1),
d(gxn+k−1, gxn+1) + d(gxn, gxn+k)

2
,
d(gyn+k−1, gyn+1) + d(gyn, gyn+k)

2

}
,

by similar proof to that of zn (see (2.7)), one can show that wn ≤ ε. Thus,

max{d(gxn+k, gxn), d(gyn, gyn+k)}
≤ max{d(gxn+k, gxn+1), d(gyn+1, gyn+k)} + max{d(gxn+1, gxn), d(gyn, gyn+1)}
≤ φ(ε) + ε − φ(ε) = ε,

i.e., (2.6) holds for p = k.

Now, we have proved that (2.5) holds for all p Î N, which means that {gxn} and {gyn}

are Cauchy sequences in X. Then, by the completeness of X, there exist x*, y* Î X such

that limn®∞ gxn = x*, limn®∞ gyn = y*. By (A3), g commutes with F. So g (gxn+1) = g (F

(xn, yn)) = F (gxn, gyn) and g (gyn+1) = g (F (yn, xn)) = F (gyn, gxn). Letting n ® ∞ and

noticing that F and g are continuous, we get g (x*) = F (x*, y*), g (y*) = F (y*, x*). □
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We demonstrate the use of Theorems 2.1 with the help of the following examples. It

will show also that our theorem is more general than some other known coupled fixed

point results ([7,13]).

Examples: (1) Let X = ℝ be endowed with usual order, d (x, y) = |x - y|,

F(x, y) = 1
4x − 1

5y, gx =
1
2x,φ(t) =

9
10 t . We have that mappings F, g and j satisfy all

conditions of the Theorem 2.1, but they do not satisfy (1.1). Therefore F and g have a

coupled coincidence point. Here (0, 0) is the coupled coincidence point of F and g.

Indeed, for x ≥ u, y ≤ v we have

d(F(x, y), F(u, v)) =

∣∣∣∣14(x − u) +
1
5
(v − y)

∣∣∣∣ ≤ 9
20

max{|x − u|, |y − v|}

=
9
10

max
{∣∣∣ x

2
− u

2

∣∣∣ , ∣∣∣ y
2

− v
2

∣∣∣}

=
9
10

max{d(gx, gu), d(gy, gv)}.

However, if (1.1) is true, then we have

1
4
= d(0,

1
4
) = d(F(0, 0), F(1, 0)) ≤ ϕ

(
d(g0, g1) + d(g0, g0)

2

)
= ϕ(

1
4
) <

1
4
,

which is a contradiction. Hence, the existence of a coupled coincidence point of F

and g cannot be obtained by the result from [13].

(2) If in the previous example we take F(x, y) = 1
2x − 1

3y , gx = x, φ(t) = 5
6 t , then we

obtain that mappings F, g and j satisfy all conditions of the Theorem 2.1, but they do

not satisfy the conditions of corresponding Theorem from [7]. Indeed, in this case we

have

d(F(x, y), F(u, v)) =

∣∣∣∣12(x − u) +
1
3
(v − y)

∣∣∣∣ ≤ 5
6
max{|x − u|, |y − v|}.

On the other hand, for x = 1, y = u = v = 0, we obtain

d(F(1, 0), F(0, 0)) =
1
2

>
k
2
=

k
2
(d(1, 0) + d(0, 0)),

for all k Î[0, 1). Also, this example shows that the existence of a coupled coincidence

point of F and g cannot be obtained by the result from [7].

In the case that F is not continuous, one can use the following theorem:

Theorem 2.2. Suppose all the assumptions of Theorem 2.1. except for the continuity

of F are satisfied. Moreover, assume that g is monotone under the partial order ≤, and

X has the following properties:

(a) if an non-decreasing sequence {xn} converges to X in X, then xn ≤ x for all n Î N;

(b) if an non-increasing sequence {yn} converges to y in X, then y ≤ yn for all n Î N.

Then the conclusions of Theorem 2.1 also hold.

Proof. Let {xn}, {yn}, x*, y* be as in Theorem 1. Then limn®∞ gxn = x* and limn®∞

gyn = y*.

It remains to prove that g (x*) = F (x*, y*) , g (y*) = F (y*, x*) .

By the proof of Theorem 1, we have gx0 ≤ gx1 ≤ ... ≤ gxn ≤ gxn+1 ≤ ... and ... ≤ gyn+1 ≤

gyn ≤ ... ≤ gy1 ≤ gy0. It follows from the assumptions (a) and (b) that gxn ≤ x* and y* ≤
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gyn for all n Î N. In addition, without loss of generality, one can assume that g is non-

decreasing about the partial order ≤ . Then g2xn ≤ gx* and gy* ≤ g2yn for all n Î N,

where g2z := g (gz) for all z Î X.

Next, using (A1), we obtain

d(F(x∗, y∗), g2xn+1) = d(F(x∗, y∗), F(gxn, gyn)) ≤ φ[an], (2:8)

and d(g2yn+1, F(y∗, x∗)) = d(F(gyn, gxn), F(y∗, x∗)) ≤ φ[bn], (2:9)

where

an = bn = max{d(gx∗, g2xn), d(y∗, g2yn), d(gx∗, F(x∗, y∗)),

d(gy∗, F(y∗, x∗)), d(g2xn, g2xn+1), d(g2yn, g2xn+1),

d(gx∗, g2xn+1) + d(g2xn, F(x∗, y∗))
2

,
d(gy∗, g2yn+1) + d(g2yn, F(y∗, x∗))

2

}
.

Now, we claim that

max{d(gx∗, F(x∗, y∗)), d(gy∗, F(y∗, x∗))} = 0. (2:10)

If this not true, then max {d (gx*, F (x*, y*)) , d (gy*, F (y*, x*))} >0. Since limn®∞gxn =

x*, limn®∞gyn = y*, there exists N Î N such that for all n > N,

an = bn = max{d(gx∗, F(x∗, y∗)), d(gy∗, F(y∗, x∗))}.

Combining this with (2.8) and (2.9), we get for all n > N,

max{d(F(x∗, y∗)g2xn+1), d(g2yn+1, F(y∗, x∗))}
≤ φ[max{d(gx∗, F(x∗, y∗)), d(gy∗, F(y∗, x∗))}].

Letting n ® ∞ it follows that

max{d(gx∗, F(x∗, y∗)), d(gy∗, F(y∗, x∗))}
≤ φ[max{d(gx∗, F(x∗, y∗)), d(gy∗, F(y∗, x∗))}].

This is a contradiction. So (2.10) holds. Then, it follows that gx* = F (x*, y*) and gy* =

F (y*, x*) .

Remark 1. It is easy to see that Theorems 2.1. and 2.2. are generalizations of corre-

sponding results in [7]. In addition, Theorems 2.1. and 2.2. extends some earlier results

for non-decreasing mappings in partially ordered metric spaces. For example, let g = I

(the identity map), F be non-decreasing under the first argument and be independent

of the second argument, one can deduce [2, Theorem 2.2].

In some cases, one can show that the coupled coincidence point is a coupled com-

mon fixed point. For example, we have the following result:

Theorem 2.3. Suppose all the assumptions of Theorem 2.1. (or Theorem 2.2.) are

satisfied. Moreover, assume that

(A4) the MF,g(x, y, u, v) in (A1) equals to

max
{
d(gx, gu), d(gy, gv),

d(gx, F(u, v)) + d(gu, F(x, y))
2

,
d(gy, F(v, u)) + d(gv, F(y, x))

2

}
;
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(A5) for every (x1, x2), (y1, y2) Î X × X, there exists (z1, z2) Î X × X such that (gz1,

gz2) is comparable to (gx1, gx2) and (gy1, gy2).

Then F and g have a unique coupled common fixed point, i.e., there exists a unique

(a, b) Î X × X such that F (a, b) = ga = a and F (b, a) = gb = b.

Proof. By Theorem 2.1. (or Theorem 2.2.), we know that F and g have a coupled

coincidence point, i.e., there exist x*, y* Î X such that F (x*, y*) = gx* and F (y*, x*) =

gy*. Let (x*, y*) Î X × X be also a coupled coincidence point of F and g. First, let us

prove that

gx∗ = gx∗, gy∗ = gy∗. (2:11)

By (A5), there exists (u0, v0) Î X × X such that (gu0, gv0) is comparable to (gx*, gy*)

and (gx*, gy*) . Let

gun = F(un−1, vn−1), gvn = F(vn−1, un−1), n = 1, 2, . . .

Since F is mixed g-monotone and (gu0, gv0) is comparable to (gx*, gy*), we claim that

(F (u0, v0) , F (v0, u0)) is comparable to (F (x*, y*) , F (y*, x*)) , i.e., (gu1, gv1) is compar-

able to (gx*, gy*) . In fact, if

(gu0, gv0) ≤ (gx∗, gy∗),

i.e.,

gu0 ≥ gx∗ and gv0 ≤ gy∗,

and thus

gu1 = F(u0, v0) ≥ F(x∗, y∗) = gx∗ and gv1 = F(v0, u0) ≤ F(y∗, x∗) = gy∗,

which means that

(gu1, gv1) ≤ (gx∗, gy∗);

if (gu0, gv0) = (gx*, gy*), by a similar proof, we can get (gu1, gv1) ≥ (gx*, gy*). In addi-

tion, analogously to the above proof, one can also show that (gu1, gv1) is comparable

to (gx*, gy*) . Hence, by induction, one can prove that for each n Î N, (gun, gvn) is

comparable to (gx*, gy*) and (gx*, gy*) .

Now, by (A4), we have

max{d(gx∗, gun+1), d(gy∗, gvn+1)}
= max{d(F(x∗, y∗), F(un, vn)), d(F(y∗, x∗), F(vn, un))} ≤ φ[cn],

where

cn = max
{
d(gx∗, gun), d(gy∗, gvn),

d(gx∗, gun+1) + d(gx∗, gun)
2

,
d(gy∗, gvn+1) + d(gy∗, gvn)

2

}
.

We claim that cn = max {d (gx*, gun), d (gy*, gvn)}. In fact, if cn = d(gx∗,gun+1)+d(gx∗,gun)
2 > 0 ,

then d(gx∗, gun+1) ≤ φ[cn] <
d(gx∗,gun+1)+d(gx∗,gun)

2
, which means that d (gx*, gun+1) < d (gx*,

gun), and thus cn = d(gx∗,gun+1)+d(gx∗,gun)
2 < d(gx∗, gun) . This is a contradiction. In addition,

if cn = d(gy∗,gvn+1)+d(gy∗,gvn)
2 > 0 , one can also show that there is a contradiction. Thus we

have
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max{d(gx∗, gun+1), d(gy∗, gvn+1)} ≤ φ[max{d(gx∗, gun), d(gy∗, gvn)}].

Then, it follows that

max{d(gx∗, gun+1), d(gy∗, gvn+1)}
≤ φn+1[max{d(gx∗, gu0), d(gy∗, gv0)}].

Analogously to the above proof, one can also show that

max{d(gx∗, gun+1), d(gy∗, gvn+1)} ≤ φn+1[max{d(gx∗, gu0), d(gy∗, gv0)}].

Letting n ® ∞, we get gx* = limn®∞ gun+1 = gx*, gy* = limn®∞ gvn+1 = gy*.

Since F (gx*, gy*) = g (gx*) and F (gy*, gx*) = g (gy*), (gx*, gy*) is a coupled coincidence

point of F and g, thus, by (2.11), we have g (gx*) = gx*, g (gy*) = gy*. Let a = gx* and b =

gy*. Then F (a, b) = F (gx*, gy*) = g (gx*) = ga = a and F (b, a) = F (gy*, gx*) = g (gy*) =

gb = b. It remains to show the uniqueness. Let (c, d) Î X × X such that F (c, d) = gc =

c and F (d, c) = gd = d. Since (a, b) and (c, d) are both coupled coincidence points of

F and g, by (2.11), we get ga = gc, gb = gd, and thus a = c, b = d. This completes the

proof.
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