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Abstract

Using fixed point method, we prove the Hyers-Ulam stability and the superstability
of generalized quadratic ternary derivations on non-Archimedean ternary Banach
algebras. Indeed, we investigate the Hyers-Ulam stability and the superstability of the
system of functional equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ([abc]) =
[
f (a)b2c2

]
+

[
a2f (b)c2

]
+

[
a2b2f (c)

]
;

g([abc]) =
[
g(a)b2c2

]
+ [a2f (b)c2] + [a2b2f (c)];

g(ux + vy) + g(ux − vy) = 2u2g(x) + 2v2g(y);

f (ux + vy) + f (ux − vy) = 2u2f (x) + 2v2f (y)

in non-Archimedean ternary Banach algebras.
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17B40; 13N15; 17A40; 20N10.
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1. Introduction and preliminaries
The stability problem of functional equations had been first raised by Ulam [1]. This

problem solved by Hyers [2] in the framework of Banach spaces. In 1978, Th.M. Ras-

sias [3] provided a generalization of the Hyers’ theorem by proving the existence of

unique linear mappings near approximate additive mappings. Găvruta [4] obtained

generalized result of the Th.M. Rassias’ theorem which allows the Cauchy difference to

be controlled by a general unbounded function.

Bourgin [5] proved the stability of ring homomorphisms between two unital Banach

algebras and Badora [6] gave a generalization of the Bourgin result. The stability result

concerning derivations between operator algebras was first obtained by Šemrl [7]. In

[8], Badora proved the stability of functional equation

f (xy) = xf (y) + f (x)y,
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where f is a mapping on normed algebra A with the unit. Park et al. proved the sta-

bility of homomorphisms and derivations in Banach algebras, Banach ternary algebras,

C*-algebras, Lie C*-algebras and C*-ternary algebras (see [9-14]).

Let A be a ternary algebra. A mapping f : A → A is called a quadratic ternary

derivation if f is a quadratic mapping satisfies

f
([
a, b, c

])
=

[
f (a), b2, c2

]
+

[
a2, f (b), c2

]
+

[
a2, b2, f (c)

]
for all a, b, c ∈ A .

A mapping g : A → A is called a generalized quadratic ternary derivation if there

exists a quadratic ternary derivation f : A → A such that

g
([
a, b, c

])
=

[
g(a), b2, c2

]
+

[
a2, f (b), c2

]
+

[
a2, b2, f (c)

]
for all a, b, c ∈ A .

Let K denote a field and function (valuation absolute) | · | from K into [0, ∞). A

non-Archimedean valuation is a function | · | that satisfies the strong triangle inequal-

ity, namely,∣∣x + y
∣∣ ≤ max

{|x| , ∣∣y∣∣} ≤ |x| + ∣∣y∣∣
for all x, y ∈ K . The associated field K is referred to as a non-Archimedean field.

Clearly, |1| = | - 1| = 1 and |n| ≤ 1 for all n ≥ 1. A trivial example of a non-Archime-

dean valuation is the function | · | taking everything except 0 into 1 and |0| = 0. We

always assume in addition that | · | is non trivial, i.e., there exists z ∈ K such that |z|

≠ 0, 1.

Let X be a linear space over a field K with a non-Archimedean nontrivial valuation |

· |. A function ∥ · ∥ : X ® [0, ∞) is said to be a non-Archimedean norm if it is a norm

over K with the strong triangle inequality (ultrametric), namely,∥∥x + y
∥∥ ≤ max

{‖x‖ , ∥∥y∥∥}
for all x, y Î X. Then (X, ∥ · ∥) is called a non-Archimedean space. In any such a

space a sequence {xn}nÎN is a Cauchy sequence if and only if {xn+1-xn}nÎN converges to

zero. By a complete non-Archimedean space we mean one in which every Cauchy

sequence is convergent.

A non-Archimedean ternary Banach algebra is a complete non-Archimedean space

A equipped with a ternary product (x,y,z) ® [x,y,z] of A3 into A which is K -linear

in each variables and associative in the sense that

[x, y, [z,w, v]] = [x, [w, z, y], v] = [[x, y, z],w, v]

and satisfies the following:∥∥[x, y, z]∥∥ ≤ ‖x‖ · ∥∥y∥∥ · ‖z‖

(see [15-19]).

Arriola and Beyer [20] initiated the stability of functional equations in non-Archime-

dean spaces. In fact, they established stability of Cauchy functional equations over p-

adic fields. After their results some papers (see, for instance, [21-27]) on the stability of

other equations in such spaces have been published. Although different methods are
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known for establishing the stability of functional equations, almost all proofs depend

on Hyers’ method in [2]. In 2003, Radu [28] employed the alternative fixed point theo-

rem, due to Diaz and Margolis [29], to prove the stability of Cauchy additive functional

equation. Subsequently, this method was applied to investigate the Hyers-Ulam stabi-

lity for Jensen functional equation [30], as well as for the Cauchy functional equation

[31], by considering a general control function �(x, y), with suitable properties. Using

such an elegant idea, several authors applied the method to investigate the stability of

some functional equations (see [12,32-34]).

Recently, Eshaghi Gordji and Khodaei [35] proved the Hyers-Ulam stability of the

following quadratic functional equation

f (ax + by) + f (ax − by) = 2a2f (x) + 2b2f (y) (1:1)

for nonzero fixed integers a, b. Recently, Eshaghi Gordji and Alizadeh [36,37] proved

the Hyers-Ulam stability of homomorphisms and derivations on non-Archimedean

Banach algebras.

In this paper, by using fixed point method, we establish the stability of generalized

quadratic ternary derivations related to the quadratic functional equation (1.1) over

non-Archimedean ternary Banach algebras.

In 1897, Hensel [38] discovered the p-adic numbers as a number theoretical analo-

gue of power series in complex analysis. During the last three decades p-adic numbers

have gained the interest of physicists for their research, in particular, in the problems

coming from quantum physics, p-adic strings and superstrings [39,40]. A key property

of p-adic numbers is that they do not satisfy the Archimedean axiom: For any x, y > 0,

there exists n Î N such that x <ny (see [41,42]).

2. Main results
Using the strong triangle inequality in the proof of the main result of [29], we get the

following result:

Theorem 2.1. (Non-Archimedean Alternative Contraction Principle) Let (Ω,d) be a

non-Archimedean generalized complete metric space and T :Ω ® Ω a strictly contrac-

tive mapping (that is, d(T(x),T(y)) ≤ Ld(x, y) for all x, y Î T and a Lipschitz constant L

< 1). Let x Î Ω. If either

(a) d(Tn(x),Tn+1(x)) = ∞ for all n ≥ 0, or

(b) there exists some n0 ≥ 0 such that d(Tn(x),Tn+1(x)) < ∞ for all n ≥ n0, then the

sequence {Tn(x)} is convergent to a unique fixed point x* of T in the set

� =
{
y ∈ � : d

(
Tn0 (x), y

)
< ∞}

and d(y, x*) ≤ d(y,T(y)) for all y in this set.

From now on, we assume that
(A, [·, ·, ·]) is a non-Archimedean ternary Banach

algebra and ℓ Î {-1,1} is fixed. Also, we suppose that |4| < 1 and that 4 ≠ 0 in K (i.e.,

the characteristic of K is not 4). We denote [a, b, c] by [abc] in ternary Banach alge-

bra A .

Theorem 2.2. Let g, f : A → A be two mappings with g(0) = f(0) = 0 for which there

exists a function ϕ : A8 → [0,∞) such that
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∥∥h(ax + by) + h(ax − by) − 2a2h(x) − 2b2h(y)
∥∥

+
∥∥f ([uvw]) − [f (u)v2w2] − [u2f (v)w2] − [u2v2f (w)]

∥∥
+

∥∥g (
[rst]

) − [
g(r)s2t2

] − [
r2f (x)t2

] − [
r2s2f (t)

]∥∥
≤ ϕ

(
x, y, u, v,w, r, s, t

)
(2:1)

for all h ∈ {f , g}, x, y, u, v,w, r, s, t ∈ A and nonzero fixed integers a, b. Suppose that

there exists L < 1 such that

ϕ
(
x, y, u, v,w, r, s, t

) ≤ |4|�(�+2)Lϕ
(

x
2�

,
y
2�

,
u
2�

,
v
2�

,
w
2�

,
r
2�

,
s
2�

,
t
2�

)
(2:2)

for all x, y, u, v,w, r, s, t ∈ A . Then there exist a unique quadratic ternary derivation

d : A → A and a unique generalized quadratic ternary derivation

D : A → A (respected to d) such that

max
{∥∥g(x) − D(x)

∥∥ , ∥∥f (x) − d(x)
∥∥} ≤ L

1−�
2

|4| ψ(x) (2:3)

for all x ∈ A , where

ψ(x) : max
{
ϕ

( x
a
,
x
b
, 0, 0, 0, 0, 0, 0

)
,ϕ

( x
a
, 0, 0, 0, 0, 0, 0, 0

)
,

1∣∣2b2∣∣ϕ (x, x, 0, 0, 0, 0, 0, 0) ,

1∣∣2b2∣∣ϕ (x,−x, 0, 0, 0, 0, 0, 0) ,ϕ
(
0,

x
b
, 0, 0, 0, 0, 0, 0

)}

for all x ∈ A .

Proof. By (2.2), one can show that

lim
n→∞

1

|4|�(�+2)n ϕ
(
2�nx, 2�ny, 2�nu, 2�nv, 2�nw, 2�nr, 2�ns, 2�nt

)
= 0 (2:4)

for all x, y, u, v,w, r, s, t ∈ A . Putting h = g in (2.1) and letting u = v = w = r = s = t =

0 in (2.1), we get∥∥g(ax + by) + g(ax − by) − 2a2g(x) − 2b2g(y)
∥∥ ≤ ϕ(x, y, 0, 0, 0, 0, 0, 0) (2:5)

for all x, y ∈ A . Putting y = 0 in (2.5), we get∥∥2g(ax) − 2a2g(x)
∥∥ ≤ ϕ (x, 0, 0, 0, 0, 0, 0, 0) (2:6)

for all x ∈ A . Setting y = -y in (2.5), we get∥∥g(ax − by) + g(ax + by) − 2a2g(x) − 2b2g(−y)
∥∥ ≤ ϕ

(
x,−y, 0, 0, 0, 0, 0, 0

)
(2:7)

for all x, y ∈ A . It follows from (2.5) and (2.7) that

∥∥2b2g(y) − 2b2h(−y)
∥∥ ≤ max

{
ϕ

(
x, y, 0, 0, 0, 0, 0, 0

)
,ϕ

(
x,−y, 0, 0, 0, 0, 0, 0

)}
(2:8)

for all x, y ∈ A . Putting y = by in (2.8), we get

∥∥g(by) − g(−by)
∥∥ ≤ max

{
1∣∣2b2∣∣ϕ

(
x, by, 0, 0, 0, 0, 0, 0

)
,

1∣∣2b2∣∣ϕ
(
x,−by, 0, 0, 0, 0, 0, 0

)}
(2:9)
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for all x, y ∈ A . Setting x = 0 in (2.5), we get∥∥g(by) + g(−by) − 2b2g(y)
∥∥ ≤ ϕ

(
0, y, 0, 0, 0, 0, 0, 0

)
(2:10)

for all y ∈ A . It follows from (2.9) and (2.10) that∥∥2g(by) − 2b2g(y)
∥∥

≤ max

{
1∣∣2b2∣∣ϕ(x, by, 0, 0), 1∣∣2b2∣∣ϕ

(
x,−by, 0, 0, 0, 0, 0, 0

)
,ϕ

(
0, y, 0, 0, 0, 0, 0, 0

)} (2:11)

for all x, y ∈ A . Replacing x and y by
x

a
and

x

b
in (2.5), respectively, we get

∥∥∥g(2x) − 2a2g
( x
a

)
− 2b2g

( x
b

)∥∥∥ ≤ ϕ
( x
a
,
x
b
, 0, 0, 0, 0, 0, 0

)
(2:12)

for all x ∈ A . Setting x =
x

a
in (2.6), we get

∥∥∥2a2g ( x
a

)
− 2g(x)

∥∥∥ ≤ ϕ
( x
a
, 0, 0, 0, 0, 0, 0, 0

)
(2:13)

for all x ∈ A . Putting y =
x

b
in (2.11), we get

∥∥∥2b2g ( x
b

)
− 2g(x)

∥∥∥
≤ max

{
1∣∣2b2∣∣ϕ (x, x, 0, 0, 0, 0, 0, 0) ,

1∣∣2b2∣∣ϕ (x,−x, 0, 0, 0, 0, 0, 0) ,ϕ
(
0,

x

b
, 0, 0, 0, 0, 0, 0

)} (2:14)

for all x ∈ A . It follows from (2.12), (2.13) and (2.14) that∥∥g(2x) − 4g(x)
∥∥ ≤ ψ(x)

for all x ∈ A . Let � :=
{
g′|g′ : A → A, g′(0) = 0

}
. For every g’, h’ Î Ω, define

ρ
(
g′, h′) := inf

{
C ∈ (0,∞) :

∥∥g′(x) − h′(x)
∥∥ ≤ Cψ(x),∀x ∈ A}

.

It is easy to show that r is a complete generalized non-Archimedean metric on Ω

(see [30,31,34]). We define J : Ω ® Ω by J(g′)(x) =
1
4�

g′ (2�x
)
for all x ∈ A and all g’

Î Ω. One can show that

ρ
(
Jg′, Jh′) ≤ Lρ

(
g′, h′) .

Hence J is a strictly contractive mapping on Ω with Lipschitz constant L. It follows

from Theorem 2.1 that J has a unique fixed point D : A → A in the set Λ = {g’ Î Ω :

r(g, g’) < ∞}, where d is defined by

D(x) = lim
n→∞ Jng(x) = lim

n→∞
1
4�n

g
(
2�nx

)
(2:15)

for all x ∈ A . It follows from (2.4) and (2.15) that∥∥D (
ax + by

)
+D

(
ax − by

) − 2a2D(x) − 2b2D(y)
∥∥

= lim
n→∞

1

|4|�n
∥∥g (

2�nax + 2�nby
)
+ g

(
2�nax − 2�nby

) − 2a2g(2�nx) − 2b2g
(
2�ny

)∥∥
≤ lim

n→∞
1

|4|�n ϕ
(
2�nx, 2�ny, 0, 0, 0, 0, 0, 0

)
≤ lim

n→∞
1

|4|�n(�+2) ϕ
(
2�nx, 2�ny, 0, 0, 0, 0, 0, 0

)
= 0
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for all x, y ∈ A . This shows that D is quadratic.

If D′ : A → A is another quadratic mapping which satisfies (2.3), then D’ is a fixed

point of J in Λ. The uniqueness of the fixed point of J in Λ implies that D = D’. Put-

ting h = f, u = v = w = r = s = t = 0 in (2.4), we get∥∥f (ax + by) + f (ax − by) − 2a2f (x) − 2b2f (y)
∥∥ ≤ ϕ

(
x, y, 0, 0, 0, 0, 0, 0

)
for all x, y ∈ A . By the same reasoning as above, we can show that the limit

d(x) =: lim
n→∞

1
4�n

f (2�nx)

exists for all x ∈ A . Moreover, we can show that d is a unique quadratic mapping

on A satisfying (2.3).

On the other hand, we have∥∥d ([uvw]) − [
d(u)vw

] − [
ud(v)w

] − [
uvd(w)

]∥∥
= lim

n→∞
1

|4|2�n

∥∥f (
4�n [uvw]

) − [
f
(
2�nu

)
vw

] − [
uf

(
2�nv

)
w

] − [
uvf

(
2�nw

)]∥∥
≤ lim

n→∞
1

|4|2�n ϕ
(
0, 0, 2�nu, 2�nv, 2�nw, 0, 0, 0

)
≤ lim

n→∞
1

|4|�(�+2)n ϕ
(
0, 0, 2�nu, 2�nv, 2�nw, 0, 0, 0

)
= 0

for all u, v,w ∈ A . Therefore, d is a quadratic ternary derivation on A . Also, we

have ∥∥D ([rst]) − [
D(r)st

] − [
rd(s)t

] − [
rsd(t)

]∥∥
= lim

n→∞
1

|4|2�n

∥∥g (
4�n[rst]

) − [
g(2�nr)st

] − [
rf

(
2�ns

)
t
] − [

rsf
(
2�nt

)]∥∥
≤ lim

n→∞
1

|4|2�n ϕ
(
0, 0, 0, 0, 0, 2�nr, 2�ns, 2�nt

)
≤ lim

n→∞
1

|4|�(�+2)n ϕ
(
0, 0, 0, 0, 0, 2�nr, 2�ns, 2�nt

)
= 0

for all r, s, t ∈ A . It follows that D is a generalized quadratic ternary derivation

(related to d) on A .This completes the proof.

From now on, we use the following abbreviation for any mappings g, f : A → A :

�
(
g, f

) (
x1, · · · , x8

)
:=

∥∥f (ax1 + bx2) + f (ax1 − bx2) − 2a2h(x1) − 2b2f (x2)
∥∥

+
∥∥g (ax1 + bx2) + g (ax1 − bx2) − 2a2g(x1) − 2b2g(x2)

∥∥
+

∥∥f ([x3x4x5]) − [
f
(
x3x

2
4x

2
5

)] − [
x23f (x4) x

2
5

] − [
x23x

2
4f (x5)

]∥∥
+

∥∥g ([x6x7x8]) − [
g(x6)x27x

2
8

] − [
x26f (x7)x

2
8

] − [
x26x

2
7f (x8)

]∥∥ .
Remark. Let K = Q2 be the 2-adic number field. Let A be a non-Archimedean

Banach algebra on K . Let ε be a nonnegative real number and let s be a real number

such that s > 6 if ℓ = 1 and 0 <s < 2 if ℓ = -1. Suppose that the mappings

g, f : A → A satisfy g(0) = f(0) = 0 and

�(g, f )(x1, · · · , x8) ≤ εmax
{‖xi‖s : 1 ≤ i ≤ 8

}
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for all x1, x2, · · · , x8 ∈ A . Then there exist a unique quadratic ternary derivation

d : A → A and a unique generalized quadratic ternary derivation D : A → A
(respected to d) such that

max{||g(x) - D(x)||, ||f(x) - d(x)||}

≤ |2|
�(4−s)+s

2 ε‖x‖s

⎧⎪⎪⎨
⎪⎪⎩

2, gcd(a, 2) = gcd(b, 2) = 1;
max

{
2is, 2

}
, a = k2i, gcd(b, 2) = 1;

max
{
2js, 22j+1

}
, gcd(a, 2) = 1, b = m2j ∨ a = k2i, b = m2j(j ≥ i);

max
{
2is, 22j+1

}
, a = k2i, b = m2j(i ≥ j);

for all x ∈ A , where i,j,k,m ≥ 1 are integers and gcd(k, 2) = gcd(m, 2) = 1.

Now, we have the following result on superstability of generalized quadratic ternary

derivations on non-Archimedean ternary Banach algebras:

Corollary 2.3. Let p > 0 be a nonnegative real number such that |2|(2�+4)p ≥ 1and

let j Î {3, 4, ..., 8} be fixed. Suppose that the mappings g, f : A → A satisfy g(0) = f(0)

= 0 and

�(g, f ) (x1, ..., x8) ≤
(

8∑
i=1

‖xi‖p
)∥∥xj∥∥p

for all x1, · · · , x8 ∈ A , where a, b are positive fixed integers. Then f is a quadratic

ternary derivation and g is a generalized quadratic ternary derivation related to f.

Proof. It follows from Theorem 2.2 by taking

ϕ (x1, x2, · · · , x8) =
(

8∑
i=1

‖xi‖p
) ∥∥xj∥∥p

for all x1, · · · , x8 ∈ A and putting L = |2|−(2�+4)p .
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