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1 Introduction and preliminaries
Throughout this paper, we always assume that E is a real Banach space. Let E∗ be the dual
space of E. Let Jq (q > ) denote the generalized duality mapping from E into E∗ given by

Jq(x) =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖q,∥∥f ∗∥∥ = ‖x‖q–}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. In particular, J is called the normalized
duality mapping, which is usually denoted by J . In this paper, we use j to denote the single-
valued normalized duality mapping. It is known that Jq(x) = ‖x‖q–J(x) if x �= . If E is a
Hilbert space, then J = I , the identity mapping. Further, we have the following properties
of the generalized duality mapping Jq:
() Jq(tx) = tq–Jq(x) for all x ∈ E and t ∈ [,∞);
() Jq(–x) = –Jq(x) for all x ∈ E.
A Banach space E is said to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for all x, y ∈UE . It is also said to be uniformly smooth if the limit is attained uniformly
for all x, y ∈ UE . The norm of E is said to be Fréchet differentiable if, for any x ∈ UE , the
above limit is attained uniformly for all y ∈ UE . The modulus of smoothness of E is the
function ρE : [,∞)→ [,∞) defined by

ρE(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : ‖x‖ ≤ ,‖y‖ ≤ τ

}
, ∀τ ≥ .
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The Banach space E is uniformly smooth if and only if limτ→∞ ρE(τ )
τ

= . Let q > . The
Banach space E is said to be q-uniformly smooth if there exists a constant c >  such that
ρE(τ ) ≤ cτ q. It is shown in [] that there is no Banach space which is q-uniformly smooth
with q > . Hilbert spaces, Lp (or lp) spaces and Sobolev space Wp

m, where p ≥ , are -
uniformly smooth.
Let C be a nonempty closed convex subset of E and let T : C → C be a mapping. In

this paper, we use F(T) to denote the fixed point set of T . A mapping T is said to be κ-
contractive iff there exists a constant κ ∈ (, ) such that

‖Tx – Ty‖ ≤ κ‖x – y‖, ∀x, y ∈ C.

A mapping T is said to be nonexpansive iff

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

A mapping T is said to be κ-strictly pseudocontractive iff there exist a constant κ ∈ (, )
and j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – κ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C. (.)

It is clear that (.) is equivalent to the following:

〈
(I – T)x – (I – T)y, j(x – y)

〉 ≥ κ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C. (.)

The class of κ-strictly pseudocontractive mappings was first introduced by Browder and
Petryshyn [] in Hilbert spaces. A mapping T is said to be pseudocontractive iff there
exists j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖, ∀x, y ∈ C. (.)

A mapping T is said to be κ-strongly pseudocontractive iff there exist a constant κ ∈ (, )
and j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ κ‖x – y‖, ∀x, y ∈ C. (.)

In , Deimling [] proved the existence of fixed points of continuous κ-strongly pseu-
docontractive mappings in Banach spaces; see [] for more details. We remark that the
class of κ-strongly pseudocontractive mappings is independent of the class of κ-strictly
pseudocontractive mappings. This can be seen from Zhou []. Lipschitz pseudocontrac-
tive mappings may not be κ-strictly pseudocontractive mappings, which can be seen from
Chidume and Mutangadura [].
One classical way to study nonexpansivemappings is to use contractions to approximate

a nonexpansive mapping; for more details, see [–] and the references therein. More
precisely, take t ∈ (, ) and define a contraction Tt : C → C by

Ttx = tu + ( – t)Tx, ∀x ∈ C, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/117
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where u ∈ C is a fixed point. Banach’s contraction mapping principle guarantees that Tt

has a unique fixed point xt in C. In the case of T having a fixed point, Browder [] proved
that xt converges strongly to a fixed point of T in the framework of Hilbert spaces. Reich
[] extended Browder’s result to the setting of Banach spaces and proved that if E is a
uniformly smooth Banach space, then xt converges strongly to a fixed point of T and the
limit defines the (unique) sunny nonexpansive retraction from C onto F(T); see [] for
more details.
Recall that the normal Mann iterative process was introduced by Mann [] in .

Recently, the construction of fixed points for nonexpansivemappings via the normalMann
iterative process has been extensively investigated by many authors. The normal Mann
iterative process generates a sequence {xn} in the following manner:

⎧⎨
⎩
x ∈ C chosen arbitrarily,

xn+ = ( – αn)xn + αnTxn, ∀n≥ ,
(.)

where the sequence {αn} is in the interval (, ).
In an infinite-dimensional Hilbert space, the normal Mann iteration algorithm has only

weak convergence; see [] formore details. Inmany disciplines, including economics [],
image recovery [] and control theory [], problems arise in infinite dimension spaces. In
such problems, strong convergence is often much more desirable than weak convergence
for it translates the physically tangible property so that the energy ‖xn – x‖ of the error
between the iterate xn and the solution x eventually becomes arbitrarily small.
Recently, many authors have tried to modify the normal Mann iteration process to have

strong convergence for nonexpansive mappings and κ-strictly pseudocontractive map-
pings; see [–] and the references therein.
LetD be a nonempty subset of C. LetQ : C →D.Q is said to be a contraction iffQ =Q;

sunny iff for each x ∈ C and t ∈ (, ), we have Q(tx+ ( – t)Qx) =Qx; sunny nonexpansive
retraction iff Q sunny, nonexpansive and contraction. K is said to be a nonexpansive re-
tract of C if there exists a nonexpansive retraction from C onto D. The following result,
whichwas established in [] and [], describes a characterization of sunny nonexpansive
retractions on a smooth Banach space.
Let Q : E → C be a retraction, and let j be the normalized duality mapping on E. Then

the following are equivalent:
() Q is sunny and nonexpansive;
() ‖Qx –Qy‖ ≤ 〈x – y, j(Qx –Qy)〉, ∀x, y ∈ E;
() 〈x –Qx, j(y –Qx)〉 ≤ , ∀x ∈ E, y ∈ C.
In this paper, we investigate the problem of modifying the normal Mann iteration pro-

cess for a family of κ-strictly pseudocontractive mappings. Strong convergence of the pur-
posed iterative process is obtained in a real -uniformly Banach space. In order to prove
our main results, we need the following tools.

Lemma . [] Let E be a real -uniformly smooth Banach space with the best smooth
constant K . Then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y, Jx〉 + ‖Ky‖, ∀x, y ∈ E.

http://www.fixedpointtheoryandapplications.com/content/2013/1/117
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Lemma . [] Let C be a nonempty subset of a real -uniformly smooth Banach space E
and let T : C → C be a κ-strict pseudocontraction. For α ∈ (, ),we define Tαx = (–α)x+
αTx for every x ∈ C . Then, as α ∈ (, κ

K ], Tα is nonexpansive such that F(Tα) = F(T).

Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
(i)

∑∞
n= γn = ∞;

(ii) lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| <∞.
Then limn→∞ αn = .

Lemma . [] Let E be a real smooth Banach space.Then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
, ∀x, y ∈ E.

Lemma . [] Let E be a smooth Banach space and let C be a nonempty convex subset
of E.Given an integer N ≥ , assume that {Ti}Ni= : C → C is a finite family of κi-strict pseu-
docontractions such that

⋂N
i= F(Ti) �= ∅.Assume that {λi}ri= is a positive sequence such that∑N

i= λi = . Then F(
∑N

i= F(Ti)) =
⋂N

i= F(Ti).

Lemma . [] Let E be a real uniformly smooth Banach space and let C be a nonempty
closed convex subset of E. Let T : C → C be a nonexpansive mapping with a fixed point
and let f : C → C be a contraction. For each t ∈ (, ), let zt be the unique solution of the
equation x = tf (x) + ( – t)Tx. Then {zt} converges to a fixed point of T as t →  and Q(f ) =
s – limt→ zt defines the unique sunny nonexpansive retraction from C onto F(T).

2 Main results
Theorem . Let C be a nonempty closed convex subset of a real -uniformly smooth
Banach space E with the best smooth constant K and let N be some positive integer. Let
Ti : C → C be a κi-strictly pseudocontractive mapping for each  ≤ i ≤ N . Assume that⋂N

i= F(Ti) �= ∅. Let f be an α-contractive mapping. Let {xn} be a sequence generated in the
following process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C arbitrarily chosen,

yn = βnxn + ( – βn)
∑N

i= λiTixn,

xn+ = αnf (yn) + ( – αn)yn, n≥ ,

where {αn}, {βn} and {λi} are real number sequences in [, ] satisfying the following restric-
tions:
(a)

∑∞
n= αn = ∞, limn→∞ αn = ,

∑∞
n= |αn – αn–| <∞,

(b)  – κ

K ≤ βn ≤ β < ,
∑∞

n= |βn – βn–| <∞,
(c)

∑N
n= λi = ,

where β is some real number, and κ := min{κi :  ≤ i ≤ N}. Then {xn} converges strongly
as n → ∞ to some point in

⋂N
i= F(Ti), which is the unique solution in

⋂N
i= F(Ti) to the

http://www.fixedpointtheoryandapplications.com/content/2013/1/117
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following variational inequality:

〈
f
(
x∗) – x∗, j

(
x∗ – p

)〉 ≥ , ∀p ∈
N⋂
i=

F(Ti).

Proof The proof is split into four steps.
Step . Show that {xn} and {yn} are bounded.
Putting T :=

∑N
i= λiTi, we see that T is a κ-strictly pseudocontractive mapping. Indeed,

we have the following:

〈
Tx – Ty, j(x – y)

〉
= λ

〈
Tx – Ty, j(x – y)

〉
+ λ

〈
Tx – Ty, j(x – y)

〉
+ · · ·

+ λN
〈
TNx – TNy, j(x – y)

〉
≤ λ

(‖x – y‖ – κ
∥∥(I – T)x – (I – T)y

∥∥)
+ λ

(‖x – y‖ – κ
∥∥(I – T)x – (I – T)y

∥∥) + · · ·
+ λN

(‖x – y‖ – κN
∥∥(I – TN )x – (I – TN )y

∥∥)
≤ ‖x – y‖ – κ

(
λ

∥∥(I – T)x – (I – T)y
∥∥

+ λ
∥∥(I – T)x – (I – T)y

∥∥ + · · · + λN
∥∥(I – TN )x – (I – TN )y

∥∥)
≤ ‖x – y‖ – κ

∥∥(I – T)x – (I – T)y
∥∥.

This proves that T is a κ-strictly pseudocontractive mapping. Fix p ∈ ⋂N
i= F(Ti). It follows

from Lemma . that

‖yn – p‖ =
∥∥(xn – p) + ( – βn)(Txn – xn)

∥∥

≤ ‖xn – p‖ + ( – βn)
〈
Txn – xn, j(xn – p)

〉
+ K( – βn)

∥∥(Txn – xn)
∥∥

= ‖xn – p‖ + ( – βn)
〈
Txn – p, j(xn – p)

〉
– ( – βn)‖xn – p‖

+ K( – βn)
∥∥(Txn – xn)

∥∥

≤ ‖xn – p‖ + ( – βn)
(‖xn – p‖ – κ‖Txn – xn‖

)
– ( – βn)‖xn – p‖ + K( – βn)

∥∥(Txn – xn)
∥∥

= ‖xn – p‖ – ( – βn)
(
κ –K( – βn)

)‖Txn – xn‖

≤ ‖xn – p‖. (.)

This implies that

‖xn+ – p‖ = ∥∥αn
(
f (yn) – p

)
+ ( – αn)(yn – p)

∥∥
≤ αn

∥∥f (yn) – p
∥∥ + ( – αn)‖yn – p‖

≤ (
 – αn( – α)

)‖yn – p‖ + αn
∥∥f (p) – p

∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/117
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≤ (
 – αn( – α)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥
≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – α

}
.

This in turn implies that

‖xn – p‖ ≤ max

{
‖x – p‖, ‖p – f (p)‖

 – α

}
,

which gives that the sequence {xn} is bounded, so is {yn}. This completes step .
Step . Show that ‖T κ

K
xn – xn‖ →  as n→ ∞.

Put Tβnx = βnx + ( – βn)Tx, ∀x ∈ C. It follows from Lemma . that

‖yn – yn–‖ = ‖Tβnxn – Tβn–xn–‖
≤ ‖Tβnxn – Tβnxn–‖ + ‖Tβnxn– – Tβn–xn–‖
≤ ‖xn – xn–‖ +

∥∥βnxn– + ( – βn)Txn– – βn–xn– – ( – βn–)Txn–
∥∥

≤ ‖xn – xn–‖ + |βn – βn–|‖xn– – Txn–‖. (.)

Notice that

xn+ – xn = αn
(
f (yn) – f (yn–)

)
+ ( – αn)(yn – yn–) + (αn – αn–)

(
f (yn–) – yn–

)
.

It follows from (.) that

‖xn+ – xn‖
≤ αn

∥∥f (yn) – f (yn–)
∥∥ + ( – αn)‖yn – yn–‖ + |αn – αn–|

∥∥f (yn–) – yn–
∥∥

≤ (
 – αn( – α)

)‖yn – yn–‖ + |αn – αn–|
∥∥f (yn–) – yn–

∥∥
≤ (

 – αn( – α)
)‖xn – xn–‖ + |βn – βn–|‖xn– – Txn–‖

+ |αn – αn–|
∥∥f (yn–) – yn–

∥∥.
In view of Lemma ., we obtain from the restrictions (a) and (b) that

lim
n→∞‖xn+ – xn‖ = . (.)

Notice that

xn+ – xn = αn
(
f (xn) – xn

)
+ ( – αn)(yn – xn).

In view of the restriction (a), we obtain that limn→∞ ‖yn – xn‖ = . On the other hand, we
have yn –xn = (–βn)(Txn –xn). This in turn implies that limn→∞ ‖Txn –xn‖ = . It follows
from the restriction (b) that

lim
n→∞‖T κ

K
xn – xn‖ = . (.)

This completes step .

http://www.fixedpointtheoryandapplications.com/content/2013/1/117
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Step . Show that

lim sup
n→∞

〈
z – f (z), j(z – xn)

〉 ≤ , (.)

where z = Qf (z), where Q is a sunny nonexpansive retraction from C onto
⋂N

i= F(Ti), is
the strong limit of the sequence zt defined by

zt = tf (zt) + ( – t)T κ

K
zt , ∀t ∈ (, ).

It follows that

zt – xn = ( – t)(T κ

K
zt – xn) + t

(
f (zt) – xn

)
, ∀t ∈ (, ).

For any t ∈ (, ), we see from Lemma . that

‖zt – xn‖ ≤ ( – t)‖T κ

K
zt – xn‖ + t

〈
f (zt) – xn, j(zt – xn)

〉
≤ ( – t)

(‖T κ

K
zt – T κ

K
xn‖ + ‖T κ

K
xn – xn‖

+ ‖T κ

K
zt – T κ

K
xn‖‖T κ

K
xn – xn‖

)
+ t

〈
f (zt) – zt , j(zt – xn)

〉
+ t

〈
zt – xn, j(zt – xn)

〉
≤ ( – t)‖zt – xn‖ + λn(t) + t

〈
f (zt) – zt , j(zt – xn)

〉
+ t‖zt – xn‖, (.)

where

λn(t) = ‖T κ

K
xn – xn‖ + ‖zt – xn‖‖T κ

K
xn – xn‖.

It follows from (.) that

〈
zt – f (zt), j(zt – xn)

〉 ≤ t

‖zt – xn‖ + 

t
λn(t).

This implies that

lim sup
n→∞

〈
zt – f (zt), j(zt – xn)

〉 ≤ t

‖zt – xn‖.

Since E is -uniformly smooth, J : E → E∗ is uniformly continuous on any bounded sets
of E, which ensures that the lim supn→∞ and lim supt→ are interchangeable, and hence

lim sup
n→∞

〈
z – f (z), j(z – xn)

〉 ≤ .

This shows that (.) holds. This completes the proof of step .
Step . Show that xn → z as n→ ∞.
It follows from (.) that ‖yn – z‖ ≤ ‖xn – z‖. In view of Lemma ., we see that

‖xn+ – z‖ =
∥∥( – αn)(yn – z) + αn

(
f (yn) – z

)∥∥

≤ ( – αn)‖yn – z‖ + αn
〈
f (yn) – z, J(xn+ – z)

〉

http://www.fixedpointtheoryandapplications.com/content/2013/1/117
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≤ ( – αn)‖xn – z‖ + αn
〈
f (yn) – f (z), J(xn+ – z)

〉
+ αn

〈
f (z) – z, J(xn+ – z)

〉
≤ (

( – αn) + αnα
)‖xn – z‖ + αnα‖xn+ – z‖ + αn

〈
f (z) – z, J(xn+ – z)

〉
.

It then follows that

‖xn+ – z‖ ≤  – ( – α)αn + α

 – αnα
‖xn – z‖ + αn

 – αnα

〈
f (z) – z, J(xn+ – z)

〉

≤  – ( – α)αn

 – αnα
‖xn – z‖ + αn

 – αnα

〈
f (z) – z, J(xn+ – z)

〉

+
α
n

 – αnα
‖xn – z‖

≤
(
 –

( – α)αn

 – αnα

)
‖xn – z‖ + ( – α)αn

 – αnα

(


 – α

〈
f (z) – z, J(xn+ – z)

〉

+
αn

( – α)
‖xn – z‖

)
.

It follows from the restrictions (a) and (b) that

lim
n→∞

( – α)αn

 – αnα
= ,

∞∑
n=

( – α)αn

 – αnα
= ∞

and

lim sup
n→∞

(


 – α

〈
f (z) – z, J(xn+ – z)

〉
+

αn

( – α)
‖xn – z‖

)
≤ .

This implies from Lemma . that xn → z as n→ ∞. This completes the proof. �

For a single mapping, we have the following.

Corollary . Let C be a nonempty closed convex subset of a real -uniformly smooth
Banach space E with the best smooth constant K . Let T : C → C be a κ-strictly pseudo-
contractive mapping such that F(T) �= ∅. Let f be an α-contractive mapping. Let {xn} be a
sequence generated in the following process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C arbitrarily chosen,

yn = βnxn + ( – βn)Txn,

xn+ = αnf (yn) + ( – αn)yn, n≥ ,

where {αn}, {βn} and {λi} are real number sequences in [, ] satisfying the following restric-
tions:
(a)

∑∞
n= αn = ∞, limn→∞ αn = ,

∑∞
n= |αn – αn–| <∞;

(b)  – κ

K ≤ βn ≤ β < ,
∑∞

n= |βn – βn–| <∞,
where β is some real number, and κ := min{κi :  ≤ i ≤ N}. Then {xn} converges strongly
as n → ∞ to some point in F(T), which is the unique solution in F(T), to the following

http://www.fixedpointtheoryandapplications.com/content/2013/1/117
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variational inequality:

〈
f
(
x∗) – x∗, j

(
x∗ – p

)〉 ≥ , ∀p ∈ F(T).

If E is a Hilbert space, then the best smooth constant K =
√

 . The following result can

be deduced from Theorem . immediately.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space E and let
N be some positive integer. Let Ti : C → C be a κi-strictly pseudocontractive mapping for
each  ≤ i≤ N . Assume that

⋂N
i= F(Ti) �= ∅. Let f be an α-contractive mapping. Let {xn} be

a sequence generated in the following process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C arbitrarily chosen,

yn = βnxn + ( – βn)
∑N

i= λiTixn,

xn+ = αnf (yn) + ( – αn)yn, n≥ ,

where {αn}, {βn} and {λi} are real number sequences in [, ] satisfying the following restric-
tions:
(a)

∑∞
n= αn = ∞, limn→∞ αn = ,

∑∞
n= |αn – αn–| <∞;

(b)  – κ ≤ βn ≤ β < ,
∑∞

n= |βn – βn–| <∞;
(c)

∑N
n= λi = ,

where β is some real number, and κ := min{κi :  ≤ i ≤ N}. Then {xn} converges strongly
as n → ∞ to some point in

⋂N
i= F(Ti), which is the unique solution in

⋂N
i= F(Ti), to the

following variational inequality:

〈
f
(
x∗) – x∗, j

(
x∗ – p

)〉 ≥ , ∀p ∈
N⋂
i=

F(Ti).
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