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Abstract
In this paper, we introduce G-β-ψ -contractive mappings which are generalizations of
α-ψ -contractive mappings in the context of G-metric spaces. Additionally, we prove
existence and uniqueness of fixed points of such contractive mappings. Our results
generalize, extend and improve the existing results in the literature. We state some
examples to illustrate our results.

1 Introduction and preliminaries
In the last few decades, fixed point theory has been one of the most interesting research
fields in nonlinear functional analysis. In addition to many branches of applied and pure
mathematics, fixed point theory results have wide application areas in many disciplines
such as economics, computer science, engineering etc.Themost remarkable results in this
direction were given by Banach [] in . He proved that each contraction in a complete
metric space has a unique fixed point. Due to application potential of the theory, many
authors have directed their attention to this field and have generalized the Banach fixed
point theorem in variousways (see, e.g., [–]). Very recently, Samet et al. [] introduced
the notion of α-ψ-contractivemappings and proved the related fixed point theorems. The
authors [] showed that Banach fixed point theorems and some other theorems in the lit-
erature became direct consequences of their results. On the other hand, in , Mustafa
and Sims [] defined the notion of a G-metric space and characterized the Banach fixed
point theorem in the context of a G-metric space. Following these results, many authors
have discussed fixed point theorems in the framework of G-metric spaces; see, e.g., [,
, –, –, –, –, ]. In this paper, we combine these two notions by in-
troducing G-β-ψ-contractive mappings, which are a characterization of α-ψ-contractive
mappings in the context of G-metric spaces. Our main results generalize, extend and im-
prove the existing results on the topic in the literature.
Throughout this paper, N denotes the set of nonnegative integers, and R

+ denotes the
set of nonnegative reals.
Let � be a family of functions ψ : [,∞)→ [,∞) satisfying the following conditions:
(i) ψ is nondecreasing;
(ii) there exist k ∈N and a ∈ (, ) and a convergent series of nonnegative terms∑∞

k= vk such that

ψk+(t) ≤ aψk(t) + vk

for k ≥ k and any t ∈R
+.
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These functions are known in the literature as (c)-comparison functions.

Lemma  (See []) If ψ ∈ � , then the following hold:
(i) (ψn(t))n∈N converges to  as n→ ∞ for all t ∈R

+;
(ii) ψ(t) < t for any t ∈ (,∞);
(iii) ψ is continuous at ;
(iv) the series

∑∞
k= ψ

k(t) converges for any t ∈R
+.

Remark  In some sources, (c)-comparison functions are called Bianchini-Grandolfi
gauge functions (see, e.g., [–]).

Very recently, Samet et al. [] introduced the following concepts.

Definition  Let (X,d) be a metric space and let T : X → X be a given mapping. We say
that T is an α-ψ-contractive mapping if there exist two functions α : X ×X → [,∞) and
ψ ∈ � such that

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)
,

for all x, y ∈ X.

Clearly, any contractive mapping, that is, a mapping satisfying Banach contraction, is an
α-ψ-contractive mapping with α(x, y) =  for all x, y ∈ X and ψ(t) = kt, for all t ≥  and
some k ∈ [, ).

Definition  Let T : X → X and α : X ×X → [,∞). We say that T is α-admissible if for
all x, y ∈ X, we have

α(x, y)≥  �⇒ α(Tx,Ty)≥ .

Various examples of such mappings are presented in []. The main results in [] are
the following fixed point theorems.

Theorem  Let (X,d) be a complete metric space and T : X → X be an α-ψ-contractive
mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) T is continuous.
Then there exists u ∈ X such that Tu = u.

Theorem  Let (X,d) be a complete metric space and T : X → X be an α-ψ-contractive
mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as

n→ ∞, then α(xn,x) ≥  for all n.
Then there exists u ∈ X such that Tu = u.
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Theorem  Adding to the hypotheses of Theorem  (resp. Theorem ) the condition: For
all x, y ∈ X, there exists z ∈ X such that α(x, z)≥  and α(y, z) ≥ ,we obtain the uniqueness
of a fixed point of T .

Mustafa and Sims [] introduced the concept of G-metric spaces as follows.

Definition  ([]) Let X be a non-empty set and G : X × X × X → R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z;
(G)  <G(x,x, y) for all x, y ∈ X with x 	= y;
(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with y 	= z;
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables);
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).
Then the functionG is called a generalizedmetric, or,more specifically, aG-metric onX,

and the pair (X,G) is called a G-metric space.

Every G-metric on X defines a metric dG on X by

dG(x, y) =G(x, y, y) +G(y,x,x) for all x, y ∈ X.

Example  Let (X,d) be a metric space. The function G : X × X × X → R
+, defined as

either

G(x, y, z) =max
{
d(x, y),d(y, z),d(z,x)

}

or

G(x, y, z) = d(x, y) + d(y, z) + d(z,x)

for all x, y, z ∈ X, is a G-metric on X.

Definition  ([]) Let (X,G) be a G-metric space, and let {xn} be a sequence of points
of X. We say that {xn} is G-convergent to x ∈ X if

lim
n,m→∞G(x,xn,xm) = ,

that is, for any ε > , there existsN ∈ N such thatG(x,xn,xm) < ε for all n,m ≥ N . We call x
the limit of the sequence and write xn → x or lim

n→∞xn = x.

Proposition  ([]) Let (X,G) be a G-metric space. The following are equivalent:
() G(xn,xn,x) →  as n→ ∞;
() G(xn,x,x)→  as n→ ∞;
() G(xn,xm,x)→  as n,m → ∞.

Definition  ([]) Let (X,G) be aG-metric space. A sequence {xn} is called aG-Cauchy
sequence if for any ε > , there is N ∈ N such that G(xn,xm,xl) < ε for all n,m, l ≥ N , that
is, G(xn,xm,xl)→  as n,m, l → ∞.
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Alghamdi and Karapınar Fixed Point Theory and Applications 2013, 2013:123 Page 4 of 17
http://www.fixedpointtheoryandapplications.com/content/2013/1/123

Proposition  ([]) Let (X,G) be a G-metric space. Then the following are equivalent:
() the sequence {xn} is G-Cauchy;
() for any ε > , there exists N ∈N such that G(xn,xm,xm) < ε for all n,m ≥ N .

Definition  ([]) A G-metric space (X,G) is called G-complete if every G-Cauchy se-
quence is G-convergent in (X,G).

Lemma ([]) Let (X,G) be aG-metric space.Then, for any x, y, z,a ∈ X, it follows that:
(i) if G(x, y, z) = , then x = y = z;
(ii) G(x, y, z) ≤ G(x,x, y) +G(x,x, z);
(iii) G(x, y, y) ≤ G(y,x,x);
(iv) G(x, y, z) ≤ G(x,a, z) +G(a, y, z);
(v) G(x, y, z) ≤ 

 [G(x, y,a) +G(x,a, z) +G(a, y, z)];
(vi) G(x, y, z) ≤ G(x,a,a) +G(y,a,a) +G(z,a,a).

Definition  (See []) Let (X,G) be a G-metric space. A mapping T : X → X is said to
beG-continuous if {T(xn)} isG-convergent toT(x), where {xn} is aG-convergent sequence
converging to x.

In [], Mustafa characterized the well-known Banach contraction principle mapping
in the context of G-metric spaces in the following ways.

Theorem  (See []) Let (X,G) be a complete G-metric space and let T : X → X be a
mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx,Ty,Tz) ≤ kG(x, y, z), ()

where k ∈ [, ). Then T has a unique fixed point.

Theorem  (See []) Let (X,G) be a complete G-metric space and let T : X → X be a
mapping satisfying the following condition for all x, y ∈ X:

G(Tx,Ty,Ty) ≤ kG(x, y, y), ()

where k ∈ [, ). Then T has a unique fixed point.

Remark  The condition () implies the condition (). The converse is true only if k ∈
[,  ). For details, see [].

From [, ], eachG-metricG onX generates a topology τG onX whose base is a family
of open G-balls {BG(x, ε) : x ∈ X, ε > }, where BG(x, ε) = {y ∈ X :G(x, y, y) < ε} for all x ∈ X
and ε > . A nonempty set A in the G-metric space (X,G) is G-closed if A = A. Moreover,

x ∈ A ⇔ BG(x, ε)∩A 	= ∅ for all ε > .

Proposition  Let (X,G) be a G-metric space and let A be a nonempty subset of X. The
set A is G-closed if for any G-convergent sequence {xn} in A with limit x, one has x ∈ A.
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2 Main results
We introduce the concept of generalized α-ψ-contractive mappings as follows.

Definition  Let (X,G) be a G-metric space and let T : X → X be a given mapping.
We say that T is a G-β-ψ-contractive mapping of type I if there exist two functions β :
X ×X ×X → [,∞) and ψ ∈ � such that for all x, y, z ∈ X, we have

β(x, y, z)G(Tx,Ty,Tz) ≤ ψ
(
G(x, y, z)

)
. ()

Definition  Let (X,G) be a G-metric space and let T : X → X be a given mapping.
We say that T is a G-β-ψ-contractive mapping of type II if there exist two functions β :
X ×X ×X → [,∞) and ψ ∈ � such that for all x, y ∈ X, we have

β(x, y, y)G(Tx,Ty,Ty) ≤ ψ
(
G(x, y, y)

)
. ()

Definition  Let (X,G) be a G-metric space and let T : X → X be a given mapping.
We say that T is a G-β-ψ-contractive mapping of type A if there exist two functions β :
X ×X ×X → [,∞) and ψ ∈ � such that for all x, y ∈ X, we have

β(x, y,Tx)G
(
Tx,Ty,Tx

) ≤ ψ
(
G

(
x, y,Tx

))
. ()

Remark  Clearly, any contractive mapping, that is, a mapping satisfying (), is a G-β-
ψ-contractive mapping of type I with β(x, y, z) =  for all x, y, z ∈ X andψ(t) = kt, k ∈ (, ).
Analogously, a mapping satisfying (), is a G-β-ψ-contractive mapping of type II with
β(x, y, y) =  for all x, y ∈ X and ψ(t) = kt, k ∈ (, ).

Definition  Let T : X → X and β : X ×X ×X → [,∞). We say that T is β-admissible
if for all x, y, z ∈ X, we have

β(x, y, z) ≥  �⇒ β(Tx,Ty,Tz) ≥ .

Example  Let X = [,∞) and T : X → X. Define β(x, y, z) : X ×X ×X → [,∞) by

Tx =

⎧⎨
⎩
 lnx if x 	= ,

e otherwise,
and β(x, y, z) =

⎧⎨
⎩
e if x≥ y≥ z,

 otherwise.

Then T is β-admissible.

Our first result is the following.

Theorem  Let (X,G) be a complete G-metric space. Suppose that T : X → X is a G-β-
ψ-contractive mapping of type A and satisfies the following conditions:

(i) T is β-admissible;
(ii) there exists x ∈ X such that β(x,Tx,Tx) ≥ ;
(iii) T is G-continuous.
Then there exists u ∈ X such that Tu = u.

http://www.fixedpointtheoryandapplications.com/content/2013/1/123
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Proof Let x ∈ X such that β(x,Tx,Tx) ≥  (such a point exists from the condition (ii)).
Define the sequence {xn} in X by xn+ = Txn for all n ≥ . If xn = xn+ for some n, then
u = xn is a fixed point of T . So, we can assume that xn 	= xn+ for all n. Since T is β-
admissible, we have

β(x,x,x) = β(x,Tx,Tx) ≥  �⇒ β(Tx,Tx,Tx) = β(x,x,x) ≥ .

Inductively, we have

β(xn,xn+,xn+) ≥  for all n = , , . . . . ()

From () and (), it follows that for all n≥ , we have

G(xn,xn+,xn+) = G(Txn–,Txn,Txn)

= G
(
Txn–,Txn,Txn–

)

≤ β(xn–,xn,Txn–)G
(
Txn–,Txn,Txn–

)

≤ ψ
(
G(xn–,xn,Txn–)

)

≤ ψ
(
G(xn–,xn,xn)

)
.

Since ψ is nondecreasing, by induction, we have

G(xn,xn+,xn+)≤ ψn(G(x,x,x)
)

for all n≥ . ()

Using (G) and (), we have

G(xn,xm,xm) ≤ G(xn,xn+,xn+) +G(xn+,xn+,xn+)

+G(xn+,xn+,xn+) + · · · +G(xm–,xm,xm)

≤
m–∑
k=n

G(xk ,xk+,xk+)

≤
m–∑
k=n

ψk(G(x,x,x)
)
.

Since ψ ∈ � and G(x,x,x) > , by Lemma , we get

∞∑
k=

ψk(G(x,x,x)
)
< ∞.

Thus, we have

lim
n,m→

G(xn,xm,xm) = .

By Proposition , this implies that {xn} is a G-Cauchy sequence in the G-metric space
(X,G). Since (X,G) is complete, there exists u ∈ X such that {xn} is G-convergent to u.

http://www.fixedpointtheoryandapplications.com/content/2013/1/123
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Since T isG-continuous, it follows that {Txn} isG-convergent to Tu. By the uniqueness of
the limit, we get u = Tu, that is, u is a fixed point of T . �

The next theorem does not require continuity.

Theorem  Let (X,G) be a complete G-metric space. Suppose that T : X → X is a G-β-
ψ-contractive mapping of type A and satisfies the following conditions:

(i) T is β-admissible;
(ii) there exists x ∈ X such that β(x,Tx,Tx) ≥ ;
(iii) if {xn} is a sequence in X such that β(xn,xn+,xn+) ≥  for all n and {xn} is a

G-convergent to x ∈ X , then β(xn,x,xn+) ≥  for all n.
Then there exists u ∈ X such that Tu = u.

Proof Following the proof of Theorem , we know that the sequence {xn} defined by
xn+ = Txn for all n ≥  is a G-Cauchy sequence in the complete G-metric space (X,G)
that is G-convergent to u ∈ X. From () and (iii), we have

β(xn,u,u) ≥  for all n≥ . ()

Using the basic properties of G-metric together with () and (), we have

G(xn+,Tu,xn+) ≤ G
(
Txn,Tu,Txn

)

≤ β(xn,u,xn+)G
(
Txn,Tu,Txn

)

≤ ψ
(
G(xn,u,xn+)

)
.

Letting n → ∞, using Proposition  and since ψ is continuous at t = , it follows that

G(u,Tu,u) = .

By Lemma , we obtain u = Tu. �

The following theorem can be derived easily from Theorems  and .

Theorem  Let (X,G) be a complete G-metric space. Suppose that T : X → X is a G-β-
ψ-contractive mapping of type A and satisfies the following conditions:

(i) T is β-admissible;
(ii) there exists x ∈ X such that β(x,Tx,Tx) ≥ ;
(iii) T is G-continuous.
Then there exists u ∈ X such that Tu = u.

Theorem  Let (X,G) be a complete G-metric space. Suppose that T : X → X is a G-β-
ψ-contractive mapping of type II and satisfies the following conditions:

(i) T is β-admissible;
(ii) there exists x ∈ X such that β(x,Tx,Tx) ≥ ;
(iii) if {xn} is a sequence in X such that β(xn,xn+,xn+) ≥  for all n and {xn} is a

G-convergent to x ∈ X , then β(xn,x,xn+) ≥  for all n.
Then there exists u ∈ X such that Tu = u.
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Remark  We notice that some fixed point theorems in the context of G-metric space
can be derived from usual fixed point results via certain substitutions (see, e.g., [, ]).
On the other hand, our main result cannot be obtained via a substitution technique be-
cause the expressions in our statements do not allow one to achieve a metric by writing a
simple substitution.

With the following example, we show that the hypotheses in Theorems - do not
guarantee uniqueness.

Example  Let X = [,∞) be the G-metric space, where

G(x, y, z) = |x – y| + |y – z| + |z – x|

for all x, y ∈ X. Consider the self-mapping T : X → X given by

Tx =

⎧⎨
⎩
x – 

 if x > ,
x
 if  ≤ x≤ .

Notice that Theorem  in [], a characterization of the Banach fixed point theorem,
cannot be applied in this case because G(T,T,T) =  >  =G(, , ).
Define β : X ×X ×X → [,∞) as

β(x, y, z) =

⎧⎨
⎩
 if x, y, z ∈ [, ],

 otherwise.

Let ψ(t) = t
 for t ≥ . Then we conclude that T is a G-β-ψ-contractive mapping. In fact,

for all x, y ∈ X, we have

β(x, y, y)G(Tx,Ty,Ty) ≤ 

G(x, y, y).

On the other hand, there exists x ∈ X such that β(x,Tx,Tx)≥ . Indeed, for x = , we
have β(,T,T) = β(,  ,


 ) = .

Notice also that T is continuous. To show that T satisfies all the hypotheses of Theo-
rem , it is sufficient to observe that T is β-admissible. For this purpose, let x, y ∈ X such
that β(x, y, y) ≥ , which is equivalent to saying that x, y ∈ [, ]. Due to the definitions of
β and T , we have

Tx =
x


∈ [, ], Ty =
y


∈ [, ].

Hence, β(Tx,Ty,Ty) ≥ . As a result, all the conditions of Theorem  are satisfied. Note
that Theorem  guarantees the existence of a fixed point but not the uniqueness. In this
example,  and 

 are two fixed points of T .

In the following example, T is not continuous.

http://www.fixedpointtheoryandapplications.com/content/2013/1/123
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Example  Let X, G and β be defined as in Example . Let T : X → X be a map given
by

Tx =

⎧⎨
⎩
x – 

 if x > ,
x
 if  ≤ x≤ .

Let ψ(t) = t
 for t ≥ . Then we conclude that T is a G-β-ψ-contractive mapping. In fact,

for all x, y ∈ X, we have

β(x, y, y)G(Tx,Ty,Ty) ≤ 

G(x, y, y).

Furthermore, there exists x ∈ X such that β(x,Tx,Tx) ≥ . For x = , we have
β(,T,T) = β(,  ,


 ) = .

Let {xn} be a sequence such that β(xn,xn+,xn+) ≥  for all n ∈N and xn → x as n → ∞.
By the definition of β , we have β(xn,xn+,xn+) ≥  for all n ∈N. Thenwe see that xn ∈ [, ].
Thus, β(xn,x,x)≥ .
To show that T satisfies all of the hypotheses of Theorem , it is sufficient to observe

that T is β-admissible. For this purpose, let x, y ∈ X such that β(x, y, y) ≥ . It is equivalent
to saying that x, y ∈ [, ]. Due to the definitions of β and T , we have

Tx =
x


∈ [, ], Ty =
y


∈ [, ].

Hence, β(Tx,Ty,Ty) ≥ .
As a result, all the conditions of Theorem  are satisfied. Note that Theorem  guar-

antees the existence of a fixed point but not uniqueness. In this example,  and 
 are two

fixed points of T .

Theorem  Adding the following condition to the hypotheses of Theorem  (resp. The-
orem -Theorem ) we obtain the uniqueness of a fixed point of T .
(iv) For all x, y ∈ X , there exists z ∈ X such that β(x, z, z) ≥  and β(y, z, z) ≥ .

Proof Let u, u∗ ∈ X be two fixed points of T . By (iv), there exists z ∈ X such that

β(u,u, z) ≥  and β
(
u∗,u∗, z

) ≥ .

Since T is β-admissible, we get by induction that

β
(
u,u,Tnz

) ≥  and β
(
u∗,u∗,Tnz

) ≥  for all n = , , . . . . ()

From () and (), we have

G
(
u,Tnz,u

)
= G

(
Tu,T

(
Tn–),Tu

)

≤ β
(
u,Tn–z,Tu

)
G

(
Tu,T

(
Tn–z

)
,Tu

)

≤ ψ
(
G

(
u,Tn–z,Tu

))
= ψ

(
G

(
u,Tn–z,u

))
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/123
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Thus, we get by induction that

G
(
u,Tnz,u

) ≤ ψn(G(u, z,u)) for all n = , , . . . .

By (G), we get

G
(
u,u,Tnz

) ≤ ψn(G(u,u, z)) for all n = , , . . . .

Letting n → ∞, and since ψ ∈ � , we have

G
(
u,u,Tnz,

) → .

This implies that {Tnz} is G-convergent to u. Similarly, we get {Tnz} is G-convergent
to u∗. By the uniqueness of the limit, we get u = u∗, that is, the fixed point of T is unique.

�

3 Consequences
3.1 Cyclic contraction
Now, we prove our results for cyclic contractive mappings in a G-metric space.

Theorem Let A, B be a non-empty G-closed subset of a complete G-metric (X,G) space,
let Y = A∪ B, and let T : Y → Y be a given self-mapping satisfying

T(A) ⊂ B and T(B) ⊂ A. ()

If there exists a function ψ ∈ � such that

G(Tx,Ty,Ty) ≤ ψ
(
G(x, y, y)

)
for all x ∈ A, y ∈ B, ()

then T has a unique fixed point u ∈ A∩ B, that is, Tu = u.

Proof Notice that (Y ,G) is a completeG-metric space because A, B are closed subsets of a
complete G-metric space (X,G). We define β : X ×X ×X → [,∞) in the following way:

β(x, y, y) =

⎧⎨
⎩
 if (x, y) ∈ (A× B)∪ (B×A),

 otherwise.

Due to the definition of β and assumption (), we have

β(x, y, y)G(Tx,Ty,Ty) ≤ ψ
(
G(x, y, y)

)
, ∀x, y ∈ Y . ()

Hence, T is a G-β-ψ-contractive mapping.
Let (x, y) ∈ Y × Y such that β(x, y, y) ≥ . If (x, y) ∈ A × B, then by assumption (),

(Tx,Ty) ∈ B × A, which yields that β(Tx,Ty,Ty) ≥ . If (x, y) ∈ B × A, we get again
β(Tx,Ty,Ty) ≥  by analogy. Thus, in any case we have β(Tx,Ty,Ty) ≥ , that is, T is
β-admissible. Notice also that for any z ∈ A, we have (z,Tz) ∈ A × B, which yields that
β(z,Tz,Tz) ≥ .
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Take a sequence {xn} in X such that β(xn,xn+,xn+) ≥  for all n and xn → z ∈ X as
n→ ∞. Regarding the definition of β , we derive that

(xn,xn+) ∈ (A× B)∪ (B×A) for all n. ()

By the assumption, A, B and (A × B) ∪ (B × A) are closed sets. Hence we get that (z, z) ∈
(A× B)∪ (B×A), which implies that z ∈ A∩ B. We conclude, by the definition of β , that
β(xn, z, z) ≥  for all n.
Now all the hypotheses of Theorem  are satisfied, and we conclude that T has a fixed

point. Next, we show the uniqueness of a fixed point z of T . Suppose that w = Tw, where
w ∈ A ∩ B. Since (z,w)(A× B) ∪ (B× A), we have β(y, z, z) ≥  and β(z, y, y) ≥ . Thus the
condition (iv) of Theorem  is satisfied. �

3.2 Coupled fixed point theorems
For the rest of the paper, we suppose that all G-metric spaces (X,G) are symmetric, that
is, G(x, y, y) =G(x,x, y) for all x, y ∈ X.
In , Guo and Lakshmikantham [] introduced the notion of a coupled fixed point.

The concept of a coupled fixed point was reconsidered by Gnana-Bhaskar and Laksh-
mikantham [] in . In this paper, they proved the existence and uniqueness of a cou-
pled fixed point of an operator F : X ×X → X on a partially ordered metric space under a
condition called the mixed monotone property.

Definition  ([]) Let (X,�) be a partially ordered set and F : X ×X → X. The mapping
F is said to have the mixed monotone property if F(x, y) is monotone non-decreasing in x
and monotone non-increasing in y, that is, for any x, y ∈ X,

x,x ∈ X, x � x ⇒ F(x, y) � F(x, y)

and

y, y ∈ X, y � y ⇒ F(x, y) � F(x, y).

Definition  ([]) An element (x, y) ∈ X × X is called a coupled fixed point of the map-
ping F : X ×X → X if

x = F(x, y) and y = F(y,x).

Lemma  (See []) Let F : X × X → X be a given mapping. Define the mapping TF :
X × X → X × X by TF (x, y) = (F(x, y),F(y,x)) for all (x, y) ∈ X × X. Then (x, y) is a fixed
point of TF if and only if (x, y) is a coupled fixed point of F .

Definition  Let (X,G) be a G-metric space. A mapping F : X × X → X is said to be
continuous if for any two G-convergent sequences {xn} and {yn} converging to x and y,
respectively, {F(xn, yn)} is G-convergent to F(x, y).
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Theorem  Let (X,G) be a complete G-metric space and let F : X × X → X be a given
mapping. Suppose there exist ψ ∈ � and a function β : X ×X ×X → [,∞) such that

β
(
(x, y), (u, v), (u, v)

)
G

(
F(x, y),F(u, v),F(u, v)

) ≤ 

ψ

(
G(x,u,u) +G(y, v, v)

)
()

for all (x, y), (u, v) ∈ X ×X. Suppose also that
(a) for all (x, y), (u, v) ∈ X ×X , we have

β
(
(x, y), (u, v), (u, v)

) ≥ 

⇒ β
((
F(x, y),F(y,x)

)
,
(
F(u, v),F(v,u)

)
,
(
F(u, v),F(v,u)

)) ≥ ;

(b) there exists (x, y) such that

β
(
(x, y),

(
F(x, y),F(y,x)

)
,
(
F(x, y),F(y,x)

)) ≥ , and

β
((
F(y,x),F(x, y)

)
,
(
F(y,x),F(x, y)

)
, (y,x)

) ≥ ;

(c) F is continuous.
Then F has a coupled fixed point, that is, there exists (x∗, y∗) ∈ X×X such that F(x∗, y∗) =

x∗ and F(y∗,x∗) = y∗.

Proof Let (Y , δ) be a complete G-metric space with Y = X ×X and

δ
(
(x, y), (u, v), (s, t)

)
=G(x,u, s) +G(y, v, t)

for all (x, y), (u, v), (s, t) ∈ Y . By using () and (G), we get

β
(
(x, y), (u, v), (u, v)

)
G

(
F(x, y),F(u, v),F(u, v)

) ≤ 

ψ

(
δ
(
(x, y), (u, v), (u, v)

))
, ()

and

β
(
(v,u), (v,u), (y,x)

)
G

(
F(v,u),F(v,u),F(y,x)

)

≤ 

ψ

(
G(v, v, y) +G(u,u,x)

)

=


ψ

(
G(x,u,u) +G(y, v, v)

)

=


ψ

(
δ
(
(x, y), (u, v), (u, v)

))
. ()

Combining () and (), we have

γ (ζ ,η,η)δ(Tζ ,Tη,Tη)≤ ψ
(
δ(ζ ,η,η)

)

for all ζ = (x, y),η = (u, v) ∈ Y , where T : Y → Y is defined by

T(x, y) =
(
F(x, y),F(y,x)

)
for all ζ = (x, y) ∈ Y ,
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and γ : Y × Y × Y → [,∞) is given by

γ
(
(x, y), (u, v), (u, v)

)
=min

{
β
(
(x, y), (u, v), (u, v)

)
,β

(
(v,u), (v,u), (y,x)

)}
.

It follows that T is a G-continuous and G-γ -ψ-contractive mapping of type II.
Suppose that γ (ζ ,η,η) ≥  for ζ = (x, y),η = (u, v) ∈ Y . Then, by the condition (a), we

have γ (Tζ ,Tη,Tη)≥ . Therefore, T is γ -admissible.
From the condition (b), there exists (x, y) such that

γ
(
(x, y),T(x, y),T(x, y)

) ≥ .

Since all the hypotheses of Theorem  are satisfied, it follows that T has a fixed point,
and by Lemma , F has a coupled fixed point. �

Theorem  Let (X,G) be a complete G-metric space and let F : X × X → X be a given
mapping. Suppose there exist ψ ∈ � and a function β : X ×X ×X → [,∞) such that

β
(
(x, y), (u, v), (u, v)

)
G

(
F(x, y),F(u, v),F(u, v)

) ≤ 

ψ

(
G(x,u,u) +G(y, v, v)

)

for all (x, y), (u, v) ∈ X ×X. Suppose also that
(a) for all (x, y), (u, v) ∈ X ×X, we have

β
(
(x, y), (u, v), (u, v)

) ≥ 

⇒ β
((
F(x, y),F(y,x)

)
,
(
F(u, v),F(v,u)

)
,
(
F(u, v),F(v,u)

)) ≥ ;

(b) there exists (x, y) such that

β((x, y),
(
F(x, y),F(y,x)

)
,
(
F(x, y),F(y,x)

) ≥ , and

β
((
F(y,x),F(x, y)

)
,
(
F(y,x),F(x, y)

)
, (y,x)

) ≥ ;

(c) if {xn} and {yn} are sequences in X such that

β
(
(xn, yn), (xn+, yn+), (xn+, yn+)

) ≥ 

and

β
(
(yn+,xn+), (yn+,xn+), (yn,xn)

) ≥ ,

{xn} and {yn} are G-convergent to x and y, respectively, then

β
(
(xn, yn), (x, y), (x, y)

) ≥ 

and

β
(
(y,x), (y,x), (yn,xn)

) ≥ 

for all n.
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Then F has a coupled fixed point, that is, there exists (x∗, y∗) ∈ X×X such that F(x∗, y∗) =
x∗ and F(y∗,x∗) = y∗.

Proof Let {(xn, yn)} be a sequence in Y such that

γ
(
(xn, yn), (xn+, yn+), (xn+, yn+)

) ≥ 

and (xn, yn) is G-convergent to (x, y). From the condition (c), we get

γ
(
(xn, yn), (x, y), (x, y)

) ≥ .

This implies that all the hypotheses of Theorem  are satisfied. It follows that T has a
fixed point, and by Lemma , the mapping F has a coupled fixed point. �

Theorem  Adding the following condition to the hypotheses of Theorem  (resp. The-
orem ), we obtain the uniqueness of a coupled fixed point of F .
(d) For all (x, y), (u, v) ∈ X ×X, there exists (z, z) ∈ X ×X such that

β
(
(x, y), (z, z), (z, z)

) ≥ , β
(
(z, z), (z, z), (y,x)

) ≥ 

and

β
(
(u, v), (z, z), (z, z)

) ≥ , β
(
(z, z), (z, z), (v,u)

) ≥ .

Proof With the condition (d), T and γ satisfy the condition (iv) of Theorem . From
Theorem  and Lemma , the result follows. �

3.3 Choudhury andMaity’s coupled fixed point results in a G-metric space
Definition  Let (X,�) be a partially ordered set, and let (X,G) be a G-metric space.
A partially ordered G-metric space, (X,G,�), is called ordered complete if for each con-
vergent sequence {xn}∞n= ⊂ X, the following conditions hold:

(OC) if {xn} is a non-increasing sequence in X such that xn → x∗, then x∗ � xn ∀n ∈N;
(OC) if {yn} is a non-decreasing sequence in X such that yn → y∗, then y∗ � yn ∀n ∈N.

Choudhury and Maity [] proved the following coupled fixed point theorems on or-
dered G-metric spaces.

Theorem  Let (X,�) be a partially ordered set and let G be a G-metric on X such that
(X,G) is a complete G-metric space. Let F : X×X → X be a G-continuous mapping having
the mixed monotone property on X. Suppose that there exists a k ∈ [, ) such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(x,u,w) +G(y, v, z)

]
()

for all x, y,u, v,w, z ∈ X with x � u � w and y � v � z, where either u 	= w or v 	= z. If there
exist x, y ∈ X such that x � F(x, y) and F(y,x)� y, then F has a coupled fixed point,
that is, there exists (x, y) ∈ X ×X such that x = F(x, y) and y = F(y,x).
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Proof Let Y = X. Suppose that β ,γ : Y × Y × Y → [,∞) such that

γ
(
(x, y), (u, v), (u, v)

)
=

⎧⎨
⎩
 if x � u and y � v,

 otherwise,
()

where

γ
(
(x, y), (u, v), (u, v)

)
=min

{
β
(
(x, y), (u, v), (u, v)

)
,β

(
(v,u), (v,u), (y,x)

)}
.

From (), for all (x, y), (u, v) ∈ X ×X, we have

β
(
(x, y), (u, v), (u, v)

)
G

(
F(x, y),F(u, v),F(u, v)

) ≤ k

[
G(x,u,u) +G(y, v, v)

]

and

β
(
(v,u), (v,u), (y,x)

)
G

(
F(v,u),F(v,u),F(y,x)

) ≤ k

[
G(v, v, y) +G(u,u,x)

]
.

It follows that T is a G-γ -ψ-contractive mapping of type II with ψ(t) = kt, t ≥ . Let
(x, y), (u, v) ∈ X ×X such that

γ
(
(x, y), (u, v), (u, v)

) ≥ .

By the definition of γ , we get x � u and y � v. This implies that

F(x, y)� F(u, v) and F(y,x)� F(v,u),

since F has the mixed monotone property. Thus,

γ
((
F(x, y),F(y,x)

)
,
(
F(u, v),F(v,u)

)
,
(
F(u, v),F(v,u)

)) ≥ .

By the assumption, there exist x, y ∈ X such that x � F(x, y) and F(y,x) � y. By the
definition of γ , it implies that

β
(
(s, t),

(
F(s, t),F(t, s)

)
,
(
F(s, t),F(t, s)

)) ≥ , and

β
((
F(t, s),F(s, t)

)
,
(
F(t, s),F(s, t)

)
, (t, s)

) ≥ ,

where s = x and t = y. From Theorem , F has a coupled fixed point. �

Theorem  If, instead of G-continuity of F in the theorem above, we assume that X is
ordered complete, then F has a coupled fixed point.

Proof It is sufficient to prove that the condition (c) of Theorem  is satisfied under the
setting of (). For this purpose, we take two sequences {sn} and {tn} in X such that
sn → s ∈ X and tn → t ∈ X as n → ∞. Assume that β((sn, tn), (sn+, tn+), (sn+, tn+)) ≥ 
and β((tn+, sn+), (tn+, sn+), (tn, sn)) ≥ . Due to the definition of β , the sequences {sn} and
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{tn} are nonincreasing and nondecreasing, respectively. Regarding (i) and (ii), we derive
that

sn � s and tn � t,

which yields that

β
(
(sn, tn), (s, t), (s, t)

)
=  and

β
(
(t, s), (t, s), (tn, sn)

)
= .

Then, the assumption (c) of Theorem  holds. Hence, F has a coupled fixed point. �

Remark  Notice that analogs of all of the theorems proved in Section  can be derived
by replacing type I and type II with type A.
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