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Abstract
We give new criteria for the existence of nontrivial fixed points on cones assuming
some monotonicity of the operator on a suitable conical shell. Moreover, we give an
application to the existence of multiple solutions for a nonlocal boundary value
problem that models the displacement of a beam subject to some feedback
controllers.
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1 Introduction and preliminaries
The classical cone compression-expansion fixed point theorem of Krasnosel’skĭı (see The-
orem . below) and themonotone iterative technique (see Theorem . below) are among
the most popular and fruitful tools to deal with the existence of solutions for nonlinear
problems. Following earlier ideas of Persson [] valid in the finite-dimensional setting,
both methods were combined in [] to obtain the existence of a fixed point, assuming the
operator T to be monotone non-decreasing with some conditions on the set of super-
solutions. This result was improved in [] by relaxing the monotonicity condition. More
recently, in [] the authors were able to present a refinement of the results of [, ], by
allowing a comparison between a point and a boundary, instead of on two boundaries as
in Krasnosel’skĭı’s theorem. This approach, which required amonotonicity assumption on
the operator on a conical shell, has proved to bewell suited to establishmultiplicity results.
Our aim in this paper is to pursue this line of research by obtaining new fixed point theo-
rems, valid not only for non-decreasing (Section ) but also for non-increasing operators
(Section ).We point out that this type of theorems can be combined in the applications to
obtain the existence of multiple non-trivial solutions. This fact is illustrated in Section ,
where the existence of multiple positive solutions for a nonlocal boundary value problem
modeling the displacement of a beam is discussed.
We now recall some definitions that will be useful in the sequel. A subset K of a real

Banach space N is a cone if and only if it is closed, K + K ⊂ K , λK ⊂ K for all λ ≥  and
K ∩ (–K) = {}. A cone K defines the partial ordering in N given by x ≤ y if and only if
y – x ∈ K . The notation x < y means x ≤ y and y �= x. The cone K is called normal with a
normal constant c ≥  if and only if ‖x‖ ≤ c‖y‖ for all x, y ∈ N with  ≤ x ≤ y. Whenever
int(K) �= ∅, the symbol x 
 y means y – x ∈ int(K) and the cone is said to be solid. ∂K
denotes the boundary of K and d(x, ∂K) is the distance of x to the boundary of K .
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If T : K → K satisfies the conditions

Tx� x for all x ∈ K with ‖x‖ = R

and

Tx� x for all x ∈ K with ‖x‖ = R̄,

then it is called a cone compression when  < R < R̄ and a cone expansion when  < R̄ < R.
The closed ball of center x ∈N and radius r >  is denoted by

B[x, r] =
{
x ∈ N : ‖x – x‖ ≤ r

}
,

and for x, y ∈N , with x ≤ y, we define the interval

[x, y] = {z ∈N : x ≤ z ≤ y}.

Now we recall the two classical fixed point results mentioned above. The first one is
known as the monotone iterative method (see, for example, [, Theorem .A] or []).

Theorem . Let N be a real Banach space with a normal order cone K . Suppose that
there exist α ≤ β such that T : [α,β] ⊂ N → N is a completely continuous monotone non-
decreasing operator with α ≤ Tα and Tβ ≤ β . Then T has a fixed point and the iterative
sequence αn+ = Tαn, with α = α, converges to the greatest fixed point of T in [α,β], and
the sequence βn+ = Tβn, with β = β , converges to the smallest fixed point of T in [α,β].

The second one, which is widely used for the search of positive fixed points, is due to
Krasnosel’skĭı (see [, Theorem .D]).

Theorem . Let N be a real Banach space with order cone K . Suppose that the operator
T : K → K is completely continuous and either a cone compression or expansion. Then T
has a fixed point x on K and

min{R, R̄} < ‖x‖ <max{R, R̄}.

2 Non-increasing operators
Firstly, we present a result under the assumption of the existence of a lower solution in a
solid cone.

Theorem . Let N be a real Banach space, K be a solid cone and T : K → K be a com-
pletely continuous operator. Assume that
() there exist α ∈ K , with α ≤ Tα, and R >  such that B[α,R]⊂ K ;
() the map T is monotone non-increasing in the set

K =
{
x ∈ K : R ≤ ‖x‖ ≤ ‖α‖

}
;

() there exists r > , with r �= R, such that Tx� x for all x ∈ K with ‖x‖ = r.
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Then the map T has at least one non-zero fixed point x ∈ K\{x ∈ K ;‖x‖ = r} such that

min{r,R} ≤ ‖x‖ ≤ max{r,R}.

Proof First, note that  < R ≤ d(α, ∂K) ≤ ‖α‖. Since B[α,R]⊂ K , it is clear that if x ∈ K
with ‖x‖ = R, then x ≤ α. Since T is non-increasing in K and x,α ∈ K, we have that

Tx ≥ Tα ≥ α ≥ x for all x ∈ K with ‖x‖ = R.

If Tx = x, we have a fixed point such that ‖x‖ = R, on the contrary, we deduce that Tx� x
for all ‖x‖ = R, which together with () implies, by Theorem ., that there exists a non-
zero fixed point x with the desired localization property. �

Remark . Note that if Tα �= α, in the proof of the previous result, it is showed that the
map T has at least one non-zero fixed point x ∈ K such that

min{r,R} < ‖x‖ <max{r,R}.

As a direct consequence of Theorem ., we obtain the following ‘dual result’ for a non-
increasing operator in a solid cone with an upper solution.

Corollary . Let N be a real Banach space, K be a solid cone and T : K → K be a com-
pletely continuous operator. Assume that condition () is fulfilled together with
() there exist β ∈ K , with Tβ ≤ β, and R >  such that B[Tβ,R]⊂ K ;
() the map T is monotone non-increasing in the set

K =
{
x ∈ K : R ≤ ‖x‖ ≤ max

{‖Tβ‖,‖β‖
}}
.

Then the map T has at least one non-zero fixed point x in x ∈ K\{x ∈ K ;‖x‖ = r}, and

min{r,R} ≤ ‖x‖ ≤ max{r,R}.

Proof As in the proof of Theorem ., we deduce that ‖Tβ‖ ≥ R.
If ‖β‖ = ‖Tβ – β – Tβ‖ ≤ R, then Tβ – β ∈ B[Tβ,R] ⊂ K , which implies that

Tβ – β ≥ , i.e., β is a fixed point of T . Obviously, if this is the case, ‖β‖ = ‖Tβ‖ = R

and the result holds.
On the other hand, if ‖β‖ > R, we know that β,Tβ ∈ K and, sinceT is non-increasing

inK andTβ belongs to the interior ofK , we deduce that  
 Tβ ≤ T(Tβ), i.e.,Tβ ∈ K
is a non-zero lower solution of the operator T .
As consequence, all the conditions of Theorem . are fulfilled and the result holds.

�

Now, we give a fixed point result for a non-increasing operator under the assumption of
the existence of an upper solution in a cone not necessarily solid, but it verifies an extra
condition.
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Theorem . Let N be a real Banach space, K be a cone that satisfies the following con-
dition:

there exists σ ≥  such that for x, y ∈ K with ‖x‖ = σ‖y‖ we have x≥ y, (.)

and T : K → K is a completely continuous operator. Assume that
() there exists β ∈ K , β �= , such that β ≥ Tβ;
() the map T is monotone non-increasing in the set

K =
{
x ∈ K : ‖β‖ ≤ ‖x‖ ≤ σ‖β‖

}
;

() there exists r > , with r �= R := σ‖β‖, such that Tx� x for all x ∈ K with ‖x‖ = r.
Then the map T has at least one non-zero fixed point x ∈ K\{x ∈ K ;‖x‖ = r} such that

min{r,R} ≤ ‖x‖ ≤ max{r,R}.

Proof By the property (.), we have that if x ∈ K with ‖x‖ = R, then x≥ β. The definition
of R says that x,β ∈ K; so, since T is non-increasing on K, we have

Tx ≤ Tβ ≤ β ≤ x for all x ∈ K with ‖x‖ = R.

If Tx = x, we have a fixed point such that ‖x‖ = R; on the contrary, Tx � x for all x ∈ K
such that ‖x‖ = R which, together with (), implies by Theorem . the existence of a fixed
point with the desired localization property. �

Remark . (i) Note that if Tβ �= β, in the proof of the two previous results, it is showed
that the map T has at least one non-zero fixed point x ∈ K such that

min{r,R} < ‖x‖ <max{r,R}.

The same conclusion holds if in condition (.) we assume that the constant σ > . To
verify this, it is enough to take into account that if there is a fixed point x ∈ K with ‖x‖ = R,
then Tx ≤ Tβ ≤ β ≤ x and, as a consequence, σ‖β‖ = ‖x‖ = ‖β‖.
(ii) An example of a cone satisfying condition (.) is, for instance, the one used in []

K =
{
f ∈ C[, ] : f (t) = ct, c≥ 

}
.

Lemma . Condition (.) is equivalent to the following one:

there exists σ ≥  such that for x, y ∈ K with ‖x‖ ≥ σ‖y‖ we have x≥ y. (.)

Proof Obviously, if condition (.) is fulfilled, then (.) also holds.
Suppose now that (.) is satisfied, and let x, y ∈ K be such that ‖x‖ ≥ σ‖y‖; in conse-

quence, there is λ ≥  such that ‖x/λ‖ = σ‖y‖. Condition (.) shows that x ≥ λy ≥ y, i.e.,
condition (.) holds. This proves the result. �

In an analogous way to Corollary ., we arrive at the following ‘dual result’.

Corollary . Let N be a real Banach space, K be a cone that satisfies the condition (.)
and T : K → K be a completely continuous operator. Assume that
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() there exists α ∈ K , α �=  such that α ≤ Tα;
() the map T is monotone non-increasing in the set

K =
{
x ∈ K :min

{‖α‖,‖Tα‖
} ≤ ‖x‖ ≤ σ‖Tα‖

}
;

() there exists r > , with r �= R := σ‖Tα‖, such that Tx� x for all x ∈ K with
‖x‖ = r.

Then the map T has at least one non-zero fixed point x ∈ K\{x ∈ K ;‖x‖ = r} such that

min{r,R} ≤ ‖x‖ ≤ max{r,R}.

Proof By the property (.), we have that if x ∈ K with ‖x‖ = R, then x ≥ Tα.
Suppose now that ‖α‖ ≥ σ‖Tα‖. From Lemma ., we have that α ≥ Tα, which im-

plies that α is a fixed point with ‖α‖ = R and σ = , so the result holds.
When ‖α‖ < σ‖Tα‖, by the definition of R, it is obvious that α,Tα ∈ K; so, since

T is non-increasing on K, we have

T(Tα) ≥ T(α) > ,

and the results holds from Theorem .. �

Remark . Note that if Tα �= α or σ > , in the proof of the previous result, it is showed
that the map T has at least one non-zero fixed point x ∈ K such that

min{r,R} < ‖x‖ <max{r,R}.

3 Non-decreasing operators
For non-decreasing operators, in the case of an upper solution, it was proved in [] the
following result which is an improvement of those in [, ].

Theorem . [] Let N be a real Banach space, K be a normal solid cone with a normal
constant c ≥  and T : K → K be a completely continuous operator. Assume that
() there exist β ∈ K , with Tβ ≤ β, and R >  such that B[β,R]⊂ K ;
() the map T is monotone non-decreasing in the set

K =
{
x ∈ K :

R

c
≤ ‖x‖ ≤ c‖β‖

}
;

() there exists r > , with r �= R, such that Tx� x for all x ∈ K with ‖x‖ = r.
Then the map T has at least one non-zero fixed point x in K that either belongs to K or
is such that

min{r,R} < ‖x‖ <max{r,R}.

In the sequel, we prove a fixed point result in this direction for a not necessarily normal
cone that satisfies (.).

Theorem . Let N be a real Banach space, K be a solid cone that satisfies condition (.),
and T : K → K be a completely continuous operator. Assume that conditions () and ()
hold and

http://www.fixedpointtheoryandapplications.com/content/2013/1/125
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(′) the map T is monotone non-decreasing in the set

K′ =
{
x ∈ K : R ≤ ‖x‖ ≤ σ‖β‖

}
.

Then the map T has at least one non-zero fixed point x in K that either belongs to K′ or
is such that

min{r,R} < ‖x‖ <max{r,R}.

Proof Since B[β,R]⊂ K , it is clear that if x ∈ K with ‖x‖ = R, then x ≤ β.
Suppose first that there is α ∈ K with ‖α‖ = R and Tα ≥ α. Notice that in this case

α ≤ Tα ≤ Tβ ≤ β.
If ‖Tα‖ = ‖α – Tα – α‖ ≤ R, then α – Tα ∈ B[Tα,R] ⊂ K , which implies that

α ≥ Tα, i.e., α ∈ K′ is a fixed point of T and the result is fulfilled.
Suppose now that ‖Tα‖ > R. If ‖Tα‖ ≥ σ‖β‖we know, by condition (.), that Tα ≥

β and, as a consequence, β ∈ K′ (‖β‖ ≥ R) is a fixed point of T .
So, if R < ‖Tα‖ < σ‖β‖ we have that Tα ≤ Tα and, arguing as before, we have that

either α or β are fixed points of T , or R < ‖Tα‖ < σ‖β‖.
By recurrence we verify that the set P = {Tnα}n∈N ⊂ K′ .
Since T is monotone non-decreasing on K′ , we have that the same holds in P. More-

over, T(P) ⊂ [α,β]. Now, the completely continuous character of the operator T implies
that T(P) is a compact set of N . We can ensure the existence of a fixed point on P ⊂ K′

from [, Proposition ..].
Now suppose that Tx� x for all x ∈ K with ‖x‖ = R. By () there exists r >  such that

Tx� x for all x ∈ K with ‖x‖ = r. Therefore by Theorem . there exists a non-zero fixed
point. �

Remark . An example of a solid cone satisfying condition (.) is the following one:

K =
{
cf (t) : f ∈ L∞(

[, ]
)
, f ≥  a.e. t ∈ [, ],‖f ‖ > , c ≥ 

}
.

Now, we give a result under the assumption of the existence of a lower solution.

Theorem . Let N be a real Banach space, K be a normal cone (not necessarily solid)
with a normal constant c≥  that satisfies condition (.), and T : K → K be a completely
continuous operator. Assume that there is a lower solution as in (), and
() the map T is monotone non-decreasing in the set

K =
{
x ∈ K :

‖α‖
c

≤ ‖x‖ ≤ cσ‖α‖
}
;

() there exists r > , with r �= R := σ‖α‖, such that Tx� x for all x ∈ K with ‖x‖ = r.
Then the map T has at least one non-zero fixed point x in K that either belongs to K or
is such that

min{r,R} < ‖x‖ <max{r,R}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/125
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Proof By the property (.), we have that if x ∈ K with ‖x‖ = R, then x ≥ α.
Suppose first that we can choose β ∈ K with ‖β‖ = R and Tβ ≤ β. Since α ≤ β and

due to the normality of the cone K , we have that [α,β] ⊂ K, which implies that T is
nondecreasing on [α,β]. Then we can apply Theorem . to ensure the existence of the
extremal fixed points of T on [α,β].
Now suppose that Tx� x for all x ∈ K with ‖x‖ = R. By () there exists r >  such that

Tx� x for all x ∈ K with ‖x‖ = r. Therefore by Theorem ., there exists a non-zero fixed
point x in the required set. �

Remark . We stress that the above theorems can be combined to prove the existence
of multiple fixed points. The idea is to use a nesting argument similar to those utilized, for
example, in [, ], where the authors used the classical fixed point index, and in [, ],
where Theorem . was used. In the next section we do this in the case of the existence of
two non-trivial fixed points, and we refer to Theorem . of [] to give an idea of the type
of results that may be stated in the case of n fixed points.

4 Applications to a nonlocal BVP
Wenowdiscuss the existence of positive solutions of the nonlocal boundary value problem
(BVP)

u()(t) = λg(t)f
(
u(t)

)
, t ∈ (, ), (.)

u′() = , θu′() + u(ξ) = , (.)

u′′′() = , θu′′′() + u′′(ξ) = , (.)

where, for i = , , θi ∈ R and ξi ∈ [, ], g ∈ L[, ], g ≥  a.e. and f : [,∞) → [,∞)
is continuous. BVP (.)-(.) that has been studied in [] models the displacement of
a beam with feedback controllers; in particular, the boundary conditions mean that the
shear force and the angular attitude vanish at t = , and in t =  they are related to the
displacement and to the bending moment registered in other points of the beam.
This BVP can be rewritten as a Hammerstein integral equation of the form

u(t) =
∫ 


k(t, s)λg(s)f

(
u(s)

)
ds := Tu(t), (.)

where the Green’s function k(t, s) and its properties are given in the following result.

Lemma . [] Let θ + ξ >  and θ + ξ > . The Green’s function k(t, s) for the linear
fourth-order boundary value problem

u()(t) = y(t), t ∈ (, ),

u′() = , u′′′() = , θu′() + u(ξ) = , θu′′′() + u′′(ξ) = ,
(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/125
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is given by

k(t, s) = θ

(
θ +

ξ 



–
t



)
–

θ


( – s) +

⎧⎨
⎩
(θ +

ξ
 – t

 )(ξ – s), s ≤ ξ,

, s > ξ,

–

⎧⎨
⎩


 (ξ – s), s ≤ ξ,

, s > ξ,
+

⎧⎨
⎩


 (t – s), s≤ t,

, s > t.
(.)

Moreover, for (t, s) ∈ [, ]× [, ], we have

ĉk(, s)≤ k(t, s)≤ k(, s) :=	(s),

where

ĉ :=  –


θ + ξ 

.

Note that θ + ξ >  implies that θ + ξ 
 >  and so  < ĉ < . Now, with the above

conditions, it is routine to prove that T : C[, ] → C[, ] leaves invariant the cone

K =
{
u ∈ C[, ] : min

t∈[,]
u(t) ≥ ĉ‖u‖

}
,

where in C[, ] we are considering the supremum norm ‖u‖ = sup{u(t) : t ∈ [, ]}. It is
also known that K is a normal solid cone with a normal constant c = .
We will make use of the numbers

γ∗ = inf
t∈[,]

∫ 


k(t, s)g(s)ds, γ ∗ = sup

t∈[,]

∫ 


k(t, s)g(s)ds,

note that γ∗ = /M and γ ∗ = /m, in the notation of [].
Now we present the main result of this section.

Theorem. Assume that the hypotheses in Lemma . hold.Moreover, let β,α,R,R ∈
(, +∞) be such that

β < ĉR, α ≥ R
(

(
θ + ξ 


)
– 

)
and β ≥ R

(

(
θ + ξ 


)
– 

)
.

Assume that g satisfies that γ* >  and,moreover,
(i) f is non-decreasing on [ĉR,β];
(ii) f is non-increasing on [ĉR,α];
(iii) limu→+

f (u)
u = +∞ and limu→+∞ f (u)

u = .
Then BVP (.)-(.) has at least two positive solutions for any λ >  satisfying

α

γ∗f (α)
≤ λ ≤ β

γ ∗f (β)
. (.)

Proof The main idea in the proof is to apply Theorems . and . in two disjoint conical
shells in order to get two different non-trivial fixed points. Firstly, we are going to check
that the conditions of Theorem . are satisfied.

http://www.fixedpointtheoryandapplications.com/content/2013/1/125
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(.a) α ≤ Tα and there exists R >  such that B[α,R] ⊂ K .
We have α ≤ Tα because of the inequality α

γ∗f (α) ≤ λ. On the other hand, the
inequality α ≥ R((θ + ξ 

 ) – ) implies that B[α,R] ⊂ K . Indeed, let
u ∈ B[α,R], that is,

α – R ≤ u(t)≤ α + R for all t ∈ [, ].

Since θ + ξ 
 > , we have α > R and then u(t) >  for all t ∈ [, ]. Moreover, it is

easy to check that

min
t∈[,]

u(t) ≥ α – R ≥ ĉ(α + R) ≥ ĉ‖u‖,

which means that u ∈ K .
(.b) The map T is monotone non-increasing in the set

K =
{
x ∈ K : R ≤ ‖x‖ ≤ ‖α‖

}
.

This fact is a consequence of the assumption (ii).
(.c) There exists r > , with r �= R, such that Tx� x for all x ∈ K with ‖x‖ = r.

By the second part of the assumption (iii), we have this result for r > R large
enough.

So, Theorem . implies the existence of a solution x ∈ K such that

R ≤ ‖x‖ < r.

Now, we are going to check that the conditions of Theorem . are satisfied.
(.a) Tβ ≤ β and there exists R >  such that B[β,R] ⊂ K .

We have Tβ ≤ β because of the inequality λ ≤ β
γ ∗f (β) . Again,

β ≥ R((θ + ξ 
 ) – ) implies that B[β,R]⊂ K by reasoning as in the proof of

claim (.a).
(.b) The map T is monotone non-decreasing in the set

K =
{
x ∈ K : R ≤ ‖x‖ ≤ ‖β‖ = β

}
.

This fact is a consequence of the assumption (i).
(.c) There exists r > , with r �= R, such that Tx� x for all x ∈ K with ‖x‖ = r.

By the first part of the assumption (iii), we have this result for  < r < R small
enough.

Then, applying Theorem ., we get the existence of a solution x ∈ K such that r <
‖x‖ ≤ β. Since β < ĉR, we have that x �= x and the theorem is proven. �

The following example illustrates our previous theorem.

Example . We consider the BVP

u()(t) = λf
(
u(t)

)
, t ∈ (, ), (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/125
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u′() = u′′′() =


u′() + u

(



)
=


u′′′() + u′′

(



)
= , (.)

with

f (u) =
√
u +

e–e(–u) (tan–( – u) + π
 )

π
.

In Figures ,  and  you can see the behavior of the function f on different intervals.
In this example g(t) = , and by [] we know that γ∗ = ,

, and γ ∗ = ,
, . Moreover,

since θ = 
 and ξ = 

 , we have ĉ =

 .

Now, it is easy to check that all the assumptions of Theorem . are satisfied by taking
β = 

 , α = , R = 
 and R = . So, by Theorem ., BVP (.)-(.) has at least two

positive solutions provided that

.≤ λ ≤ ..

Figure 1 Graph of f on [0, 1].

Figure 2 Graph of f on [1, 3].
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Figure 3 Graph of f on [3, 30].
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