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Abstract
In quasi-pseudometric spaces (X ,p) (not necessarily Hausdorff ), the concepts of the
left quasi-closed maps (generalizing continuous maps) and generalized
quasi-pseudodistances J : X × X → [0,∞) (generalizing in metric spaces: metrics,
Tataru distances, w-distances of Kada et al., τ -distances of Suzuki and τ -functions of
Lin and Du) are introduced, the asymmetric structures on X determined by J
(generalizing the asymmetric structure on X determined by quasi-pseudometric p)
are described and the contractions T : X → X with respect to J (generalizing Banach
and Rus contractions) are defined. Moreover, if (X ,p) are left sequentially complete (in
the sense of Reilly, Subrahmanyam and Vamanamurthy), then, for these contractions
T : X → X such that T [q] is left quasi-closed for some q ∈ N, the global minimum of the
map x → J(x, T [q](x)) is studied and theorems concerning the existence of global
optimal approximate solutions of the equation T [q](x) = x are established. The results
are new in quasi-pseudometric and quasi-metric spaces and even in metric spaces.
Examples showing the difference between our results and the well-known ones are
provided. In the literature the fixed and periodic points in not Hausdorff spaces were
not studied.
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1 Introduction
Let X be a space and let T : X → X. By Fix(T) and Per(T) we denote the sets of all fixed
points and periodic points of T : X → X, respectively, i.e., Fix(T) = {w ∈ X : w = T(w)} and
Per(T) = {w ∈ X : w = T [q](w) for some q ∈ N}.
Motivated by results from the large literature concerning the global optimal approximate

solution theorems, in which the spaces X aremetric, themaps T : X → X are contractions
of Banach or Rus types and optimal approximate solutions belong to the set Fix(T), our
main interest of this paper is the following.

Question . Let (X,p) be a quasi-pseudometric. Are there generalized pseudodis-
tance J : X × X → [,∞) generalizing p (generalizing asymmetric structure on X de-
termined by a quasi-pseudometric p), the map T : X → X satisfying the condition
∃λ∈[,)∀x∈X{J(T(x),T [](x))≤ λJ(x,T(x))} and q ∈N\{} such that themap x→ J(x,T [q](x))
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attains its global minimum at the approximate solution w of the equation T [q](x) = x and
w satisfies the equation J(w,T [q](w)) =  but: (i) the space (X,p) is not Hausdorff; (ii) T
does not satisfy the condition ∃λ∈[,)∀x∈X{p(T(x),T [](x))≤ λp(x,T(x))}; (iii) T is not con-
tinuous in (X,p); (iv) Fix(T) =∅?

Our aim in this paper is to answer the question affirmatively.
The fixed point theory is currently a very active field. In this theory, the notion of con-

tractivity introduced by Banach belongs to the most fundamental mathematical ideas and
the following theorem concerning the existence of global optimal approximate solution
has important generalizations and applications.

Theorem . (Banach [], Caccioppoli []) Let (X,d) be a complete metric space. If T :
X → X satisfies the contractive condition

∃λ∈[,)∀x,y∈X
{
d
(
T(x),T(y)

) ≤ λd(x, y)
}
, (.)

then T has a unique fixed point w in X and ∀w∈X{limm→∞ T [m](w) = w}.

This shows that the map x → d(x,T(x)) is continuous and this map attains its global
minimum at the approximate unique solution of the equation x = T(x); we note that here
d and T are continuous, the space (X,d) is Hausdorff and d determines the symmetric
structure on X.
It is important to observe that the map T : X → X satisfying (.) satisfies (Rus [])

∃λ∈[,)∀x∈X
{
d
(
T(x),T [](x)

) ≤ λd
(
x,T(x)

)}
(.)

and the converse is not true. In general, the maps T : X → X satisfying (.) are not con-
tinuous.
Banach’s global optimal approximate solution theorem has inspired a large body of work

over the last  years.
Rus [] proved that the conclusions of Theorem . hold without the uniqueness asser-

tion but under a slightly weaker contractive assumption; for other results in this direction,
we refer to Subrahmanyam [], Kasahara [] and Hicks and Rhoades [].

Theorem . (Rus []) Let (X,d) be a complete metric space and let T : X → X.
If T is a continuous map satisfying contractive condition (.), then Fix(T) �= ∅ and
∀w∈X∃w∈Fix(T){limm→∞ T [m](w) = w}.

The concepts of the asymmetric structures became established and investigated in
mathematics and its applications. For details, see, e.g., [] in normed spaces; [–] inmet-
ric spaces; [] in uniform spaces; and [–] in quasi-gauge, cone uniform and uniform
spaces.
There are many different generalizations of Theorems . and . in the literature where

the distances aremore general than d. In particular, we give some referenceswhere various
contractions of Rus type are naturally defined. We refer to the works [] and [, –]
where in complete metric spaces (X,d) the distance d in condition (.) is replaced by w-
distances and τ -distances, respectively. The authors [] introduced and examined, in not
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necessarily sequentially complete uniform spaces, contractions of Rus type with respect
to the families of generalized pseudodistances.
In this paper, in quasi-pseudometric spaces (X,p) (not necessarily Hausdorff), the con-

cepts of the left quasi-closedmaps (generalizing continuousmaps) and generalized quasi-
pseudodistances J : X × X → [,∞) (generalizing the quasi-pseudometrics p in quasi-
pseudometric spaces (X,p), and generalizing in metric spaces (X,d): metrics d, distances
of Tataru [], w-distances of Kada et al. [], τ -distances of Suzuki [] and τ -functions
of Lin and Du []) are introduced. Next, the asymmetric structures on X determined by
J (generalizing asymmetric structure on X determined by quasi-pseudometrics p) are de-
scribed and the contractions T : X → X with respect to J (generalizing Banach and Rus
contractions) are defined. Moreover, if (X,p) are left sequentially complete (in the sense of
Reilly et al. []), then, for these contractions T : X → X, assuming that T [q] is left quasi-
closed for some q ∈ N, the global minimum of the map x → J(x,T [q](x)) is studied and
theorems concerning the existence of global optimal approximate solutions of the equa-
tion T [q](x) = x are established.
In addition, the provided examples illustrating generalized quasi-pseudodistances and

our theorems, describe the techniqueswhich enable one to compute the periodic and fixed
points as well as to give precise information about the difference between our results and
the well-known ones. The techniques require considerably more machinery from fixed
point theory, asymmetric structures and iterative approximation.
Note that quasi-pseudometric spaces generalize quasi-metric andmetric spaces and the

studies of asymmetric structures in quasi-pseudometric and quasi-metric spaces and their
applications to problems in theoretical computer science are important.

2 Definitions, notations and statement of results
Definition . [–] Let X be a nonempty set.

(i) A map p : X ×X → [,∞) is called quasi-pseudometric on X if it satisfies the two
conditions:

∀x∈X
{
p(x,x) = 

}
(.)

and

∀x,y,z∈X
{
p(x, z) ≤ p(x, y) + p(y, z)

}
. (.)

For given quasi-pseudometric p on X , a pair (X,p) is called quasi-pseudometric
space.

(ii) A quasi-pseudometric space (X,p) is called Hausdorff if

∀x,y∈X
{
x �= y ⇒ p(x, y) > ∨ p(y,x) > 

}
.

(iii) A map p : X ×X → [,∞) is called quasi-metric on X if it satisfies (.), (.) and

∀x,y∈X
{
p(x, y) =  ⇒ x = y

}
. (.)

For given quasi-metric p on X , a pair (X,p) is called quasi-metric space.

http://www.fixedpointtheoryandapplications.com/content/2013/1/128
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(iv) A map p : X ×X → [,∞) is calledmetric on X if it satisfies (.)-(.) and
∀x,y∈X{p(x, y) = p(y,x)}. For given metric p on X , a pair (X,p) is calledmetric space.

In order to investigate the new contractivity in quasi-pseudometric spaces, we need to
introduce the concept of ‘generalized quasi-pseudodistances’.

Definition . Let (X,p) be a quasi-pseudometric space. The map J : X × X → [,∞) is
said to be a generalized quasi-pseudodistance on X if the following two conditions hold:
(J) ∀x,y,z∈X{J(x, z)≤ J(x, y) + J(y, z)}; and
(J) For any sequences (xm :m ∈ N) and (ym :m ∈N) in X satisfying

∀ε>∃k∈N∀n,m∈N;k≤m<n
{
J(xm,xn) < ε

}
(.)

and

∀ε>∃k∈N∀m∈N;k≤m
{
J(xm, ym) < ε

}
, (.)

the following holds:

∀ε>∃k∈N∀m∈N;k≤m
{
p(xm, ym) < ε

}
. (.)

Remark . Let (X,p) be a quasi-pseudometric space and let J(X,p) be a class defined as
follows: J(X,p) = {J : J is generalized quasi-pseudodistance on X}. Then:
(a) J(X,p) �=∅ since p ∈ J(X,p);
(b) J(X,p) �= {p}, see Examples . and .;
(c) Each quasi-pseudometric is a generalized quasi-pseudodistance, but converse is not

true (see Section ).

One can prove the following proposition.

Proposition . Let (X,p) be a Hausdorff quasi-pseudometric space and let J ∈ J(X,p).
Then

∀x,y∈X
{
x �= y⇒ J(x, y) > ∨ J(y,x) > 

}
.

Proof Assume that there are x �= y, x, y ∈ X, such that J(x, y) = J(y,x) = . Then J(x,x) = 
since, by using (J), it follows that J(x,x)≤ J(x, y) + J(y,x) = . Defining the sequences (xm :
m ∈ N) and (ym : m ∈ N) in X by xm = x and ym = y or xm = y and ym = x for m ∈ N, and
observing that J(x, y) = J(y,x) = J(x,x) = , we see that (.) and (.) for these sequences
hold. Then, by (J), (.) holds, so it is p(x, y) = p(y,x) = . But this is a contradiction since
(X,p) is Hausdorff and thus x �= y implies p(x, y) >  or p(y,x) > . �

Recall the following definition.

Definition . [, , ] Let (X,p) be a quasi-pseudometric space.
(i) We say that a sequence (wm :m ∈N) is left Cauchy sequence in X if

∀ε>∃k∈N∀m,n∈N;k≤m<n
{
p(wm,wn) < ε

}
.
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(ii) We say that a sequence (wm :m ∈N) is left convergent in X if

∃w∈X∀ε>∃k∈N∀m∈N;k≤m
{
p(w,wm) < ε

}
(which we write as limL

m→∞ wm = w).
(iii) If every left Cauchy sequence in X is left convergent to some point in X , then (X,p)

is called left sequentially complete quasi-pseudometric space.

Using this we can define the following natural generalization of continuity.

Definition . Let (X,p) be a left sequentially complete quasi-pseudometric space, let T :
X → X and let q ∈ N. The map T [q] is called left quasi-closed in X if every sequence (wm :
m ∈N) in T [q](X), left converging to each point of the setW ⊂ X and having subsequences
(vm :m ∈ N) and (um :m ∈ N) satisfying ∀m∈N{vm = T [q](um)}, has the property ∃w∈W {w =
T [q](w)}.

By Fix(T) and Per(T) we denote the sets of all fixed points and periodic points of
T : X → X, respectively, i.e., Fix(T) = {w ∈ X : w = T(w)} and Per(T) = {w ∈ X : w =
T [q](w) for some q ∈N}.
Motivated by papers [, , –], we raise a question.

Question . In quasi-pseudometric spaces (and thus also in quasi-metric and in met-
ric spaces), is it possible to find an effective construction of a condition of Rus type with
respect to generalized quasi-pseudodistances and techniques for obtaining periodic and
fixed point theorems for left quasi-closed maps satisfying this condition?

The purpose of this paper is to answer this question in the affirmative. The first result
in this direction is the following.

Theorem . Assume that (X,p) is a left sequentially complete quasi-pseudometric space,
the map J : X × X → [,∞) is a generalized quasi-pseudodistance on X and the map T :
X → X satisfies
(S) ∃λ∈[,)∀x∈X{J(T(x),T [](x))≤ λJ(x,T(x))}.
The following statements hold.
(A) For each w ∈ X there exists a nonempty setM(w) ⊂ X such that the sequence

(T [m](w) :m ∈ N) is left convergent to each point w ∈M(w); i.e., (A) For each
w ∈ X ,M(w) = {w ∈ X : limL

m→∞ T [m](w) = w} �=∅.
(B) If: (b) T [q] is left quasi-closed in X for some q ∈N, then: (B) Fix(T [q]) �=∅; (B) For

each w ∈ X there exists w ∈ Fix(T [q]) such that w ∈ M(w) (i.e.,
limL

m→∞ T [m](w) = w); and (B) For each w ∈ Fix(T [q]), J(w,T(w)) = J(T(w),w) = .
(C) If: (c) (X,p) is a Hausdorff space; and (c) w ∈ Fix(T [q]) for some q ∈N, then: (C)

w ∈ Fix(T); and (C) J(w,w) = .

A version of Definition . in metric spaces is as follows.

Definition . Let (X,p) be a metric space. The map J : X × X → [,∞), is said
to be a generalized pseudodistance on X if the following two conditions hold: (J)

http://www.fixedpointtheoryandapplications.com/content/2013/1/128
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∀x,y,z∈X{J(x, z) ≤ J(x, y) + J(y, z)}; and (J) For any sequences (xm :m ∈ N) and (ym :m ∈ N)
in X satisfying limn→∞ supm>n J(xn,xm) =  and limm→∞ J(xm, ym) = , the following holds
limm→∞ p(xm, ym) = .

The following is a metric analog of Theorem ..

Theorem . Assume that (X,p) is a complete metric space, the map J : X × X → [,∞)
is a generalized pseudodistance on X and the map T : X → X satisfies
(S) ∃λ∈[,)∀x∈X{J(T(x),T [](x))≤ λJ(x,T(x))}.
The following statements hold:
(A) For any w ∈ X there exists w ∈ X such that limm→∞ T [m](w) = w.
(B) If: (b) T [q] is continuous in X for some q ∈ N, then, for any w ∈ X , there exists

w ∈ X such that: (B) limm→∞ T [m](w) = w; (B) w ∈ Fix(T); and (B) J(w,w) = .

Remark . If we assume that J = p and q = , then a special case of Theorem . gives
Theorem ..

3 Proof of Theorem 2.1

Proof In the sequel, for each w ∈ X, a sequence (wm : m ∈ {} ∪ N) is defined by wm =
T [m](w) form ∈ {} ∪N; we see that ∀m∈N{wm = T(wm–)} and T [] = IX .
(A) The proof will be divided into four steps.
Step .We show that

∀w∈X
{
lim

m→∞ sup
{
J
(
wm,wn) : n >m

}
= 

}
. (.)

Indeed, if w ∈ X is arbitrary and fixed,m,n ∈N and n >m, then, by (J) and (S),

lim
m→∞ sup

{
J
(
wm,wn) : n >m

} ≤ lim
m→∞ sup

{ n–∑
i=m

J
(
wi,wi+) : n >m

}

≤ lim
m→∞ sup

{ n–∑
i=m

λiJ
(
w,w) : n >m

}

≤ lim
m→∞λmJ

(
w,w)/( – λ) = .

Step .We show that

∀w∈X∀ε>∃k∈N∀m∈N;k≤m∀n∈N;m<n
{
J
(
wm,wn) < ε

}
. (.)

Indeed, by (.), we get ∀w∈X∀ε>∃k∈N∀m∈N;k≤m{sup{J(wm,wn) : n > m} < ε}. This im-
plies (.).
Step . For each w ∈ X the sequence (wm :m ∈N) is a left Cauchy sequence on X.
Indeed, let w ∈ X be arbitrary and fixed. Then, by (.), we have

∀ε>∃k∈N∀m∈N;k≤m∀l∈N
{
J
(
wm,wl+m)

< ε
}
.
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Hence, if l ∈N is arbitrary and fixed and if we define a sequence (vm :m ∈N) as vm = wl+m

form ∈N, then we get

∀ε>∃k∈N∀m∈N;k≤m
{
J
(
wm, vm

)
< ε

}
. (.)

Now, from (.), (.) and (J) of Definition ., we conclude that

∀ε>∃k∈N∀m∈N;k≤m
{
p
(
wm, vm

)
< ε

}
. (.)

The consequence of (.) and definition of (vm :m ∈N) is

∀ε>∃k∈N∀m∈N;k≤m
{
p
(
wm,wl+m

)
< ε

}
;

here l ∈N is arbitrary and fixed. This gives

∀ε>∃k∈N∀m∈N;k≤m∀l∈N
{
p
(
wm,wl+m)

< ε
}
. (.)

Now, let ε >  be arbitrary and fixed. From (.) we get that

∃k∈N∀m∈N;k≤m∀l∈N
{
p
(
wm,wl+m)

< ε
}
. (.)

We see that if m and n satisfy k ≤ m < n, then n = l + m for some l ∈ N. Therefore
by (.),

p
(
wm,wn) = p

(
wm,wl+m

)
< ε;

so it is

∃k∈N∀m,n∈N;k≤m<n
{
p
(
wm,wn) < ε

}
.

Thus the sequence (wm :m ∈N) is left Cauchy sequence on X.
Step . For each w ∈ X there exists a nonempty set M(w) ⊂ X such that the sequence

(wm :m ∈N) is left convergent to each point w ∈M(w).
Indeed, let w ∈ X be arbitrary and fixed. By Step , the sequence (wm : m ∈ {} ∪ N)

is left Cauchy on X. Hence, since (X,p) is left sequentially complete quasi-pseudometric
space, there exists a nonempty subsetM(w) of X, such that the sequence (wm :m ∈ N) is
left convergent to each point w ∈M(w).
(B) We have

wmq+k = T [q](w(m–)q+k) for k = , , . . . ,q andm ∈N. (.)

Clearly, by Step , for each k = , , . . . ,q, the sequences (vm = wmq+k : m ∈ {} ∪ N) and
(um = w(m–)q+k :m ∈ N), as subsequences of (wm = wm+q :m ∈ {} ∪N) ⊂ T [q](X), are also
left convergent to each point of M(w); more precisely, (vm : m ∈ {} ∪ N) is left con-
vergent to each point of V = {v ∈ X : limL

m→∞ vm = v}, (um : m ∈ N) is left convergent to
each point of U = {u ∈ X : limL

m→∞ um = u}, M(w) ⊂ V and M(w) ⊂ U . Additionally,

http://www.fixedpointtheoryandapplications.com/content/2013/1/128
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∀m∈N{vm = T [q](um)}. Since T [q] is left quasi-closed, by (.) and Definition ., we obtain
that ∃w∈M(w){w = T [q](w)}.
We show that (B) holds. Indeed, assume that w ∈ Fix(T [q]) is arbitrary and fixed.
We see that

J
(
w,T(w)

)
= . (.)

Otherwise, J(w,T(w)) > . Hence, by (J) and (S), since w = T [q](w) = T [q](w), we get  <
J(w,T(w)) = J(T [q](w),T [q](T(w))) = J(T(T [q–](w)),T [](T [q–](w))) ≤ λJ(T(T [q–](w)),
T [](T [q–](w))) ≤ λJ(T(T [q–](w)),T [](T [q–](w))) ≤ · · · ≤ λqJ(w,T(w)) < J(w,T(w))
which is impossible. Therefore, (.) holds.
Next, we see that

J
(
T(w),w

)
= . (.)

Otherwise, J(T(w),w) > . Hence, by (J), (S) and (.), since w = T [q](w) = T [q](w)
and q +  < q, we get  < J(T(w),w) = J(T(T [q](w)),T [q](w)) = J(T [q+](w),T [q](w)) ≤∑q–

i=q+ λ
iJ(w,T(w)) =  which is impossible. Therefore, (.) holds.

(C) From (.), (.) and the fact that (X,p) is Hausdorff, using Proposition ., we get
T(w) = w, i.e., w ∈ Fix(T).
Finally, by (J), (.) and (.), we get J(w,w) ≤ J(w,T(w)) + J(T(w),w) = . �

4 Examples and comparisons
In this section we present some examples illustrating the concepts introduced so far.
The following two examples illustrate the concept of a quasi-pseudometric space and

generalized quasi-pseudodistances, respectively.

Example . Let X ⊂ R be a nonempty set and let p : X × X → [,∞) be defined by the
formula

p(x, y) =

⎧⎨
⎩ if x ≥ y,

 if x < y,
x, y ∈ X. (.)

(I.) The map p is quasi-pseudometric on X, and (X,p) is quasi-pseudometric space (see
Reilly et al. []).
(I.) (X,p) is Hausdorff. Indeed, let x �= y, x, y ∈ X. Then, by (.), y > x implies p(x, y) =

 >  and x > y implies p(y,x) =  > . By Definition .(ii), (X,p) is Hausdorff.

Example . Let (X,p) be a quasi-pseudometric space. Let the set E ⊂ X, containing at
least two different points, be arbitrary and fixed and let c >  satisfy δ(E) < c, where δ(E) =
sup{p(x, y) : x, y ∈ E}. Let J : X ×X → [,∞) be defined by the formula

J(x, y) =

⎧⎨
⎩p(x, y) if E ∩ {x, y} = {x, y},
c if E ∩ {x, y} �= {x, y},

x, y ∈ X. (.)

(II.) The map J is a generalized quasi-pseudodistance on X (see []).

Now, we present the examples illustrating Theorems . and ..

http://www.fixedpointtheoryandapplications.com/content/2013/1/128
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Example . Let (X,p) be a Hausdorff quasi-pseudometric space, where X = [, ] and
let p : X ×X → [,∞) be as in Example .. Let E = [, )∪ (, ]∪ {} and let

J(x, y) =

⎧⎨
⎩p(x, y) if {x, y} ∩ E = {x, y},
 if {x, y} ∩ E �= {x, y};

(.)

by (II.), J is a generalized quasi-pseudodistance on X. Let T : X → X be a map given by
the formula

T(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 if x ∈ {} ∪ (, ),

 if x ∈ (, ]∪ (, )∪ {},
x/ + / if x ∈ (, ],

 if x ∈ [, ].

(.)

(III.) (X,p) is a left sequentially complete quasi-pseudometric space. Indeed, if
(wm : m ∈ N) is a left Cauchy sequence on X, then there exists  ∈ X such that
∀ε>∃k∈N∀m,n∈N;k≤m≤n{p(,wm) =  < ε}, i.e., limL

m→∞ wm = . Thus (X,p) is a left sequen-
tially complete quasi-pseudometric space.
(III.) The map T satisfies condition (S) for λ = /. Indeed, if x ∈ X is arbitrary and

fixed, then the following four cases hold.
Case . Fixing x ∈ {} ∪ (, ), by (.), we obtain T(x) = T [](x) =  ∈ E. Hence, by (.)

and (.), we have J(T(x),T [](x)) = p(, ) = . This gives that condition (S) holds.
Case . Fix an arbitrary x ∈ (, ]∪ (, )∪ {}. By (.), T(x) = T [](x) =  ∈ E. Then, we

obtain from (.) and (.) that J(T(x),T [](x)) = p(, ) =  and thus condition (S) holds.
Case . Let x ∈ (, ] be fixed. Note that x /∈ E and, by (.), T(x) = x/ + / ∈ (, )⊂ E,

T [](x) =  ∈ E, T(x) < T [](x). By (.) and (.), we also have J(T(x),T [](x)) = p(x/ +
/, ) =  and J(x,T(x)) = J(x,x/+/) = . This implies J(T(x),T [](x)) =  ≤ / = (/) ·
 = λJ(x,T(x)). Therefore, for λ = /, condition (S) holds.
Case . Let x ∈ [, ]. By (.), T(x) = T [](x) =  ∈ E. Hence, by (.) and (.),

J(T(x),T [](x)) = J(, ) = p(, ) = . Therefore, for λ = /, condition (S) holds.
(III.) T [] is left quasi-closed on X. Indeed, we have

T [](x) =

⎧⎪⎪⎨
⎪⎪⎩
 if x ∈ {} ∪ (, ),

 if x ∈ [, ],

 if x ∈ (, )∪ {}
(.)

and T [](X) = {, , }. Let (wm : m ∈ N) be an arbitrary and fixed sequence in T [](X),
left convergent to each point of a nonempty set W = {w ∈ X : limL

m→∞ wm = w} and hav-
ing subsequences (vm :m ∈ N) ⊂ T [](X) and (um :m ∈ N) ⊂ T [](X) satisfying ∀m∈N{vm =
T [](um)}. Clearly,W ⊂ V = {w ∈ X : limL

m→∞ vm = w} andW ⊂U = {w ∈ X : limL
m→∞ um =

w}. Hence, by (.), (vm : m ∈ N) ⊂ {, , } and (um : m ∈ N) ⊂ {, , }, which gives the
following.
Case . If (wm : m ∈ N) and (vm : m ∈ N) are such that ∃m′∈N∀m≥m′ {vm = }, then also

∀m≥m′ {um = }. Consequently, by Definition .(ii) and Example ., V =U = [, ].
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Case . If (wm :m ∈ N) and (vm :m ∈N) are such that

∃m′∈N∀m≥m′ {vm = }

or

∃m′′∈N∀m≥m′′ {vm ≤ } and ∀m′′′∈N∃m≥m′′′∃m≥m′′′ {vm = ∧ vm = },

then also

∀m≥m′ {um = }

or

∀m≥m′′ {um ≤ } and {um = ∧ um = },

respectively. Consequently, V =U = [, ].
Case . If (wm :m ∈ N) and (vm :m ∈ N) are such that ∀m′∈N∃m≥m′ {vm = }, then also

um = . Consequently, V =U = {}.
Of course, since (wm :m ∈N) ⊂ T [](X) = {, , }, therefore  ∈ W in Cases -. Finally,

we see that ∃w=∈W {w = T [](w)} in Cases -. By Definition ., T [] is left quasi-closed
in X.
(III.)All the assumptions andassertions of Theorem .hold. It is straightforward to ver-

ify that ∀w∈X{M(w) �= ∅}, ∀w∈X∃w=∈M(w){limL
m→∞ T [m](w) = w}, Fix(T []) = Fix(T) =

{, , } and J(, ) = J(, ) = J(, ) = .

We note that the existence of a generalized quasi-pseudodistance such that J �= p is es-
sential.

Example . Let (X,p) and T be such as in Example ..
(IV.) T does not satisfy condition (S) for J = p. In fact, if ∃λ∈[,)∀x∈X{p(T(x),T [](x)) ≤

λp(x,T(x))} holds and w = /, then T(w) = /, T [](w) =  and, by Example . and
formulae (.) and (.),  = p(/, ) = p(T(w),T [](w)) ≤ λp(w,T(w)) = λp(/, /) =
λ ·  < . This is absurd.

Next, we notice that the assumption that T [q] is left quasi-closed on X for some q ∈ N is
essential.

Example . Let (X,p) be such as in Example .. Let T : X → X be of the form

T(x) =

⎧⎪⎪⎨
⎪⎪⎩
 if x ∈ {} ∪ (, ],

 if x ∈ (, ),

x/ + / if x ∈ [, ].

(.)

(V.) T satisfies (S) for J = p and for each λ ∈ [, ). Indeed, we have the following.
Case . Fixing x ∈ {} ∪ (, ], by (.), we obtain T(x) = , T [](x) = . Therefore, by

Example ., p(T(x),T [](x)) = . This implies that condition (S) holds.
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Case . Fix an arbitrary x ∈ (, ). Then, by (.), T(x) = , T [](x) =  and, by Exam-
ple ., p(T(x),T [](x)) = p(, ) = . Thus (S) holds.
Case . Let x ∈ [, ] be fixed. By (.), T(x) = x/ + / ∈ [, ] and T [](x) = x/ + / ∈

[, /] ⊂ [, ). However, x≥ T(x)≥ T [](x). Hence, by Example ., p(T(x),T [](x)) = .
This also gives (S) for all λ ∈ [, ).
(V.) For each q ∈N, themap T [q] is not left quasi-closed in X. Indeed, if q ∈N is arbitrary

and fixed, then, fixingw ∈ (, ), we get by (.) that ∀m∈N{T [m](w) = w/m+
∑m

n= –n∧
w > T [m](w) > T [m+](w)} and that a sequence (wm = T [q+m–](w) : m ∈ N) ⊂ T [q](X)
satisfies ∀m∈N{ < wm < } and is left converging to each point of the setW = (, ] ⊂ X.
Let now (vm :m ∈ N) be a sequence of the form ∀m∈N{vm = wm+q} and let (um :m ∈ N)

be a sequence of the form ∀m∈N{um = wm}; of course, W = V = U , where V = {w ∈ X :
limL

m→∞ vm = w} and U = {w ∈ X : limL
m→∞ um = w}. Then ∀m∈N{vm = T [q](um)}.

Nowwe see that ∀w∈W {w �= T [q](w)}. Thismeans that themapT [q] is not left quasi-closed
in X.
(V.) In summary:
(a) (X,p) is a left sequentially complete quasi-pseudometric space (see (III.)).
(b) T satisfies (S) for J = p and for each λ ∈ [, ).
(c) We calculate that

M
(
w) =

⎧⎨
⎩[, ] if w ∈ [, ]∪ [, ],

(, ] if w ∈ (, )
(.)

and thus, for J = p, Theorem .(A) holds.
(d) For each q ∈ N, the map T [q] is not a left quasi-closed in X and thus the assumption

(b) in Theorem .(B) does not hold. Since  ∈ Fix(T) thus assertion (B) holds. Fixing
w ∈ (, ), by (.), we get that the sequence (wm = T [m](w) :m ∈N) is not left convergent
to  and  /∈M(w) = (, ] and thus, for J = p, the assertion (B) of Theorem . does not
hold.
(e) (X,p) is Hausdorff (see (I.)),  ∈ Fix(T) �= ∅ and p(, ) = . Thismeans that, for J = p,

Theorem .(C) holds.

We compare Theorem . and [].

Example . Let (X,p) and T be such as in Example ..
(VI.) T is not a generalized contraction of Reilly type []. Indeed, suppose that

∃λ∈[,)∀x,y∈X{p(T(x),T(y)) ≤ λp(x, y)}. Obviously, this inequality holds for x = / and
y = / and since, by (.), T(x) = / and T(y) = , thus, by (.), we get  = p(/, ) =
p(T(x),T(y)) ≤ λp(x, y) = λp(/, /) = λ ·  < . This is absurd.

At the end of this paper, in Examples . and ., we illustrate Theorem . when (X,p)
is not Hausdorff.

Example . Let X = [, ], letA = {/n : n ∈N} and let p : X×X → [,∞) be of the form

p(x, y) =

⎧⎨
⎩ if x = y or {x, y} ∩A = {x, y},
 if x �= y and {x, y} ∩A �= {x, y},

x, y ∈ X. (.)
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(VII.)Themap p is quasi-pseudometric on X. Indeed, from (.), we have that p(x,x) = 
for each x ∈ X and thus condition (.) holds.
Now, it is worth noticing that condition (.) does not hold only if there exists x, y, z ∈

X such that p(x, z) > p(x, y)+p(y, z). This inequality is equivalent to  >  = p(x, y)+
p(y, z), where

p(x, z) = , (.)

p(x, y) =  (.)

and

p(y, z) = . (.)

Conditions (.) and (.) imply x = y or {x, y} ⊂ A and y = z or {y, z} ⊂ A, re-
spectively. We consider the following four cases:
Case . If x = y and y = z, then x = z which, by (.), implies p(x, z) = . By (.)

this is absurd.
Case . If x = y and {y, z} ⊂ A, then {x, z} ∩ A = {x, z}. Hence, by (.), p(x,

z) = . By (.) this is absurd.
Case . If {x, y} ⊂ A and y = z, then {x, z} ∩ A = {x, z}. Hence, by (.), p(x,

z) = . By (.) this is absurd.
Case . If {x, y} ⊂ A and {y, z} ⊂ A, then {x, z} ∩ A = {x, z}. Hence, by (.),

p(x, z) = . By (.) this is absurd.
Thus, condition (.) holds.
We proved that p is quasi-pseudometric on X and (X,p) is the quasi-pseudometric

space.
(VII.) (X,p) is not Hausdorff. Indeed, for x = / and y = /, we have x �= y and {x, y} ∩

A = {x, y}. Hence, by (.), we obtain p(x, y) = p(y,x) = . This, by Definition .(ii), means
that (X,p) is not Hausdorff.

Example . Let X = [, ] ⊂R, let p be the same as in Example . and let T : X → X be
given by the formula

T(x) =

⎧⎨
⎩/ if x ∈ [, /],

/ if x ∈ (/, ].
(.)

(VIII.) The space (X,p) is a not Hausdorff space. See (VII.).
(VIII.) The space (X,p) is a left sequentially complete. Indeed, let (um :m ∈N) be a left

Cauchy sequence in X. By (.), not losing generality, we may assume that

∀<ε<∃k∈N∀m,n∈N;k<m<n
{
p(um,un) =  < ε < 

}
. (.)

Now, we have the following two cases:
Case . Let ∀m∈N;k<m{um ∈ A}. By (.), in particular, since / ∈ A, we have that

∀m>k{p(/,um) = }. This, by Definition .(iii), means that (um :m ∈ N) is left conver-
gent in X (we have that limL

m→∞ um = /);
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Case . Let ∃m∈N;k<m{um /∈ A}. Then we have the following two subcases:
Subcase (a) Let ∀m∈N;k<m,m�=m{um = um}. Then, by (.), we get ∀m∈N;m<m{p(um ,

um) = } and this implies limL
m→∞ um = um ;

Subcase (b) Let ∃m∈N;k<m,m �=m{um �= um}. Then, by (.), since um /∈ A and um �=
um , p(um ,um ) = p(um ,um ) = . However, since k < m and k < m, this, by (.),
implies p(um ,um ) =  whenm <m and p(um ,um ) =  when m <m. This is absurd.
We proved that if (.) holds, then {u : limL

m→∞ um = u} �=∅. By Definition .(ii), the
sequence (um :m ∈N) is left convergent in X.
(VIII.) For J = p the assumption (S) of Theorem . holds (more precisely, the map T

satisfies condition (S) for J = p and for each λ ∈ [, )). This follows from the fact that, by
(.), p(T(x),T(y)) =  for each x, y ∈ X.
(VIII.) The map T is not left quasi-closed on X. Indeed, let a sequence (wm :m ∈ N) in

T(X) = {/, /} be of the form

wm =

⎧⎨
⎩/ ifm is even,

/ ifm is odd.

Since ∀m∈N{wm ∈ A} thus, by (.), ∀w∈A{p(w,wm) = } and ∀w∈X\A{p(w,wm) = }. Hence
{w : limL

m→∞ wm = w} = A. Moreover, its subsequences (um = / :m ∈ N) and (vm = / :
m ∈ N) satisfy ∀m∈N{vm = T(um)}. Clearly, {w : limL

m→∞ wm = w} = {v : limL
m→∞ vm = v} =

{u : limL
m→∞ um = u} = A. However, there does not exist w ∈ A such that w = T(w).

(VIII.) The map T [] is left quasi-closed on X. Indeed, we have

T [](x) =

⎧⎨
⎩/ if x ∈ [, /],

/ if x ∈ (/, ]

and let (wm :m ∈ N) be an arbitrary and fixed sequence in T [](X) = {/, /}, left conver-
gent to each point of a nonempty set {w : limL

m→∞ wm = w} ⊂ X and having subsequences
(vm : m ∈ N) and (um : m ∈ N) satisfying ∀m∈N{vm = T [](um)}. Thus, (wm : m ∈ N) ⊂
{/, /} ⊂ A, (vm : m ∈ N) ⊂ {/, /} ⊂ A and (um : m ∈ N) ⊂ {/, /} ⊂ A. Hence,
by (.), we conclude that

lim
m→∞p(w,wm) = lim

m→∞p(w, vm) = lim
m→∞p(w,um) =

⎧⎨
⎩ if w ∈ A,

 if w ∈ X\A.

This gives {w : limL
m→∞ wm = w} = {v : limL

m→∞ vm = v} = {u : limL
m→∞ um = u} = A. Next,

we see that ∃w∈{/,/}⊂A={w:limL
m→∞ wm=w}{w = T [](w)}. By Definition ., T [] is left quasi-

closed on X.
(VIII.) For J = p, the statements (A) and (B) of Theorem . hold. This follows from

(VIII.)-(VIII.). From the above, it follows:

Fix
(
T []) = {/, /};

∀w∈[,/]
{{

w : lim
m→∞

LT [m](w) = w
}
= [/, ]

}
;

∀w∈(/,]
{{

w : lim
m→∞

LT [m](w) = w
}
= [/, ]

}
;
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∀w∈[,/]∃w=/∈Fix(T [])

{
lim

m→∞
LT [m](w) = /

}
;

∀w∈(/,]∃w=/∈Fix(T [])

{
lim

m→∞
LT [m](w) = /

}
;

and

∀w∈[,]
{
Fix

(
T []) �=

{
w : lim

m→∞
LT [m](w) = w

}}
.

Moreover, by (.), since Fix(T []) = {/, /} ⊂ A, thus, by (.), we get p(/, /) =
p(/, /) = , so (B) holds.
(IX.) For J = p, the statement (C) of Theorem . does not hold.We have: the assumption

(c) does not hold; for q =  the assumption (c) holds; Fix(T []) �=∅; properties (C) and
(C) do not hold since Fix(T) =∅.

Remark . (a) We see that in Example .: (i) The map T is not left quasi-closed in X
and T [] is left quasi-closed in X; (ii) The map T satisfies condition (S) for J defined by
(.) and for λ = /; (iii) When J = p then, for each λ ∈ [, ), the map T does not satisfy
condition (S) (see Example .); (iv) Assumptions of Theorem . are satisfied; (v) In
complete metric spaces, the assumptions of Banach [], Rus [], Subrahmanyam [], Kada
et al. [, Corollary ] and Suzuki [, Theorem ] theorems are not satisfied.
(b) In metric spaces (X,p), the generalized pseudodistances J (see Definition .) gen-

eralize: metrics p, distances of Tataru [], w-distances of Kada et al. [], τ -distances of
Suzuki [] and τ -functions of Lin, Du []; for details, see [, ].
(c) It is important to observe that we provide the conditions guaranteeing the existence

of fixed points and periodic points of themapsT : X → X, and in our studies we determine
the optimal global minima of the maps x → J(x,T [q](x)), q ∈N.
(d) It is worth noticing that in the literature the fixed and periodic points of contractions

in not Hausdorff spaces were not studied.
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