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Abstract
We establish some common fixed point theorems for mappings satisfying a
(ψ ,α,β)-weakly contractive condition in generalized metric spaces. Presented
theorems extend and generalize many existing results in the literature.
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1 Introduction and preliminaries
In , Branciari [] introduced the concept of a generalized metric space where the
triangle inequality of a metric space was replaced by an inequality involving three terms
instead of two. As such, any metric space is a generalized metric space, but the converse is
not true []. He proved the Banach fixed point theorem in such a space. After that, many
fixed point results have been established for this interesting space. For more, the reader
can refer to [–].
It is also known that commonfixed point theorems are generalizations of fixed point the-

orems. Recently, many researchers have interested in generalizing fixed point theorems to
coincidence point theorems and common fixed point theorems. In a recent paper, Choud-
hury and Kundu [] established the (ψ ,α,β)-weak contraction principle to coincidence
point and common fixed point results in partially ordered metric spaces.
The purpose of this paper is to extend the results in [] to the set of generalized metric

spaces.

Definition  ([]) Let X be a non-empty set and let d : X × X → [, +∞) be a mapping
such that for all x, y ∈ X and for all distinct points u, v ∈ X, each of them different from x
and y, one has

(i) d(x, y) =  if and only if x = y,
(ii) d(x, y) = d(y,x),
(iii) d(x, y)≤ d(x,u) + d(u, v) + d(v, y) (the rectangular inequality).
Then (X,d) is called a generalized metric space (or for short g.m.s.).

Definition  ([]) Let (X,d) be a g.m.s., let {xn} be a sequence in X and x ∈ X.
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(i) We say that {xn} is a g.m.s. convergent to x if and only if d(xn,x)→  as n→ +∞.
We denote this by xn → x.

(ii) We say that {xn} is a g.m.s. Cauchy sequence if and only if for each ε >  there exists
a natural number n(ε) such that d(xn,xm) < ε for all n >m > n(ε).

(iii) (X,d) is called a complete g.m.s. if every g.m.s. Cauchy sequence is g.m.s.
convergent in X .

We denote by � the set of functions ψ : [, +∞) → [, +∞) satisfying the following
hypotheses:

(ψ) ψ is continuous and monotone nondecreasing,
(ψ) ψ(t) =  if and only if t = .

We denote by � the set of functions α : [, +∞) → [, +∞) satisfying the following hy-
potheses:

(α) α is continuous,
(α) α(t) =  if and only if t = .

We denote by � the set of functions β : [, +∞) → [, +∞) satisfying the following hy-
potheses:

(β) β is lower semi-continuous,
(β) β(t) =  if and only if t = .

2 Main results
Definition  ([]) Let X be a non-empty set and let T ,F : X → X. The mappings T , F
are said to be weakly compatible if they commute at their coincidence points, that is, if
Tx = Fx for some x ∈ X implies that TFx = FTx.

Lemma  Let {an} be a sequence of non-negative real numbers. If

ψ(an+) ≤ α(an) – β(an) (.)

for all n ∈N, where ψ ∈ � , α ∈ �, β ∈ � and

ψ(t) – α(t) + β(t) >  for all t > , (.)

then the following hold:
(i) an+ ≤ an if an > ,
(ii) an →  as n→ +∞.

Proof (i) Let, if possible, an < an+ for some n ∈N. Then, using the monotone property of
ψ and (.), we have

ψ(an) ≤ ψ(an+) ≤ α(an) – β(an),

which implies that an =  by (.), a contradiction with an > . Therefore, for all n ∈N,

an+ ≤ an.
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(ii) By (i) the sequence {an} is non-increasing, hence there is a ≥  such that an → a as
n→ +∞. Letting n→ +∞ in (.), using the lower semi-continuity of β and the continu-
ities of ψ and α, we obtain ψ(a)≤ α(a) – β(a), which by (.) implies that a = . �

Theorem  Let (X,d) be a Hausdorff and complete g.m.s. and let T ,F : X → X be self-
mappings such that TX ⊆ FX, and FX is a closed subspace of X, and that the following
condition holds:

ψ
(
d(Tx,Ty)

) ≤ α
(
d(Fx,Fy)

)
– β

(
d(Fx,Fy)

)
(.)

for all x, y ∈ X, where ψ ∈ � , α ∈ �, β ∈ � and satisfy condition (.). Then T and F have
a unique coincidence point in X.Moreover, if T and F are weakly compatible, then T and
F have a unique common fixed point.

Proof Let x be an arbitrary point in X. Since TX ⊆ FX, we can define the sequence {xn}
in X by

Txn = Fxn+ for all n≥ . (.)

Substituting x = xn and y = xn+j for every j ∈N in (.), using (.), we have

ψ
(
d(Txn,Txn+j)

) ≤ α
(
d(Fxn,Fxn+j)

)
– β

(
d(Fxn,Fxn+j)

)

= α
(
d(Txn–,Txn+j–)

)
– β

(
d(Txn–,Txn+j–)

)
.

By (ii) of Lemma , we obtain that

lim
n→+∞d(Txn,Txn+j) = . (.)

Next we prove that {Txn} is a g.m.s. Cauchy sequence. Suppose that {Txn} is not a g.m.s.
Cauchy sequence. Then there exists ε > , for which we can find subsequences {Txmk } and
{Txnk } of {Txn} with nk >mk > k such that

d(Txnk ,Txmk ) ≥ ε. (.)

Further, corresponding to mk , we can choose nk in such a way that it is the smallest
integer with nk >mk satisfying (.). Then

d(Txnk–,Txmk ) < ε. (.)

Now, using (.), (.) and the rectangular inequality, we have

ε ≤ d(Txnk ,Txmk )

≤ d(Txnk ,Txnk–) + d(Txnk–,Txnk–) + d(Txnk–,Txmk )

< d(Txnk ,Txnk–) + d(Txnk–,Txnk–) + ε.
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Işık and Türkoğlu Fixed Point Theory and Applications 2013, 2013:131 Page 4 of 6
http://www.fixedpointtheoryandapplications.com/content/2013/1/131

Letting k → +∞ in the above inequality, using (.) with j = , , we obtain

lim
k→+∞

d(Txnk ,Txmk ) = ε. (.)

Again, the rectangular inequality gives us

d(Txnk ,Txmk ) ≤ d(Txnk ,Txnk–) + d(Txnk–,Txmk–) + d(Txmk–,Txmk ),

d(Txnk–,Txmk–) ≤ d(Txnk–,Txnk ) + d(Txnk ,Txmk ) + d(Txmk ,Txmk–).

Taking k → +∞ in the above inequalities and using (.) and (.), we get

lim
k→+∞

d(Txnk–,Txmk–) = ε. (.)

Substituting x = xnk and y = xmk in (.), we have

ψ
(
d(Txnk ,Txmk )

) ≤ α
(
d(Fxnk ,Fxmk )

)
– β

(
d(Fxnk ,Fxmk )

)

= α
(
d(Txnk–,Txmk–)

)
– β

(
d(Txnk–,Txmk–)

)
. (.)

Letting k → +∞ in (.) and using the lower semi-continuity of β and the continuities
of ψ and α, we obtain

ψ(ε) ≤ α(ε) – β(ε),

which implies that ε =  by (.), a contradiction with ε > . It then follows that {Txn} is a
g.m.s. Cauchy sequence, and hence {Txn} is convergent in the complete g.m.s. (X,d). Since
FX is closed and by (.), Txn = Fxn+ for all n ≥ , we have that there exists w ∈ FX for
which

lim
n→+∞Fxn = lim

n→+∞Txn = w. (.)

We can find y in X such that Fy = w. From (.), we get

ψ
(
d(Fxn+,Ty)

)
= ψ

(
d(Txn,Ty)

)

≤ α
(
d(Fxn,Fy)

)
– β

(
d(Fxn,Fy)

)
.

On taking limit as n → +∞ and using (.), we have

ψ
(
d(w,Ty)

) ≤ α() – β(),

which implies that ψ(d(w,Ty)) = , and Ty = w. Then we obtain

w = Fy = Ty. (.)

Therefore, w is a point of coincidence of T and F . The uniqueness of the point of coin-
cidence is a consequence of condition (.).
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Now, we show that there exists a common fixed point of T and F . Since T and F are
weakly compatible, by (.), we have that TFy = FTy, and

Tw = TFy = FTy = Fw. (.)

If y = w, then y is a common fixed point. If y �= w, then by (.) we have

ψ
(
d(Fy,Fw)

)
= ψ

(
d(Ty,Tw)

)

≤ α
(
d(Fy,Fw)

)
– β

(
d(Fy,Fw)

)
.

From (.), Fy = Fw. Then, by (.) and (.), we have w = Fw = Tw. Consequently, w
is the unique common fixed point of T and F . �

Denote by 	 the set of functions γ : [, +∞) → [, +∞) satisfying the following hy-
potheses:

(h) γ is a Lebesgue-integrable mapping on each compact of [, +∞).
(h) For every ε > , we have

∫ ε


γ (s)ds > .

We have the following result.

Theorem  Let (X,d) be a Hausdorff and complete g.m.s. and let T ,F : X → X be self-
mappings such that TX ⊆ FX, and FX is a closed subspace of X, and that the following
condition holds:

∫ d(Tx,Ty)


γ(s)ds≤

∫ d(Fx,Fy)


γ(s)ds –

∫ d(Fx,Fy)


γ(s)ds

for all x, y ∈ X, where γ,γ,γ ∈ 	 and satisfy condition (.). If T and F are weakly com-
patible, then T and F have a unique fixed point.

Proof Follows from Theorem  by taking ψ(t) =
∫ t
 γ(s)ds, α(t) =

∫ t
 γ(s)ds and β(t) =∫ t

 γ(s)ds. �

Taking γ(s) = ( – k)γ(s) for k ∈ [, ) in Theorem , we obtain the following result.

Corollary  Let (X,d) be a Hausdorff and complete g.m.s. and let T ,F : X → X be self-
mappings such that TX ⊆ FX, and FX is a closed subspace of X, and that the following
condition holds:

∫ d(Tx,Ty)


γ(s)ds≤ k

∫ d(Fx,Fy)


γ(s)ds

for all x, y ∈ X, where γ,γ ∈ 	 and k ∈ [, ) and satisfy condition (.). If T and F are
weakly compatible, then T and F have a unique fixed point.
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