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1 Introduction
Throughout this paper, we denote by N and R the sets of positive integers and real num-
bers, respectively. LetD be a nonempty closed subset of a real Banach space X. Amapping
T :D → D is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ D. Let N(D) and
CB(D) denote the families of nonempty subsets and nonempty closed bounded subsets
of D, respectively. The Hausdorff metric on CB(D) is defined by

H(A,A) =max
{
sup
x∈A

d(x,A), sup
y∈A

d(y,A)
}

for A,A ∈ CB(D), where d(x,A) = inf{‖x – y‖, y ∈ A}. The multi-valued mapping T :
D → CB(D) is called nonexpansive ifH(Tx,Ty) ≤ ‖x– y‖ for all x, y ∈D. An element p ∈D
is called a fixed point of T : D → N(D) if p ∈ T(p). The set of fixed points of T is repre-
sented by F(T).
In the sequel, let S(X) = {x ∈ X : ‖x‖ = }. A Banach space X is said to be strictly convex

if ‖ x+y
 ‖ ≤  for all x, y ∈ S(X) and x �= y. A Banach space is said to be uniformly convex if

limn→∞ ‖xn –yn‖ =  for any two sequences {xn}, {yn} ⊂ S(X) and limn→∞ ‖ xn+yn
 ‖ = . The

norm of the Banach space X is said to be Gâteaux differentiable if for each x, y ∈ S(X), the
limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)
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exists. In this case, X is said to be smooth. The norm of the Banach space X is said to be
Fréchet differentiable if for each x ∈ S(X), the limit (.) is attained uniformly for y ∈ S(x),
and the norm is uniformly Fréchet differentiable if the limit (.) is attained uniformly for
x, y ∈ S(X). In this case, X is said to be uniformly smooth.

Remark . Let X be a real Banach space with dual X∗. We denote by J the normalized
duality mapping from X to X∗ , which is defined by

J(x) =
{
x∗ ∈ X∗ :

〈
x,x∗〉 = ‖x‖ = ∥∥x∗∥∥}, x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing.
The following basic properties of the normalized duality mapping J in a Banach space

X can be found in Cioranescu [].
() X (X∗, resp.) is uniformly convex if and only if X∗ (X , resp.) is uniformly smooth;
() If X is smooth, then J is single-valued and norm-to-weak∗ continuous;
() If X is reflexive, then J is onto;
() If X is strictly convex, then Jx∩ Jy �= � for all x, y ∈ X ;
() If X has a Fréchet differentiable norm, then J is norm-to-norm continuous;
() If X is uniformly smooth, then J is uniformly norm-to-norm continuous on each

bounded subset of X ;
() Each uniformly convex Banach space X has the Kadec-Klee property, i.e., for any

sequence {xn} ⊂ X , if xn ⇀ x ∈ X and ‖xn‖ → ‖x‖, then xn → x ∈ X ;
() If X is a reflexive and strictly convex Banach space with a strictly convex dual X∗ and

J∗ : X∗ → X is the normalized duality mapping in X∗, then J– = J∗, JJ∗ = Ix∗ and
J∗J = Ix.

Next we assume that X is a smooth, strictly convex, and reflexive Banach space and D
is a nonempty closed convex subset of X. In the sequel, we always use φ : X × X → R– to
denote the Lyapunov bifunction defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, x, y ∈ X. (.)

It is obvious from the definition of the function φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), (.)

φ(y,x) = φ(y, z) + φ(z,x) + 〈z – y, Jx – Jz〉, x, y, z ∈ X, (.)

and

φ
(
x, J–

(
αJy + ( – α)Jz

)) ≤ αφ(x, y) + ( – α)φ(x, z) (.)

for all α ∈ [, ] and x, y, z ∈ X.
Following Alber [], the generalized projection �D : X →D is defined by

�Dx = arg inf
y∈Dφ(y,x), ∀x ∈ X.
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Remark . (see []) Let �D be the generalized projection from a smooth, reflexive, and
strictly convex Banach space X onto a nonempty closed convex subset D of X, then �D is
closed and quasi-φ-nonexpansive from X onto D.

Many problems in nonlinear analysis can be reformulated as a problem of finding a fixed
point of a nonexpansive mapping. In , Mann [] introduced the following iterative
sequence {xn}:

xn+ = αnxn + ( – αn)Txn,

where the initial guess x ∈ D is arbitrary and {αn} is a real sequence in [, ]. It is known
that under appropriate settings the sequence {xn} converges weakly to a fixed point of T .
However, even in a Hilbert space, the Mann iteration may fail to converge strongly [].
Some attempts to construct an iteration method guaranteeing the strong convergence
have been made. For example, Halpern [] proposed the following so-called Halpern iter-
ation:

xn+ = αnu + ( – αn)Txn,

where u,x ∈D are arbitrarily given and {αn} is a real sequence in [, ]. Another approach
was proposed by Nakajo and Takahashi []. They generated a sequence as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ X is arbitrary,

yn = αnu + ( – αn)Txn,

Cn = {z ∈D : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈D : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qnx (n = , , . . .),

(.)

where {αn} is a real sequence in [, ] and PK denotes the metric projection from a Hilbert
space H onto a closed convex subset K of H . It should be noted here that the iteration
above works only in a Hilbert space setting. To extend this iteration to a Banach space, the
concepts of relatively nonexpansive mappings and quasi-φ-nonexpansive mappings have
been introduced (see [–] and []).
Inspired by Matsushita and Takahashi, in this paper, we introduce modifying Halpern-

Mann iterations sequence for finding a fixed point of a quasi-φ-nonexpansive mappings
multi-valuedmapping T :D → CB(D) and prove some strong convergence theorems. The
results presented in the paper improve and extend the corresponding results in [] and
other.

2 Preliminaries
In the sequel, we denote the strong convergence and weak convergence of the sequence
{xn} by xn → x and xn ⇀ x, respectively.

Lemma . (see []) Let X be a smooth, strictly convex and reflexive Banach space, and
let D be a nonempty closed convex subset of X. Then the following conclusions hold:
(a) φ(x, y) =  if and only if x = y;
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(b) φ(x,�Dy) + φ(�Dy, y) ≤ φ(x, y), ∀x, y ∈D;
(c) If x ∈ X and z ∈D, then z = �Dx ⇔ 〈z – y, Jx – Jz〉 ≥ , ∀y ∈D.

Remark . If H is a real Hilbert space, then φ(x, y) = ‖x – y‖ and �D is the metric pro-
jection PD of H onto D.

Lemma . (see []) Let X be a real uniformly smooth and strictly convex Banach space
with the Kadec-Klee property, and let D be a nonempty closed convex subset of X. Let {xn}
and {yn} be two sequences in D such that xn → p and φ(xn, yn) → ,where φ is the function
defined by (.), then yn → p.

Definition . A point x ∈ D is said to be an asymptotic fixed point of T : D → CB(D) if
there exists a sequence {xn} ⊂ D such that xn ⇀ x ∈ X and d(xn,T(xn)) → . Denote the
set of all asymptotic fixed points of T by F̂(T).

Definition . A multi-valued mapping T : D → CB(D) is said to be closed if for any
sequence {xn} ⊂D with xn → x ∈ X and d(y,T(xn))→ , then d(y,T(x)) = .

Definition . () A multi-valued mapping T :D→ CB(D) is said to be relatively nonex-
pansive if F(T) �= �, F̂(T) = F(T) and φ(p, z) ≤ φ(p,x), ∀x ∈D, p ∈ F(T), z ∈ T(x).
() A multi-valued mapping T : D → CB(D) is said to be quasi-φ-nonexpansive if

F(T) �= �, and φ(p, z) ≤ φ(p,x), ∀x ∈D, p ∈ F(T), z ∈ Tx.
() A multi-valued mapping T :D → CB(D) is said to be quasi-φ-asymptotically nonex-

pansive if F(T) �= � and there exists a real sequence kn ⊂ [, +∞), kn →  such that

φ(p, zn) ≤ knφ(p,x), ∀x ∈D,p ∈ F(T), zn ∈ Tnx. (.)

Definition . Amapping T :D → CB(D) is said to be uniformly L-Lipschitz continuous
if there exists a constant L >  such that ‖xn – yn‖ ≤ L‖x – y‖, where x, y ∈ D, xn ∈ Tnx,
yn ∈ Tny.

Next, we present an example of a relatively nonexpansive multi-valued mapping.

Example . (see []) Let I = [, ], X = C(I) (the Banach space of continuous functions
defined on I with the uniform convergence norm ‖f ‖C = supt∈I |f (t)|), D = {f ∈ X : f (x) ≥
,x ∈ I} and let a, b be two constants in (, ) with a < b. Let T : D → N(D) be a multi-
valued mapping defined by

T(f ) =

⎧⎨
⎩

{g ∈D : a≤ f (x) – g(x)≤ b,∀x ∈ I},
{} otherwise.

(.)

It is easy to see that F(T) = {}, therefore F(T) is nonempty.

From the example in [], we can see that T :D→N(D) is a closed quasi-φ-asymptoti-
cally nonexpansive multi-valued mapping.

Remark. From the definitions, it is obvious that a relatively nonexpansivemulti-valued
mapping is a quasi-φ-nonexpansive multi-valued mapping, and a quasi-φ-nonexpansive
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multi-valued mapping is a quasi-φ-asymptotically nonexpansive multi-valued mapping,
and a quasi-φ-asymptotically nonexpansive multi-valued mapping is a total quasi-φ-
asymptotically nonexpansive multi-valued mapping, but the converse is not true.

Lemma . Let X and D be as in Lemma .. Let T :D → CB(D) be a closed and quasi-φ-
asymptotically nonexpansive multi-valued mapping with nonnegative real sequences {kn}
with {kn} ⊂ [,∞) and kn →  (as n→ ∞), then F(T) is a closed and convex subset of D.

Proof Let {xn} be a sequence in F(T) such that xn → x∗. Since T is a quasi-φ-asymptoti-
cally nonexpansive multi-valued mapping, we have

φ(xn, z) ≤ kφ
(
xn,x∗)

for all z ∈ Tx∗ and for all n ∈N . Therefore,

φ
(
x∗, z

)
= lim

n→∞φ(xn, z) ≤ lim
n→∞ kφ

(
xn,x∗) = kφ

(
x∗,x∗) = .

By Lemma .(a), we obtain z = x∗. Hence, Tx∗ = {x∗}. So, we have x∗ ∈ F(T). This implies
F(T) is closed.
Let p,q ∈ F(T) and t ∈ (, ), and put w = tp + ( – t)q. Next we prove that w ∈ F(T).

Indeed, in view of the definition of φ, let zn ∈ Tnw, we have

φ(w, zn) = ‖w‖ – 〈w, Jzn〉 + ‖zn‖

= ‖w‖ – 
〈
tp + ( – t)q, Jzn

〉
+ ‖zn‖

= ‖w‖ + tφ(p, zn) + ( – t)φ(q, zn) – t‖p‖ – ( – t)‖q‖. (.)

Since

tφ(p, zn) + ( – t)φ(q, zn)

≤ tknφ(p,w) + ( – t)knφ(q,w)

= t
{‖p‖ – 〈p, Jw〉 + ‖w‖ + (kn – )φ(p,w)

}
+ ( – t)

{‖q‖ – 〈q, Jw〉 + ‖w‖ + (kn – )φ(q,w)
}

= t‖p‖ + ( – t)‖q‖ – ‖w‖ + t(kn – )φ(p,w) + ( – t)(kn – )φ(q,w). (.)

Substituting (.) into (.) and simplifying it, we have

φ(w, zn) ≤ t(kn – )φ(p,w) + ( – t)(kn – )φ(q,w) →  (as n→ ∞).

Hence, by Lemma ., we have zn → w. This implies that zn+(∈ TTnw) → w. Since T is
closed, we have w ∈ Tw, i.e., w ∈ F(T). This completes the proof of Lemma .. �

Lemma . ([]) Let X be a uniformly convex Banach space, r >  be a positive num-
ber and Br() be a closed ball of X. Then, for any given sequence {xn}∞n= ⊂ Br() and for
any given sequence {xn}∞n= of positive numbers with

∑∞
n= λn = , there exists a continuous,

http://www.fixedpointtheoryandapplications.com/content/2013/1/132
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strictly increasing, and convex function g : [, r) → [,∞) with g() =  such that for any
positive integers i, j with i < j,

∥∥∥∥∥
∞∑
n=

λnxn

∥∥∥∥∥


≤
∞∑
n=

λn‖xn‖ – λiλjg‖xi – xj‖. (.)

Lemma . ([]) Let X be a uniformly convex and smooth Banach space and let {xn} and
{yn} be two sequences of X such that {xn} or {yn} is bounded. If limn→∞ φ(xn, yn) = , then
limn→∞ ‖xn – yn‖ = .

Let X be a reflexive, strictly convex, and smooth Banach space. The duality mapping J∗

from X∗ onto X∗∗ = X coincides with the inverse of the duality mapping J from E onto E∗.
We make use the following mapping v : X ×X∗ → R studied in Alber []:

v
(
x,x∗) = ‖x‖ – 

〈
x,x∗〉 + ∥∥x∗∥∥ (.)

for all x ∈ X, x∗ ∈ X∗. Obviously, v(x,x∗) = φ(x, J–x∗).

Lemma . ([]) Let X be a reflexive, strictly convex, and smooth Banach space, and let
v as in (.). Then

v
(
x,x∗) + 

〈
J–x∗ – x, y∗〉 ≤ v

(
x,x∗ + y∗) (.)

for all x ∈ X, x∗, y∗ ∈ X∗.

Lemma . ([]) Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + γnδn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
(a) limn→∞ γn = ,

∑∞
n= γn = ∞;

(b) lim supn→∞ δn ≤ .
Then limn→∞ αn = .

Lemma . ([]) Let {αn} be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} such that αni ≤ αni+ for all i ∈ N . Then there exists a nondecreasing
{mk} ⊂ N such that mk → ∞ and the following properties are satisfied for all (sufficiently
large) numbers sequence k ⊂N :

αmk ≤ αmk+ and αk ≤ αmk+.

In fact,mk =max{j ≤ k : αj ≤ αj+}.

3 Main results
Theorem . Let X be a real uniformly smooth and strictly convex Banach space with the
Kadec-Klee property, let D be a nonempty closed convex subset of X, and let T :D → CB(D)
be a closed and uniformly L-Lipschitz continuous quasi-φ-asymptotically nonexpansive

http://www.fixedpointtheoryandapplications.com/content/2013/1/132
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multi-valuedmapping with nonnegative real sequences {kn} ⊂ [, +∞), kn →  (as n→ ∞)
such that condition (.) and

∏∞
n= kn < +∞. Let {αn} and {βn} be two sequences in (, )

satisfying
(R) limn→∞ αn =  and limn→∞ kn–

αn
= ;

(R)
∑∞

n= αn = ∞;
(R)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
If {xn} is the sequence generated by

xn+ = �DJ–
[
αnJx + ( – αn)

(
βnJxn + ( – βn)Jzn

)]
, zn ∈ Tnxn, (.)

where x ∈ X is arbitrary, F(T) is the fixed point set of T , and �D is the generalized projec-
tion of X onto D. If I – T is demi-closed at zero and F(T) �= �, then limn→∞ xn = �F(T)x.

Remark . We can present an example of {kn} satisfying the conditions {kn} ⊂ [, +∞),
kn →  (as n→ ∞) and

∏∞
n= kn < +∞. For instance, if kn = + 

n–
, then

∏∞
n= kn =  < +∞.

Proof First, we prove that {xn} is a bounded sequence in D.
Let p ∈ F(T) and yn = J–[βnJxn + ( – βn)Jzn] for any n ∈N . Then

xn+ = �DJ–
[
αnJx + ( – αn)Jyn

]

for any n ∈ N . Using (.) and (.), we have

φ(p, yn) = φ
(
p, J–

[
βnJxn + ( – βn)Jzn

])
≤ βnφ(p,xn) + ( – βn)φ(p, zn)

≤ βnφ(p,xn) + ( – βn)knφ(p,xn)

≤ knφ(p,xn),

and

φ(p,xn+) = φ
(
p,�DJ–

[
αnJx + ( – αn)Jyn

])
≤ φ

(
p, J–

[
αnJx + ( – αn)Jyn

])
≤ αnφ(p,x) + ( – αn)φ(p, yn)

≤ αnφ(p,x) + ( – αn)knφ(p,xn)

≤ max
{
φ(p,x),knφ(p,xn)

}
≤ max

{
φ(p,x),knkn–φ(p,xn–)

}
.

By induction, we have

φ(p,xn+) ≤ knkn– · · ·kφ(p,x).

Since limn→∞ kn =  and
∏∞

n= kn < +∞, then knkn– · · ·k is bounded, and we get φ(p,xn+)
is bounded. This implies that {xn} is bounded, so is {zn}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/132
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Next, let g : [, r] → [,∞) be a function satisfying the properties of Lemma ., where
r = sup{‖x‖,‖xn‖,‖zn‖}. Put p = �F(T)x and yn = J–(βnJxn + ( – βn)Jzn). Then

φ(p, yn) = φ
(
p, J–

(
βnJxn + ( – βn)Jzn

))
≤ βnφ(p,xn) + ( – βn)knφ(p,xn) – βn( – βn)g

(‖Jxn – Jzn‖
)

≤ knφ(p,xn) – βn( – βn)g
(‖Jxn – Jzn‖

)
,

and

φ(p,xn+) = φ
(
p,�DJ–

[
αnJx + ( – αn)Jyn

])
≤ φ

(
p, J–

[
αnJx + ( – αn)Jyn

])
≤ αnφ(p,x) + ( – αn)φ(p, yn)

≤ αnφ(p,x) + ( – αn)
[
knφ(p,xn) – βn( – βn)g

(‖Jxn – Jzn‖
)]

≤ αnkn
(
φ(p,x) – φ(p,xn)

)
+ (kn – )φ(p,xn) + φ(p,xn)

– ( – αn)βn( – βn)g
(‖Jxn – Jzn‖

)
. (.)

Letting

M = sup
n∈N

{∣∣∣∣kn(φ(p,x) – φ(p,xn)
)
+
kn – 
αn

φ(p,xn)
∣∣∣∣ + βn( – βn)g

(‖Jxn – Jzn‖
)}

,

by (.), we have

βn( – βn)g
(‖Jxn – Jzn‖

) ≤ φ(p,xn) – φ(p,xn+) + αnM.

Let un = J–[αnJx + ( – αn)Jyn]. Then xn+ = �Dun for all n ∈ N . It follows from (.) and
(.) that

φ(p,xn+) ≤ φ
(
p, J–

(
αnJx + ( – αn)Jyn

))
= v

(
p,αnJx + ( – αn)Jyn

)
≤ v

(
p, J–

(
αnJx + ( – αn)Jyn

)
– αn(Jx – Jp)

)
– 

〈
J–

(
αnJx + ( – αn)Jyn

)
– p, –αn(Jx – Jp)

〉
= v

(
p,αnJp + ( – αn)Jyn

)
+ αn〈un – p, Jx – Jp〉

= φ
(
p, J–

[
αnJp + ( – αn)Jyn

])
+ αn〈un – p, Jx – Jp〉

≤ ‖p‖ – 
〈
p,αnJp + ( – αn)Jyn

〉
+

∥∥αnJp + ( – αn)Jyn
∥∥

+ αn〈un – p, Jx – Jp〉
≤ ‖p‖ – αn〈p, Jp〉 – ( – αn)〈p, yn〉 + αn‖Jp‖ + ( – αn)‖Jyn‖

+ αn〈un – p, Jx – Jp〉
= αnφ(p,p) + ( – αn)φ(p, yn) + αn〈un – p, Jx – Jp〉
≤ ( – αn)knφ(p,xn) + αn〈un – p, Jx – Jp〉. (.)

The rest of the proof will be divided into two parts.

http://www.fixedpointtheoryandapplications.com/content/2013/1/132
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Case (). Suppose that there exists n such that {φ(p,xn)}∞n is nonincreasing. In this
situation, {φ(p,xn)}∞n is convergent. Together with (R), (R), and (.), we obtain

lim
n→∞ g

(‖Jxn – Jzn‖
)
= . (.)

Therefore, limn→∞ ‖Jxn – Jzn‖ =  and limn→∞ ‖xn – zn‖ = . Since d(xn,Txn) ≤ ‖xn – zn‖,
we obtain

lim
n→∞d(xn,Txn) = . (.)

Then

φ(zn, yn) = φ
(
zn, J–

[
βnJxn + ( – βn)Jzn

])
≤ βnφ(zn,xn) + ( – βn)φ(zn, zn)

= βnφ(zn,xn) →  (.)

and

φ(yn,un) = φ
(
yn, J–

[
αnJx + ( – αn)Jyn

])
≤ αnφ(yn,x) + ( – αn)φ(yn, yn)

= αnφ(yn,x) → . (.)

From (.), (.) and Lemma ., we have

lim
n→∞‖yn – zn‖ =  and lim

n→∞‖yn – un‖ = .

From (.), we have

lim
n→∞‖xn – un‖ = . (.)

Since I – T is demi-closed at zero, we choose a subsequence {xni} ⊂ {xn} such that xni ⇀

p∗ ∈ F(T). By Lemma .(c), we have

lim sup
n→∞

〈un – p, Jx – Jp〉

= lim sup
n→∞

〈xn – p, Jx – Jp〉

= lim
i→∞〈xni – p, Jx – Jp〉 = 〈

p∗ – p, Jx – Jp
〉 ≤ . (.)

Hence the conclusion follows.
Case (). Suppose that there exists a subsequence {xni} ⊂ {xn} such that φ(p,xni ) ≤

φ(p,xni+). Then, by Lemma ., there exists a nondecreasing sequence {mk} ⊂ N ,
mk → ∞ such that

φ(p,xmk ) ≤ φ(p,xmk+) and φ(p,xk) ≤ φ(p,xmk+).

http://www.fixedpointtheoryandapplications.com/content/2013/1/132
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This together with (.) gives

βmk ( – βmk )g
(‖Jxmk – Jzmk‖

) ≤ φ(p,xmk ) – φ(p,xmk+) + αmkM

for all k ∈N . Then, by conditions (R) and (R),

lim
k→∞

g
(‖Jxmk – Jzmk‖

)
= .

By the same argument as Case (), we get

lim
k→∞

sup〈umk – p, Jx – Jp〉 ≤ . (.)

From (.), we get

φ(p,xmk+) ≤ ( – αmk )kmkφ(p,xmk ) + αmk 〈umk – p, Jx – Jp〉

and

αmkkmkφ(p,xmk )≤ kmkφ(p,xmk ) – φ(p,xmk+) + αmk 〈umk – p, Jx – Jp〉.

Since φ(p,xmk ) – φ(p,xmk+)≤ , we have

αmkkmkφ(p,xmk )≤ (kmk – )φ(p,xmk ) + αmk 〈umk – p, Jx – Jp〉.

This implies that

φ(p,xmk ) ≤
kmk – 
αmk

φ(p,xmk ) + 〈umk – p, Jx – Jp〉.

From (.) and (R), we get limk→∞ φ(p,xmk ) ≤  and xmk → p. This implies that
limn→∞ xn = p, which yields that p = w = �F(T)x. Therefore, xn → �F(T)x. The proof of
Theorem . is completed. �

By Remark ., the following corollaries are obtained.

Corollary . Let X and D be as in Theorem ., and let T : D → CB(D) be a closed and
uniformly L-Lipschitz continuous relatively nonexpansive multi-valued mapping. Let {αn}
and {βn} be two sequences in (, ) satisfying
(R) limn→∞ αn = ;
(R)

∑∞
n= αn = ∞;

(R)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Let {xn} be the sequence generated by (.), where F(T) is the set of fixed points of T , and
�D is the generalized projection of X onto D, then {xn} converges strongly to �F(T)x.

If we take βn = β , the following result is obtained.

http://www.fixedpointtheoryandapplications.com/content/2013/1/132
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Corollary . Let X be a real uniformly smooth and strictly convex Banach space with the
Kadec-Klee property, let D be a nonempty closed convex subset of X and let T :D → CB(D)
be a closed and uniformly L-Lipschitz continuous quasi-φ-asymptotically nonexpansive
multi-valuedmapping with nonnegative real sequences {kn} ⊂ [, +∞), kn →  (as n→ ∞)
satisfying condition (.). Let {αn} be a sequence in (, ) satisfying
(Q) limn→∞ αn =  and limn→∞ kn–

αn
= ;

(Q)
∑∞

n= αn = ∞.
If β ∈ (, ) and {xn} is the sequence generated by

xn+ = �DJ–
[
αnJx + ( – αn)J

(
βJxn + ( – β)Jzn

)]
, zn ∈ Tnxn, (.)

where x ∈ X is arbitrary, F(T) is the fixed point set of T , and �D is the generalized projec-
tion of X onto D; if I – T is demi-closed at zero and F(T) is nonempty, then limn→∞ xn =
�F(T)x.
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