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Abstract
We present a modification of the double projection algorithm proposed by Solodov
and Svaiter for solving variational inequalities (VI) in a Hilbert space. The main
modification is to use the subgradient of a convex function to obtain a hyperplane,
and the second projection onto the intersection of the feasible set and a halfspace is
replaced by projection onto the intersection of two halfspaces. In addition, we
propose a modified version of our algorithm that is to find a solution of VI which is
also a fixed point of a given nonexpansive mapping. We establish weak convergence
theorems for our algorithms.
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1 Introduction
LetH be a real Hilbert space,C ⊂H be a nonempty, closed and convex set, and let f : C →
H be a mapping. The inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively.
We write xk ⇀ x to indicate that the sequence {xk} converges weakly to x and xk → x to
indicate that the sequence {xk} converges strongly to x. For each point x ∈H , there exists
a unique nearest point in C, which is called the projection of x onto C and denoted by
PC(x). That is

PC(x) = argmin
{‖y – x‖|y ∈ C

}
.

It is well known that the projection operator is nonexpansive (i.e., Lipschitz continuous
with a Lipschitz constant ), and hence is also a bounded mapping.
We consider the following variational inequality problem denoted by VI(C, f ): find a

vector x∗ ∈ C such that

〈
f
(
x∗), y – x∗〉 ≥  for all y ∈ C. (.)

The variational inequality problem was first introduced by Hartman and Stampacchia
[] in . In recent years, many iterative projection-type algorithms have been proposed
and analyzed for solving the variational inequality problem; see [] and the references
therein. To implement these algorithms, one has to compute the projection onto the fea-
sible set C, or onto some related set.
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In , Solodov and Svaiter [] proposed an algorithm for solving the VI(C, f ) in an
Euclidean space, known as the double projection algorithm due to the fact that one needs
to implement two projections in each iteration. One is onto the feasible set C, and the
other is onto the intersection of the feasible set C and the halfspace. More precisely, they
presented the following algorithm.

Algorithm . Choose an initial point x, parameters μ > , σ ,γ ∈ (, ) and set k = .
Step . Having xk , compute

yk = PC
[
xk –μf

(
xk

)]
.

Stop if xk = yk ; otherwise, go to Step .
Step . Compute zk = xk – ηk(xk – yk), where ηk = γmk with mk being the smallest non-

negative integer m such that

〈
f
(
xk – γm(

xk – yk
))
,xk – yk

〉 ≥ σ
∥∥xk – yk

∥∥. (.)

Step . Compute

xk+ = PC∩Hk

(
xk

)
,

where

Hk =
{
x ∈ R

n|〈f (zk),x – zk
〉 ≤ 

}
. (.)

Let k := k +  and return to Step .

Although [] shows that Algorithm . can get a longer stepsize, and hence is a better
algorithm than the extragradient method proposed by Korpelevich [] in theory, there is
still the need to calculate two projections onto the feasible set C and onto a related set
C ∩ Hk at each iteration. If the set C is simple enough (e.g., C is a halfspace or a ball)
so that projections onto it and the related set are easily executed, then Algorithm . is
particularly useful. But if C is a general closed and convex set, one has to solve the two
problems minx∈C ‖x – (xk – μf (xk))‖ and minx∈C∩Hk ‖x – xk‖ at each iteration to get the
next iterate xk+. This might seriously affect the efficiency of Algorithm ..
Recently, Censor et al. [, ] presented a subgradient extragradient projection method

for solving VI(C, f ). Inspired by the above works, in this paper we present a modification
of Algorithm . in a Hilbert space. Our algorithm replaces an iterate k PC∩Hk by PCk∩Hk ,
where Ck is a halfspace constructed by the subgradient and contains the feasible set C,
and Ck ∩ Hk is the intersection of two halfspaces. Observe that the projection onto the
intersection of two halfspaces is easily computable. In addition, we propose a modified
version of our algorithm that is to find a solution of VI which is also a fixed point of a given
nonexpansive mapping. We establish weak convergence theorems for our algorithms.

2 Preliminaries
In this section, we recall some useful definitions and results which will be used in this
paper.
We have the following properties on the projection operator, see [].
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Lemma . Let � ⊂H be a closed and convex set. Then for any x ∈H and z ∈ �,

()
∥∥P�(x) – z

∥∥ ≤ ‖x – z‖ – ∥∥P�(x) – x
∥∥;

()
〈
P�(x) – x, z – P�(x)

〉 ≥ .

The next property is known as the Opial condition []. Any Hilbert space has this prop-
erty.

Condition . (Opial) For any sequence {xk} in H that converges weakly to x (xk ⇀ x),

lim inf
k→∞

∥∥xk – x
∥∥ < lim inf

k→∞
∥∥xk – y

∥∥, y = x.

Lemma . Let H be a real Hilbert space and D be a nonempty, closed and convex subset
of H . Let the sequence {xk} ⊂H be Fejér-monotone with respect to D, i.e., for every u ∈ D,

∥∥xk+ – u
∥∥ ≤ ∥∥xk – u

∥∥, ∀k ≥ .

Then {PD(xk)} converges strongly to some z ∈D.

Proof See [, Lemma .]. �

Lemma . Let H be a real Hilbert space, {αk} be a real sequence satisfying  < a ≤ αk ≤
b <  for all k ≥ , and let {νk} and {ωk} be two sequences in H such that for some σ ≥ ,

lim sup
k→∞

∥∥νk∥∥ ≤ σ ,

lim sup
k→∞

∥∥ωk∥∥ ≤ σ

and

lim
k→∞

∥∥αkν
k + ( – αk)ωk∥∥ = σ .

Then

lim
k→∞

∥∥νk –ωk∥∥ = .

Proof See [, Lemma .]. �

The next fact is known as the demiclosedness principle [].

Lemma. Let H be a realHilbert space,Dbe a closed and convex subset of H and S :D →
H be a nonexpansive mapping. Then I – S (I is the identity operator on H) is demiclosed
at y ∈ H , i.e., for any sequence {xk} in D such that xk ⇀ x̄ ∈ D and (I – S)xk → y, we have
(I – S)x̄ = y.

http://www.fixedpointtheoryandapplications.com/content/2013/1/136
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Lemma . Let H be a real Hilbert space, h be a real-valued function on H and K be the
set {x ∈ H : h(x) ≤ }. If K is nonempty and h is Lipschitz continuous with modulus θ > ,
then

dist(x,K)≥ θ–h(x), ∀x ∈H , (.)

where dist(x,K) denotes the distance from x to K .

Proof It is clear that (.) holds for all x ∈ K . Hence, it suffices to show that (.) holds for
all x ∈ H\K . Let x ∈ H but x /∈ K . Since K is closed, there exists y ∈ K such that ‖x – y‖ =
dist(x,K). So, for an arbitrary positive number ε, there exists z ∈ K such that

‖x – z‖ ≤ dist(x,k) + ε.

Since h is Lipschitz continuous with modulus θ on H , we have

∣∣h(x) – h(z)
∣∣ ≤ θ‖x – z‖ ≤ θ dist(x,k) + εθ .

It follows from z ∈ K that h(z) ≤ . Thus we have

h(x)≤ h(x) – h(z) ≤ ∣∣h(x) – h(z)
∣∣ ≤ θ dist(x,K) + θε.

Let ε → +, we obtain the desired result. �

Remark . The idea of Lemma . is from Lemma . of []. In Lemma ., if we take
K := K ∩ C, where C is a closed subset of H and K ∩ C = ∅, then (.) still holds. In fact,
for each x ∈H , since C and C ∩K are closed, we haveminy∈K∩C ‖x– y‖ andminy∈K ‖x– y‖
exist, and

min
y∈K∩C ‖x – y‖ ≥ min

y∈K ‖x – y‖,

that is, dist(x,C ∩K) ≥ dist(x,K).

In this paper, we assume that the convex set C satisfies the following assumptions:
() The set C is given by

C =
{
x ∈H|c(x) ≤ 

}
, (.)

where c :H → R is a convex (not necessarily differentiable) function and C is nonempty.
Note that the differentiability of c(x) is not assumed, therefore the set C is quite general.

For example, any system of inequalities cj(x) ≤ , j ∈ J , where cj(x) is convex and J is an
arbitrary index set, is the same as the single inequality c(x) ≤  with c(x) = sup{cj(x)|j ∈ J}.
In fact, every closed convex set can be represented in this way, e.g., take c(x) = dist(x,C),
where dist is the distance function; see [, Section .(c)].
() For any x ∈H , at least one subgradient ξ ∈ ∂c(x) can be calculated, where ∂c(x) is the

subdifferential of c(x) at x and is defined as follows:

∂c(x) =
{
ξ ∈H|c(z) ≥ c(x) + 〈ξ , z – x〉 for all z ∈H

}
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/136
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Denote

Ck =
{
x ∈H|c(xk) + 〈

ξ k ,x – xk
〉 ≤ 

}
, (.)

where ξ k ∈ ∂c(xk).

Proposition . For every nonnegative integer k, let xk ∈ H and Ck be defined as in (.).
Then for any x ∈H , we have

PCk (x) =

⎧⎨
⎩
x – c(xk )+〈ξk ,x–xk〉

‖ξk‖ ξ k if c(xk) + 〈ξ k ,x – xk〉 > ,

x otherwise.
(.)

Proof See []. �

Remark . () From the definition of subdifferential, we have C ⊆ Ck for all k. In fact,
for any x ∈ C and ξ k ∈ ∂c(xk), we have

c
(
xk

)
+

〈
ξ k ,x – xk

〉 ≤ c(x) ≤ ,

i.e., x ∈ Ck and hence C ⊆ Ck .
() From Proposition ., we can observe that PCk can be explicitly represented with-

out resorting to projection operator, thus its computation is easy. Recently, Ck is often
regarded as the projection region in the algorithm of the split feasibility problem, see [–
].

3 The subgradient double projection algorithm
To this end, the following assumptions are needed.

Assumption
(A) The solution set of problem (.), denoted by SOL(C, f ), is nonempty.
(A) For all x ∈H , let y = PC[x –μf (x)] and [x, y] be a closed line segment joining x and

y, f satisfies

〈
f (z), z – x∗〉 ≥ , ∀z ∈ [x, y],x∗ ∈ SOL(C, f ).

(A) The mapping f is continuous and bounded on a bounded set of H .

Remark . () If f is Lipschitz continuous, then f is bounded on a bounded set of H, but
the continuity and boundedness cannot ensure the Lipschitz continuity. For example, let
H = R = (–∞, +∞) and f (x) = x, x ∈H . It is easy to see that f is continuous and bounded
on a bounded set of H , but we can see that f is not Lipschitz continuous. So, our assump-
tion (A) is weaker than Lipschitz continuous. Recently, the literature [] proposed two
subgradient extragradient algorithms for VI(C, f ) in a Hilbert space and established weak
convergence theorems for them under the assumptions of Lipschitz continuity andmono-
tonicity of f .
() Here, we give a concrete example satisfying condition (A). Let f : R→ R be defined

by f (x) =  – e–x, and C = [, ].

http://www.fixedpointtheoryandapplications.com/content/2013/1/136
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In this paper, we establish weak convergence theorem of subgradient double projection
methods for VI(C, f ) in a Hilbert space under assumptions (A)-(A).

Algorithm . Select x ∈ C, α > , β ≥ , σ > , μ ∈ (,σ –), γ ∈ (, ). Set k = .
Step . For xk ∈ C, define

yk = PC
(
xk –μf

(
xk

))
.

If xk = yk , stop; else go to Step .
Step . Compute zk = ( – ηk)xk + ηkyk , where ηk = γmk withmk being the smallest non-

negative integer m satisfying

〈
f
(
xk

)
– f

(
xk – γm(

xk – yk
))
,xk – yk

〉 ≤ σ
∥∥xk – yk

∥∥. (.)

Step . Compute xk+ = PCk∩Hk (x
k), where

Ck =
{
x ∈H|c(xk) + 〈

ξ k ,x – xk
〉 ≤ 

}
,

Hk = {v ∈H : hk(v)≤ } is a halfspace defined by the function

hk(v) =
〈
αηk

(
xk – yk

)
+ βf

(
xk

)
+ αμf

(
zk

)
, v – xk

〉
+ αηk( –μσ )

∥∥xk – yk
∥∥, (.)

and ξ k ∈ ∂c(xk).
Let k = k +  and return to Step .

Remark. () SinceCk andHk are halfspaces, and byProposition ., the projection onto
Ck ∩Hk can be directly calculated, so our Algorithm . can be more easily implemented
than Algorithm ..
() If yk = xk for some positive integer k, then xk is a solution of problem (.). In fact,

suppose yk = xk . Since yk = PC(xk –μf (xk)), it follows from Lemma .() that

〈
xk –μf

(
xk

)
– xk ,x – xk

〉 ≤ , ∀x ∈ C,

this means that xk is a solution of problem (.).

4 Convergence of the subgradient double projection algorithm
Now, we turn to consider the convergence of Algorithm .. Certainly, if an algorithm
terminates within finite steps, e.g., step k, then xk is a solution of problem (.). So, in the
following analysis, we assume that our algorithm always generates an infinite sequence.

Lemma . Let x∗ ∈ SOL(f ,C) and the function hk be defined by (.). Then

hk
(
xk

) ≥ αηk( –μσ )
∥∥xk – yk

∥∥ and hk
(
x∗) ≤ . (.)

In particular, if xk = yk , then hk(xk) > .

http://www.fixedpointtheoryandapplications.com/content/2013/1/136
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Proof

hk
(
xk

)
=

〈
αηk

(
xk – yk

)
+ βf

(
xk

)
+ αμf

(
zk

)
,xk – xk

〉
+ αηk( –μσ )

∥∥xk – yk
∥∥

= αηk( –μσ )
∥∥xk – yk

∥∥.

If xk = yk , then hk(xk) >  because μσ < . In the following, we prove that hk(x∗) ≤ . Since

yk = PC
(
xk –μf

(
xk

))
,

by () of Lemma ., we have

〈
xk – yk –μf

(
xk

)
, yk – x∗〉 ≥ . (.)

By assumption (A),

〈
μf

(
xk

)
,xk – x∗〉 ≥ . (.)

Adding inequalities (.) and (.), we obtain

〈
xk – yk –μf

(
xk

)
, yk – xk

〉
+

〈
xk – yk ,xk – x∗〉 ≥ . (.)

We have

〈
xk – x∗,αηk

(
xk – yk

)
+ βf

(
xk

)
+ αμf

(
zk

)〉

= αηk
〈
xk – x∗,xk – yk

〉
+ β

〈
f
(
xk

)
,xk – x∗〉 + αμ

〈
f
(
zk

)
,xk – x∗〉

≥ αηk
〈
xk – yk –μf

(
xk

)
,xk – yk

〉
+ αμηk

〈
f
(
zk

)
,xk – yk

〉

= αηk
∥∥xk – yk

∥∥ – αμηk
〈
f
(
xk

)
– f

(
zk

)
,xk – yk

〉

≥ αηk
∥∥xk – yk

∥∥ – αμσηk
∥∥xk – yk

∥∥

= ηkα( –μσ )
∥∥xk – yk

∥∥,

where the first inequality follows from (A) and (.) and the last one follows from (.).
It follows that

hk
(
x∗) = 〈

αηk
(
xk – yk

)
+ βf

(
xk

)
+ αμf

(
zk

)
,x∗ – xk

〉
+ ηkα( –μσ )

∥∥xk – yk
∥∥

= –
〈
αηk

(
xk – yk

)
+ βf

(
xk

)
+ αμf

(
zk

)
,xk – x∗〉 + ηkα( –μσ )

∥∥xk – yk
∥∥

≤ –ηkα( –μσ )
∥∥xk – yk

∥∥ + ηkα( –μσ )
∥∥xk – yk

∥∥ = .

The proof is completed. �

Lemma . Suppose assumptions (A)-(A) hold and the sequences {xk} and {yk} are gen-
eralized by Algorithm ., then there exists a positive number M such that

∥∥xk+ – x∗∥∥ ≤ ∥∥xk – x∗∥∥ –M–( –μσ )αη
k
∥∥yk – xk

∥∥, ∀k, (.)

where x∗ ∈ SOL(C, f ).

http://www.fixedpointtheoryandapplications.com/content/2013/1/136
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Proof From Lemma . and Remark .(), we get SOL(C, f ) ⊆ Hk ∩ Ck , and hence x∗ ∈
Hk ∩Ck . Since xk+ = PCk∩Hk (x

k), it follows from Lemma .() that

∥∥xk+ – x∗∥∥ ≤ ∥∥xk – x∗∥∥ –
∥∥xk+ – xk

∥∥

=
∥∥xk – x∗∥∥ – dist

(
xk ,Ck ∩Hk

)
. (.)

It follows that the sequence {‖xk – x∗‖} is nonincreasing, and hence is a convergent se-
quence. Thus, {xk} is bounded and

lim
k→∞

dist
(
xk ,Ck ∩Hk

)
= . (.)

Since f and the projection operator PC are continuous and bounded, we obtain that the
sequence {yk} and hence the sequences {f (xk)} and {f (zk)} are bounded, and for some
M > ,

∥∥αηk
(
xk – yk

)
+ βf

(
xk

)
+ αμf

(
zk

)∥∥ ≤M, ∀k. (.)

Clearly, each function hk is Lipschitz continuous on H with modulus M. Applying
Lemma . and Remark ., we obtain that

dist
(
xk ,Ck ∩Hk

) ≥ M–hk
(
xk

) ≥ M–αηk( –μσ )
∥∥xk – yk

∥∥,

which, together with (.), yields that

∥∥xk+ – x∗∥∥ ≤ ∥∥xk – x∗∥∥ –M–( –μσ )αη
k
∥∥yk – xk

∥∥, ∀k.
�

Theorem . Suppose assumptions (A)-(A) hold, then any sequence {xk} generalized by
Algorithm . weakly converges to some solution u∗ ∈ SOL(C, f ).

Proof By Lemma ., the sequence {xk} is bounded and

lim
k→∞

ηk
∥∥xk – yk

∥∥ = . (.)

If lim supk→∞ ηk > , then we have lim infk→∞ ‖xk – yk‖ = . Therefore there exists a weak
accumulation point x̄ of {xk}, and two subsequences {xkj} and {ykj} of {xk} and {yk}, respec-
tively, such that

lim
j→∞

∥∥xkj – ykj
∥∥ =  (.)

and

xkj ⇀ x̄, as j → ∞. (.)

Since xkj – (xkj – ykj ) = PC(xkj –μf (xkj )), it follows from Lemma .() that

〈
x – xkj +

(
xkj – ykj

)
,xkj –μf

(
xkj

)
– ykj

〉 ≤ , ∀x ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/136
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Letting j → ∞, taking into account (.), (.) and the continuity of f , we obtain

〈
f (x̄),x – x̄

〉 ≥ , x ∈ C,

i.e., x̄ is a solution of problem (.). In order to show that the entire sequence {xk} weakly
converges to x̄, assume that there exists another subsequence {xk̄j} of {xk} that weakly
converges to some x̄′ = x̄ and x̄′ ∈ SOL(C, f ). It follows from Lemma . that the sequences
{‖xk – x̄‖} and {‖xk – x̄′‖} are decreasing. By the Opial condition, we have

lim
k→∞

∥∥xk – x̄
∥∥ = lim inf

j→∞
∥∥xkj – x̄

∥∥ < lim inf
j→∞

∥∥xkj – x̄′∥∥

= lim
k→∞

∥∥xk – x̄′∥∥ = lim inf
j→∞

∥∥xk̄j – x̄′∥∥

< lim inf
j→∞

∥∥xk̄j – x̄
∥∥ = lim

k→∞
∥∥xk – x̄

∥∥,

which is a contradiction. Thus x̄′ = x̄. This implies that the sequence {xk} converges weakly
to x̄ ∈ SOL(C, f ).
Suppose now that limj→∞ ηkj = . By the choice of ηk , (.) implies that

σ
∥∥xkj – ykj

∥∥ <
〈
f
(
xkj

)
– f

(
xkj – γ

mkj–
(
xkj – ykj

))
,xkj – ykj

〉

=
〈
f
(
xkj

)
– f

(
xkj – γ –ηkj

(
xkj – ykj

))
,xkj – ykj

〉
.

Since {xk} and {yk} are bounded and f is continuous, we obtain by letting j → ∞ that
limj→∞ ‖xkj – ykj‖ = . Applying the similar proof to the previous case, we get the desired
result. �

Remark . If the mapping f is pseudomonotone on C, i.e.,

〈
f (y),x – y

〉 ≥  �⇒ 〈
f (x),x – y

〉 ≥ , ∀x, y ∈ C,

then SOL(f ,C) is a closed and convex set. In fact, if f is pseudomonotone on C, then for
any x∗ ∈ SOL(C, f ), we have

〈
f (x),x – x∗〉 ≥ , ∀x ∈ C.

Hence, it suffices to show that the solution set SOL(C, f ) can be characterized as the in-
tersection of a family of halfspaces. That is,

SOL(C, f ) =
⋂
x∈C

{
y ∈ C|〈f (x),x – y

〉 ≥ 
}

since

SOL(C, f ) =
⋂
x∈C

{
y ∈ C|〈f (y),x – y

〉 ≥ 
}
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/136
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From the pseudomonotonicity of f , we obtain

⋂
x∈C

{
y ∈ C|〈f (y),x – y

〉 ≥ 
} ⊆

⋂
x∈C

{
y ∈ C|〈f (x), y – x

〉 ≥ 
}
.

So, we need only to prove

⋂
x∈C

{
y ∈ C|〈f (y),x – y

〉 ≥ 
} ⊇

⋂
x∈C

{
y ∈ C|〈f (x),x – y

〉 ≥ 
}
. (.)

We suppose that the conclusion (.) does not hold, then there exist y and x in C such
that

〈
f (x),x – y

〉 ≥  for all x ∈ C, (.)

and

〈
f (y),x – y

〉
< . (.)

In (.), taking x = ( – t)y + tx, t ∈ (, ), we obtain

〈
f
(
( – t)y + tx

)
,x – y

〉 ≥ .

Letting t → +, it follows from the continuity of f that

〈
f (y),x – y

〉 ≥ ,

which contradicts (.). We obtain the desired conclusion. Therefore the solution set
SOL(C, f ) is closed and convex.
In Theorem ., if SOL(f ,C) is a closed set, then we can furthermore obtain

u∗ = lim
k→∞

PSOL(C,f )
(
xk

)
.

In fact, we take

uk = PSOL(C,f )
(
xk

)
.

By Lemma .() and noting x̄ ∈ SOL(C, f ), we have

〈
x̄ – uk ,uk – xk

〉 ≥ .

By Lemma ., {uk} converges strongly to some u∗ ∈ SOL(C, f ). Therefore

〈
x̄ – u∗,u∗ – x̄

〉 ≥ ,

and hence u∗ = x̄.
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5 Themodified subgradient double projection algorithm
In this section, we present amodified subgradient double projection algorithmwhich finds
a solution of the VI(C, f ) which is also a fixed point of a given nonexpansive mapping. Let
S :H →H be a nonexpansive mapping and denote by Fix(S) its fixed point set, i.e.,

Fix(S) =
{
x ∈H|S(x) = x

}
.

Let {αk}∞k= ⊂ [c,d] for some c,d ∈ (, ).

Algorithm . Select x ∈ C, α > , β ≥ , σ > , μ ∈ (,σ –), γ ∈ (, ). Set k = .
Step . For xk ∈ C, define

yk = PC
(
xk –μf

(
xk

))
.

If xk = yk , stop; else go to Step .
Step . Compute zk = ( – ηk)xk + ηkyk , where ηk = γmk withmk being the smallest non-

negative integer m satisfying

〈
f
(
xk

)
– f

(
xk – γm(

xk – yk
))
,xk – yk

〉 ≤ σ
∥∥xk – yk

∥∥. (.)

Step . Compute

xk+ = αkxk + ( – αk)SPCk∩Hk

(
xk

)
,

where

Ck =
{
x ∈H|c(xk) + 〈

ξ k ,x – xk
〉 ≤ 

}
,

Hk = {v ∈H : hk(v)≤ } being a halfspace defined by the function

hk(v) =
〈
αηk

(
xk – yk

)
+ βf

(
xk

)
+ αμf

(
zk

)
, v – xk

〉
+ αηk( –μσ )

∥∥xk – yk
∥∥, (.)

and ξ k ∈ ∂c(xk). Let k = k +  and return to Step .

6 Convergence of themodified subgradient double projection algorithm
In this section, we establish a weak convergence theorem for Algorithm .. We assume
that the following condition holds:

Fix(S)∩ SOL(C, f ) = ∅.

We also recall that in a Hilbert space H ,

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖ (.)

for all x, y ∈ H and λ ∈ [, ].
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Theorem . Suppose that assumptions (A)-(A) hold, then any sequence {xk} general-
ized by Algorithm . weakly converges to some solution u∗ ∈ Fix(S)∩ SOL(C, f ).

Proof Denote tk = PCk∩Hk (x
k) for all k. Let u ∈ Fix(S)∩SOL(C, f ). By the definition of xk+,

we obtain

∥∥xk+ – u
∥∥ =

∥∥αkxk + ( – αk)S
(
tk

)
– u

∥∥

=
∥∥αk

(
xk – u

)
+ ( – αk)

(
S
(
tk

)
– u

)∥∥ (.)

= αk
∥∥xk – u

∥∥ + ( – αk)
∥∥S(tk) – u

∥∥ – αk( – αk)
∥∥xk – S

(
tk

)∥∥

≤ αk
∥∥xk – u

∥∥ + ( – αk)
∥∥S(tk) – S(u)

∥∥

≤ αk
∥∥xk – u

∥∥ + ( – αk)
∥∥tk – u

∥∥

≤ αk
∥∥xk – u

∥∥ + ( – αk)
(∥∥xk – u

∥∥ –
∥∥tk – xk

∥∥)

=
∥∥xk – u

∥∥ – ( – αk)
∥∥tk – xk

∥∥ (.)

=
∥∥xk – u

∥∥ – ( – αk)dist
(
xk ,Ck ∩Hk

)
, (.)

where the third equality follows from (.), the second inequality follows from the nonex-
pansion of S and the third inequality follows from Lemma .(). In (.), using the proof
similar to those of Lemma . and Theorem ., we obtain that there exists subsequences
{xkj} and {ykj} of {xk} and {yk}, respectively, such that

lim
j→∞

∥∥xkj – ykj
∥∥ = . (.)

By (.), we obtain that {‖xk – u‖} is a convergent sequence, i.e., there exists some σ > 
such that

lim
k→∞

∥∥xk – u
∥∥ = σ (.)

and

lim
k→∞

∥∥xk – tk
∥∥ =  (.)

and {xk} and {tk} are bounded. Hence wemay assume, without loss of generality, that {xkj}
weakly converges to some x̄ ∈H . We now show that

x̄ ∈ Fix(S)∩ SOL(C, f ).

By the triangle inequality,

∥∥tk – yk
∥∥ ≤ ∥∥tk – xk

∥∥ +
∥∥xk – yk

∥∥, (.)

so by (.) and (.), we obtain

lim
j→∞

∥∥tkj – ykj
∥∥ = . (.)
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Since tkj – (tkj – ykj ) = PC[xkj –μf (xkj )], it follows from Lemma .() that

〈
x – tkj +

(
tkj – ykj

)
,xkj –μf

(
xkj

)
– tkj +

(
tkj – ykj

)〉 ≤  for all x ∈ C.

Passing to the limit j → ∞ in the above inequality, taking into account (.), (.), C ⊂ Ckj
and the continuity of f , we obtain

〈
f (x̄),x – x̄

〉 ≥  for all x ∈ C,

i.e., x̄ ∈ SOL(C, f ). It is now left to show that x̄ ∈ Fix(S). Since S is nonexpansive, we obtain

∥∥S(tk) – u
∥∥ =

∥∥S(tk) – S(u)
∥∥ ≤ ∥∥tk – u

∥∥ ≤ ∥∥xk – u
∥∥. (.)

By (.),

lim sup
k→∞

∥∥S(tk) – u
∥∥ ≤ σ . (.)

Furthermore,

lim
k→∞

∥∥αk
(
xk – u

)
+ ( – αk)

(
S
(
tk

)
– u

)∥∥

= lim
k→∞

∥∥αkxk + ( – αk)S
(
tk

)
– u

∥∥

= lim
k→∞

∥∥xk+ – u
∥∥ = σ . (.)

So, applying Lemma ., we obtain

lim
k→∞

∥∥S(tk) – xk
∥∥ =  (.)

since

∥∥S(xk) – xk
∥∥ =

∥∥S(xk) – S
(
tk

)
+ S

(
tk

)
– xk

∥∥
≤ ∥∥S(xk) – S

(
tk

)∥∥ +
∥∥S(tk) – xk

∥∥
≤ ∥∥xk – tk

∥∥ +
∥∥S(tk) – xk

∥∥.

It follows from (.) and (.) that

lim
k→∞

∥∥S(xk) – xk
∥∥ = . (.)

Since S is nonexpansive on H , xkj weakly converges to x̄ and

lim
j→∞

∥∥(I – S)
(
xkj

)∥∥ = lim
j→∞

∥∥xkj – S
(
xkj

)∥∥ = , (.)

we obtain by Lemma . that (I – S)(x̄) = , which means that x̄ ∈ Fix(S). Now, again by
using similar arguments to those used in the proof of Theorem ., we obtain that the
entire sequence {xk}weakly converges to x̄. Therefore the sequence {xk}weakly converges
to x̄ ∈ Fix(S)∩ SOL(C, f ). �
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7 Conclusion
In this paper, a new double projection algorithm for the variational inequality problem has
been presented. Themain advantage of the proposedmethod is that the second projection
at each iteration is onto the intersection set of two halfspaces, which is implemented very
easily. When the feasible set C of VI is a quite general set, our algorithm is more effective
than the double projection method proposed by Solodov and Svaiter. It is natural to ask
whether it is possible to replace the first projection onto the halfspace or the intersection
set of halfspaces. This would be an interesting topic in further research.
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