RESEARCH

Open Access

On (α^*, ψ) -contractive multi-valued mappings

Muhammad Usman Ali¹ and Tayyab Kamran^{2*}

*Correspondence: tayyabkamran@gmail.com ²Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan Full list of author information is available at the end of the article

Abstract

In this paper, we generalize the contractive condition for multi-valued mappings given by Asl, Rezapour and Shahzad in 2012. We establish some fixed point theorems for multi-valued mappings from a complete metric space to the space of closed or bounded subsets of the metric space satisfying generalized (α^*, ψ)-contractive condition.

MSC: 47H10; 54H25

Keywords: α -admissible; α^* - ψ -contractive mapping; generalized (α^*, ψ)-contractive mapping

1 Introduction

Samet *et al.* [1] introduced the notion of α - ψ -contractive self-mappings of a metric space. Recently, Asl *et al.* [2] introduced the notion of α^* - ψ -contractive mappings to extend the notion α - ψ -contractive mappings. In this paper, we generalize the notion of α^* - ψ -contractive mappings and prove some fixed point theorems for such mappings.

Let Ψ be a family of nondecreasing functions, $\psi : [0, \infty) \to [0, \infty)$ such that $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for each t > 0, where ψ^n is the *n*th iterate of ψ . It is known that for each $\psi \in \Psi$, we have $\psi(t) < t$ for all t > 0 and $\psi(0) = 0$ for t = 0 [1]. Let (X, d) be a metric space. A mapping $G : X \to X$ is called $\alpha \cdot \psi$ -contractive if there exist two functions $\alpha : X \times X \to [0, \infty)$ and $\psi \in \Psi$ such that $\alpha(x, y)d(Gx, Gy) \leq \psi(d(x, y))$ for each $x, y \in X$. A mapping $G : X \to X$ is called α -admissible [1] if $\alpha(x, y) \geq 1 \Rightarrow \alpha(Gx, Gy) \geq 1$. We denote by N(X) the space of all nonempty subsets of X, by B(X) the space of all nonempty bounded subsets of X and by CL(X) the space of all nonempty closed subsets of X. For $A \in N(X)$ and $x \in X$, $d(x, A) = \inf\{d(x, a) : a \in A\}$. For every $A, B \in B(X)$, $\delta(A, B) = \sup\{d(a, b) : a \in A, b \in B\}$. When $A = \{x\}$, we denote $\delta(A, B)$ by $\delta(x, B)$. For every $A, B \in CL(X)$, let

$$H(A,B) = \begin{cases} \max\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\} & \text{if the maximum exists;} \\ \infty & \text{otherwise.} \end{cases}$$

Such a map *H* is called generalized Hausdorff metric induced by *d*. Let (X, \leq, d) be an ordered metric space and $A, B \subseteq X$. We say that $A \prec_r B$ if for each $a \in A$ and $b \in B$, we have $a \leq b$. We give a few definitions and the result due to Asl *et al.* [2] for convenience.

© 2013 Ali and Kamran; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. **Definition 1.1** [2] Let (X, d) be a metric space and let $\alpha : X \times X \to [0, \infty)$ be a mapping. A mapping $G : X \to CL(X)$ is α^* -admissible if $\alpha(x, y) \ge 1 \Rightarrow \alpha^*(Gx, Gy) \ge 1$, where $\alpha^*(Gx, Gy) = \inf\{\alpha(a, b) : a \in Gx, b \in Gy\}.$

Definition 1.2 [2] Let (X, d) be a metric space. A mapping $G : X \to CL(X)$ is called $\alpha^* - \psi$ contractive if there exist two functions $\alpha : X \times X \to [0, \infty)$ and $\psi \in \Psi$ such that

$$\alpha^*(Gx, Gy)H(Gx, Gy) \le \psi(d(x, y))$$
(1.1)

for all $x, y \in X$.

Theorem 1.3 [2] Let (X, d) be a complete metric space, let $\alpha : X \times X \to [0, \infty)$ be a function, let $\psi \in \Psi$ be a strictly increasing map and T be a closed-valued, α^* -admissible and α^* - ψ -contractive multi-function on X. Suppose that there exist $x_0 \in X$ and $x_1 \in Gx_0$ such that $\alpha(x_0, x_1) \ge 1$. Assume that if $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all nand $x_n \to x$, then $\alpha(x_n, x) \ge 1$ for all n. Then G has a fixed point.

2 Main results

We begin this section by introducing the following definition.

Definition 2.1 Let (X, d) be a metric space and let $G : X \to CL(X)$ be a mapping. We say that *G* is generalized (α^*, ψ) -contractive if there exists $\psi \in \Psi$ such that

$$\alpha^*(Gx, Gy)d(y, Gy) \le \psi(d(x, y)) \tag{2.1}$$

for each $x \in X$ and $y \in Gx$, where $\alpha^*(Gx, Gy) = \inf\{\alpha(a, b) : a \in Gx, b \in Gy\}$.

Note that an $\alpha^* \cdot \psi$ -contractive mapping is generalized (α^*, ψ)-contractive. In case when $\psi \in \Psi$ is strictly increasing, generalized (α^*, ψ)-contractive is called strictly generalized (α^*, ψ)-contractive. The following lemma is inspired by [3, Lemma 2.2].

Lemma 2.2 Let (X, d) be a metric space and $B \in CL(X)$. Then, for each $x \in X$ with d(x, B) > 0 and q > 1, there exists an element $b \in B$ such that

$$d(x,b) < qd(x,B). \tag{2.2}$$

Proof It is given that d(x, B) > 0. Choose

 $\epsilon = (q-1)d(x,B).$

Then, by using the definition of d(x, B), it follows that there exists $b \in B$ such that

$$d(x,b) < d(x,B) + \epsilon = qd(x,B).$$

Lemma 2.3 Let (X,d) be a metric space and $G: X \to CL(X)$. Assume that there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} d(x_n, Gx_n) = 0$ and $x_n \to x \in X$. Then x is a fixed point of G if and only if the function $f(\xi) = d(\xi, G\xi)$ is lower semi-continuous at x.

Proof Suppose $f(\xi) = d(\xi, G\xi)$ is lower semi-continuous at *x*, then

$$d(x,Gx) \leq \liminf_{n} f(x_n) = \liminf_{n} d(x_n,Gx_n) = 0.$$

By the closedness of *G* it follows that $x \in Gx$. Conversely, suppose that *x* is a fixed point of *G*, then $f(x) = 0 \le \liminf_n f(x_n)$.

Theorem 2.4 Let (X,d) be a complete metric space and let $G: X \to CL(X)$ be an α^* -admissible strictly generalized (α^*, ψ) -contractive mapping. Assume that there exist $x_0 \in X$ and $x_1 \in Gx_0$ such that $\alpha(x_0, x_1) \ge 1$. Then x is a fixed point of G if and only if $f(\xi) = d(\xi, G\xi)$ is lower semi-continuous at x.

Proof By the hypothesis, there exist $x_0 \in X$ and $x_1 \in Gx_0$ such that $\alpha(x_0, x_1) \ge 1$. If $x_0 = x_1$, then we have nothing to prove. Let $x_0 \neq x_1$. If $x_1 \in Gx_1$, then x_1 is a fixed point. Let $x_1 \notin Gx_1$. Since *G* is α^* -admissible, so $\alpha^*(Gx_0, Gx_1) \ge 1$, we have

$$0 < d(x_1, Gx_1) \le \alpha^* (Gx_0, Gx_1) d(x_1, Gx_1).$$
(2.3)

For given q > 1 by Lemma 2.2, there exists $x_2 \in Gx_1$ such that

$$0 < d(x_1, x_2) < qd(x_1, Gx_1).$$
(2.4)

It follows from (2.3), (2.4) and (2.1) that

$$0 < d(x_1, x_2) < q\psi(d(x_0, x_1)).$$
(2.5)

It is clear that $x_1 \neq x_2$ and $\alpha(x_1, x_2) \ge 1$. Thus $\alpha^*(Gx_1, Gx_2) \ge 1$. Since ψ is strictly increasing, by (2.5), we have

$$\psi(d(x_1,x_2)) < \psi(q\psi(d(x_0,x_1))).$$

Put $q_1 = \frac{\psi(q\psi(d(x_0,x_1)))}{\psi(d(x_1,x_2))}$, then $q_1 > 1$. If $x_2 \in Gx_2$, then x_2 is a fixed point. Let $x_2 \notin Gx_2$, then by Lemma 2.2, there exists $x_3 \in Gx_2$ such that

$$0 < d(x_2, x_3) < q_1 d(x_2, Gx_2) \le q_1 \alpha^* (Gx_1, Gx_2) d(x_2, Gx_2)$$

$$\le q_1 \psi (d(x_1, x_2)) = \psi (q \psi (d(x_0, x_1))).$$

It is clear that $x_2 \neq x_3$, $\alpha(x_2, x_3) \geq 1$ and $\psi(d(x_2, x_3)) < \psi^2(q\psi(d(x_0, x_1)))$. Now put $q_2 = \frac{\psi^2(q\psi(d(x_0, x_1)))}{\psi(d(x_2, x_3))}$. Then $q_2 > 1$. If $x_3 \in Gx_3$, then x_3 is a fixed point. Let $x_3 \notin Gx_3$. Then by Lemma 2.2 there exists $x_4 \in Gx_3$ such that

$$0 < d(x_3, x_4) < q_2 d(x_3, Gx_3) \le q_2 \alpha^* (Gx_2, Gx_3) d(x_3, Gx_3)$$
$$\le q_2 \psi \left(d(x_2, x_3) \right) = \psi^2 \left(q \psi \left(d(x_0, x_1) \right) \right).$$

By continuing the same process, we get a sequence $\{x_n\}$ in X such that $x_{n+1} \in Gx_n$. Also, $x_n \neq x_{n+1}, \alpha(x_n, x_{n+1}) \ge 1$ and $0 < d(x_n, x_{n+1}) < \psi^{n-1}(q\psi(d(x_0, x_1)))$ or

$$0 < d(x_n, Gx_n) < \psi^{n-1} (q \psi (d(x_0, x_1))).$$
(2.6)

For each m > n, we have

.

(

$$d(x_n, x_m) \leq \sum_{i=n}^{m-1} d(x_i, x_{i+1}) < \sum_{i=n}^{m-1} \psi^{i-1} (q \psi (d(x_0, x_1))).$$

Since $\psi \in \Psi$, it follows that $\{x_n\}$ is a Cauchy sequence in *X*. Thus there is $x \in X$ such that $x_n \to x$. Letting $n \to \infty$ in (2.6), we have

$$\lim_{n \to \infty} d(x_n, Gx_n) = 0.$$
(2.7)

The rest of the proof follows from Lemma 2.3.

Example 2.5 Let $X = \mathbb{R}$ be endowed with the usual metric *d*. Define $G : X \to CL(X)$ and $\alpha : X \times X \to [0, \infty)$ by

$$Gx = \begin{cases} [x, \infty) & \text{if } x \ge 0, \\ (-\infty, -x^2] & \text{if } x < 0 \end{cases}$$
(2.8)

and

$$\alpha(x, y) = \begin{cases} 1 & \text{if } x, y \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$
(2.9)

Let $\psi(t) = \frac{t}{2}$ for all $t \ge 0$. For each $x \in X$ and $y \in Gx$, we have

$$\alpha^*(Gx,Gy)d(y,Gy)=0\leq \frac{1}{2}d(x,y).$$

Hence *G* is a strictly generalized (α^*, ψ) -contractive mapping. Clearly, *G* is α^* -admissible. Also, we have $x_0 = 1$ and $x_1 = 1 \in Gx_0$ such that $\alpha(x_0, x_1) = 1$. Therefore, all conditions of Theorem 2.4 are satisfied and *G* has infinitely many fixed points. Note that Theorem 1.3 in Section 1 is not applicable here. For example, take x = 1 and y = -1.

Corollary 2.6 Let (X, \leq, d) be a complete ordered metric space, $\psi \in \Psi$ be a strictly increasing map and $G: X \to CL(X)$ be a mapping such that for each $x \in X$ and $y \in Gx$ with $x \leq y$, we have

$$d(y,Gy) \le \psi(d(x,y)). \tag{2.10}$$

Also, assume that

- (i) there exist $x_0 \in X$ and $x_1 \in Gx_0$ such that $x_0 \leq x_1$,
- (ii) if $x \leq y$, then $Gx \prec_r Gy$.

Then x is a fixed point of G if and only if $f(\xi) = d(\xi, G\xi)$ is lower semi-continuous at x.

Proof Define $\alpha : X \times X \to [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} 1 & \text{if } x \leq y, \\ 0 & \text{otherwise.} \end{cases}$$

By using condition (i) and the definition of α , we have $\alpha(x_0, x_1) = 1$. Also, from condition (ii), we have $x \leq y$ implies $Gx \prec_r Gy$; by using the definitions of α and \prec_r , we have $\alpha(x, y) = 1$ implies $\alpha^*(Gx, Gy) = 1$. Moreover, it is easy to check that *G* is a strictly generalized (α^*, ψ) -contractive mapping. Therefore, by Theorem 2.4, *x* is a fixed point of *G* if and only if $f(\xi) = d(\xi, G\xi)$ is lower semi-continuous at *x*.

Definition 2.7 Let (X, d) be a metric space and $G : X \to B(X)$ be a mapping. We say that *G* is a generalized (α^*, ψ, δ) -contractive mapping if there exists $\psi \in \Psi$ such that

$$\alpha^*(Gx, Gy)\delta(y, Gy) \le \psi(d(x, y))$$
(2.11)

for each $x \in X$ and $y \in Gx$, where $\alpha^*(Gx, Gy) = \inf\{\alpha(a, b) : a \in Gx, b \in Gy\}.$

Lemma 2.8 Let (X,d) be a metric space and $G: X \to B(X)$. Assume that there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} \delta(x_n, Gx_n) = 0$ and $x_n \to x \in X$. Then $\{x\} = Gx$ if and only if the function $f(\xi) = \delta(\xi, G\xi)$ is lower semi-continuous at x.

Proof Suppose that $f(\xi) = \delta(\xi, G\xi)$ is lower semi-continuous at *x*, then

 $\delta(x, Gx) \leq \liminf_{n} f(x_n) = \liminf_{n} \delta(x_n, Gx_n) = 0.$

Hence, $\{x\} = Gx$ because $\delta(A, B) = 0$ implies $A = B = \{a\}$. Conversely, suppose that $\{x\} = Gx$. Then $f(x) = 0 \le \liminf_n f(x_n)$.

Theorem 2.9 Let (X,d) be a complete metric space and let $G : X \to B(X)$ be an α^* -admissible generalized (α^*, ψ, δ) -contractive mapping. Assume that there exist $x_0 \in X$ and $x_1 \in Gx_0$ such that $\alpha(x_0, x_1) \ge 1$. Then there exists $x \in X$ such that $\{x\} = Gx$ if and only if $f(\xi) = \delta(\xi, G\xi)$ is lower semi-continuous at x.

Proof By the hypothesis of the theorem, there exist $x_0 \in X$ and $x_1 \in Gx_0$ such that $\alpha(x_0, x_1) \ge 1$. Assume that $x_0 \ne x_1$, for otherwise, x_0 is a fixed point. Let $x_1 \notin Gx_1$. As *G* is α^* -admissible, we have $\alpha^*(Gx_0, Gx_1) \ge 1$. Then

$$\delta(x_1, Gx_1) \le \alpha^*(Gx_0, Gx_1)\delta(x_1, Gx_1) \le \psi(d(x_0, x_1)).$$
(2.12)

Since $Gx_1 \neq \emptyset$, there is $x_2 \in Gx_1$. Then

$$0 < d(x_1, x_2) \le \delta(x_1, Gx_1). \tag{2.13}$$

From (2.12) and (2.13), we have

 $0 < d(x_1, x_2) \le \psi(d(x_0, x_1)).$ (2.14)

Since ψ is nondecreasing, we have

$$\psi(d(x_1, x_2)) \le \psi^2(d(x_0, x_1)).$$
(2.15)

As $x_2 \in Gx_1$, we have $\alpha(x_1, x_2) \ge 1$. Since $Gx_2 \neq \emptyset$, there is $x_3 \in Gx_2$. Assume that $x_2 \neq x_3$, for otherwise, x_2 is a fixed point of *G*. Then

$$0 < d(x_2, x_3) \le \delta(x_2, Gx_2) \le \alpha^* (Gx_1, Gx_2) \delta(x_2, Gx_2)$$

$$\le \psi (d(x_1, x_2)) \le \psi^2 (d(x_0, x_1)).$$
(2.16)

Since ψ is nondecreasing, we have

$$\psi(d(x_2, x_3)) \le \psi^3(d(x_0, x_1)). \tag{2.17}$$

By continuing in this way, we get a sequence $\{x_n\}$ in X such that $x_{n+1} \in Gx_n$ and $x_n \neq x_{n+1}$ for n = 0, 1, 2, 3, ... Further we have

$$0 < d(x_n, x_{n+1}) \le \delta(x_n, Gx_n) \le \psi^n (d(x_0, x_1)).$$
(2.18)

For each m > n, we have

$$d(x_n, x_m) \leq \sum_{i=n}^{m-1} d(x_i, x_{i+1}) \leq \sum_{i=n}^{m-1} \psi^i (d(x_0, x_1)).$$

Since $\psi \in \Psi$, it follows that $\{x_n\}$ is a Cauchy sequence in *X*. As *X* is complete, there exists $x \in X$ such that $x_n \to x$. Letting $n \to \infty$ in (2.18), we have

$$\lim_{n \to \infty} \delta(x_n, Gx_n) = 0.$$
(2.19)

The rest of the proof follows from Lemma 2.8.

Example 2.10 Let $X = \{0, 2, 4, 6, 8, 10, ...\}$ be endowed with the usual metric *d*. Define $G: X \rightarrow B(X)$ and $\alpha: X \times X \rightarrow [0, \infty)$ by

$$Gx = \begin{cases} \{(x-2), x\} & \text{if } x \neq 0, \\ \{0\} & \text{if } x = 0 \end{cases}$$

and

$$\alpha(x, y) = \begin{cases} 0 & \text{if } x = y \neq 0, \\ 1 & \text{if } x = y = 0, \\ \frac{1}{4} & \text{otherwise.} \end{cases}$$

Let $\psi(t) = \frac{t}{2}$ for all $t \ge 0$. For each $x \in X$ and $y \in Gx$, we have

$$\alpha^*(Gx,Gy)\delta(y,Gy) \leq \frac{1}{2}(d(x,y)).$$

Hence *G* is a generalized (α^*, ψ, δ) -contractive mapping. Clearly, *G* is α^* -admissible. Also, we have $x_0 = 0 \in X$ and $x_1 = 0 \in G0$ such that $\alpha(x_0, x_1) = 1$. Therefore, all conditions of Theorem 2.9 are satisfied and *G* has infinitely many fixed points.

Corollary 2.11 Let (X, \leq, d) be a complete ordered metric space, $\psi \in \Psi$ and $G: X \to B(X)$ be a mapping such that for each $x \in X$ and $y \in Gx$ with $x \leq y$, we have

$$\delta(y, Gy) \le \psi(d(x, y)). \tag{2.20}$$

Also, assume that

- (i) there exists $x_0 \in X$ such that $\{x_0\} \prec_1 Gx_0$, i.e., there exists $x_1 \in Gx_0$ such that $x_0 \preceq x_1$,
- (ii) if $x \leq y$, then $Gx \prec_r Gy$.

Then there exists $x \in X$ such that $\{x\} = Gx$ if and only if $f(\xi) = \delta(\xi, G\xi)$ is lower semicontinuous at x.

Proof Define $\alpha : X \times X \rightarrow [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} 1 & \text{if } x \leq y, \\ 0 & \text{otherwise.} \end{cases}$$

By using condition (i) and the definition of α , we have $\alpha(x_0, x_1) = 1$. Also, from condition (ii), we have $x \leq y$ implies $Gx \prec_r Gy$, by using the definitions of α and \prec_r , we have $\alpha(x, y) = 1$ implies $\alpha^*(Gx, Gy) = 1$. Moreover, it is easy to check that *G* is a generalized (α^*, ψ, δ) -contractive mapping. Therefore, by Theorem 2.9, there exists $x \in X$ such that $\{x\} = Gx$ if and only if $f(\xi) = \delta(\xi, G\xi)$ is lower semi-continuous at x.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed equally in this article.

Author details

¹Centre for Advanced Mathematics and Physics, National University of Sciences and Technology H-12, Islamabad, Pakistan. ²Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan.

Acknowledgements

Authors are grateful to referees for their suggestions and careful reading.

Received: 14 February 2013 Accepted: 10 May 2013 Published: 28 May 2013

References

- Samet, B, Vetro, C, Vetro, P: Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 75, 2154-2165 (2012)
- Asl, JH, Rezapour, S, Shahzad, N: On fixed points of α-ψ-contractive multifunctions. Fixed Point Theory Appl. 2012, 212 (2012). doi:10.1186/1687-1812-2012-212
- 3. Kamran, T: Mizoguchi-Takahashi's type fixed point theorem. Comput. Math. Appl. 57, 507-511 (2009)

doi:10.1186/1687-1812-2013-137

Cite this article as: Ali and Kamran: On (α^* , ψ)-contractive multi-valued mappings. *Fixed Point Theory and Applications* 2013 **2013**:137.