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Abstract
In this paper, we generalize the contractive condition for multi-valued mappings
given by Asl, Rezapour and Shahzad in 2012. We establish some fixed point theorems
for multi-valued mappings from a complete metric space to the space of closed or
bounded subsets of the metric space satisfying generalized (α∗,ψ )-contractive
condition.
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1 Introduction
Samet et al. [] introduced the notion of α-ψ-contractive self-mappings of a metric space.
Recently, Asl et al. [] introduced the notion of α∗-ψ-contractive mappings to extend
the notion α-ψ-contractive mappings. In this paper, we generalize the notion of α∗-ψ-
contractive mappings and prove some fixed point theorems for such mappings.
Let � be a family of nondecreasing functions, ψ : [,∞) → [,∞) such that∑∞
n= ψ

n(t) < ∞ for each t > , where ψn is the nth iterate of ψ . It is known that for
each ψ ∈ � , we have ψ(t) < t for all t >  and ψ() =  for t =  []. Let (X,d) be a
metric space. A mapping G : X → X is called α-ψ-contractive if there exist two func-
tions α : X × X → [,∞) and ψ ∈ � such that α(x, y)d(Gx,Gy) ≤ ψ(d(x, y)) for each
x, y ∈ X. A mapping G : X → X is called α-admissible [] if α(x, y) ≥  ⇒ α(Gx,Gy) ≥ .
We denote by N(X) the space of all nonempty subsets of X, by B(X) the space of all
nonempty bounded subsets of X and by CL(X) the space of all nonempty closed sub-
sets of X. For A ∈ N(X) and x ∈ X, d(x,A) = inf{d(x,a) : a ∈ A}. For every A,B ∈ B(X),
δ(A,B) = sup{d(a,b) : a ∈ A,b ∈ B}. When A = {x}, we denote δ(A,B) by δ(x,B). For every
A,B ∈ CL(X), let

H(A,B) =

⎧⎨
⎩
max{supx∈A d(x,B), supy∈B d(y,A)} if the maximum exists;

∞ otherwise.

Such a map H is called generalized Hausdorff metric induced by d. Let (X,	,d) be an
ordered metric space and A,B ⊆ X. We say that A ≺r B if for each a ∈ A and b ∈ B, we
have a 	 b. We give a few definitions and the result due to Asl et al. [] for convenience.
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Definition . [] Let (X,d) be a metric space and let α : X × X → [,∞) be a map-
ping. A mapping G : X → CL(X) is α∗-admissible if α(x, y) ≥  ⇒ α∗(Gx,Gy) ≥ , where
α∗(Gx,Gy) = inf{α(a,b) : a ∈Gx,b ∈Gy}.

Definition . [] Let (X,d) be a metric space. AmappingG : X → CL(X) is called α∗-ψ-
contractive if there exist two functions α : X ×X → [,∞) and ψ ∈ � such that

α∗(Gx,Gy)H(Gx,Gy) ≤ ψ
(
d(x, y)

)
(.)

for all x, y ∈ X.

Theorem . [] Let (X,d) be a complete metric space, let α : X × X → [,∞) be a func-
tion, let ψ ∈ � be a strictly increasing map and T be a closed-valued, α∗-admissible and
α∗-ψ-contractive multi-function on X. Suppose that there exist x ∈ X and x ∈ Gx such
that α(x,x) ≥ . Assume that if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n
and xn → x, then α(xn,x)≥  for all n. Then G has a fixed point.

2 Main results
We begin this section by introducing the following definition.

Definition . Let (X,d) be a metric space and let G : X → CL(X) be a mapping. We say
that G is generalized (α∗,ψ)-contractive if there exists ψ ∈ � such that

α∗(Gx,Gy)d(y,Gy) ≤ ψ
(
d(x, y)

)
(.)

for each x ∈ X and y ∈ Gx, where α∗(Gx,Gy) = inf{α(a,b) : a ∈Gx,b ∈Gy}.

Note that an α∗-ψ-contractivemapping is generalized (α∗,ψ)-contractive. In case when
ψ ∈ � is strictly increasing, generalized (α∗,ψ)-contractive is called strictly generalized
(α∗,ψ)-contractive. The following lemma is inspired by [, Lemma .].

Lemma . Let (X,d) be ametric space and B ∈ CL(X).Then, for each x ∈ X with d(x,B) >
 and q > , there exists an element b ∈ B such that

d(x,b) < qd(x,B). (.)

Proof It is given that d(x,B) > . Choose

ε = (q – )d(x,B).

Then, by using the definition of d(x,B), it follows that there exists b ∈ B such that

d(x,b) < d(x,B) + ε = qd(x,B). �

Lemma . Let (X,d) be a metric space and G : X → CL(X). Assume that there exists a
sequence {xn} in X such that limn→∞ d(xn,Gxn) =  and xn → x ∈ X. Then x is a fixed point
of G if and only if the function f (ξ ) = d(ξ ,Gξ ) is lower semi-continuous at x.

http://www.fixedpointtheoryandapplications.com/content/2013/1/137


Ali and Kamran Fixed Point Theory and Applications 2013, 2013:137 Page 3 of 7
http://www.fixedpointtheoryandapplications.com/content/2013/1/137

Proof Suppose f (ξ ) = d(ξ ,Gξ ) is lower semi-continuous at x, then

d(x,Gx)≤ lim inf
n

f (xn) = lim inf
n

d(xn,Gxn) = .

By the closedness of G it follows that x ∈ Gx. Conversely, suppose that x is a fixed point
of G, then f (x) =  ≤ lim infn f (xn). �

Theorem . Let (X,d) be a complete metric space and let G : X → CL(X) be an
α∗-admissible strictly generalized (α∗,ψ)-contractive mapping. Assume that there exist
x ∈ X and x ∈ Gx such that α(x,x) ≥ . Then x is a fixed point of G if and only if
f (ξ ) = d(ξ ,Gξ ) is lower semi-continuous at x.

Proof By the hypothesis, there exist x ∈ X and x ∈Gx such that α(x,x)≥ . If x = x,
thenwe have nothing to prove. Let x �= x. If x ∈Gx, then x is a fixed point. Let x /∈Gx.
Since G is α∗-admissible, so α∗(Gx,Gx) ≥ , we have

 < d(x,Gx) ≤ α∗(Gx,Gx)d(x,Gx). (.)

For given q >  by Lemma ., there exists x ∈Gx such that

 < d(x,x) < qd(x,Gx). (.)

It follows from (.), (.) and (.) that

 < d(x,x) < qψ
(
d(x,x)

)
. (.)

It is clear that x �= x and α(x,x) ≥ . Thus α∗(Gx,Gx) ≥ . Since ψ is strictly increas-
ing, by (.), we have

ψ
(
d(x,x)

)
< ψ

(
qψ

(
d(x,x)

))
.

Put q = ψ(qψ(d(x,x)))
ψ(d(x,x))

, then q > . If x ∈ Gx, then x is a fixed point. Let x /∈ Gx, then
by Lemma ., there exists x ∈Gx such that

 < d(x,x) < qd(x,Gx) ≤ qα∗(Gx,Gx)d(x,Gx)

≤ qψ
(
d(x,x)

)
= ψ

(
qψ

(
d(x,x)

))
.

It is clear that x �= x, α(x,x) ≥  and ψ(d(x,x)) < ψ(qψ(d(x,x))). Now put q =
ψ(qψ(d(x,x)))

ψ(d(x,x))
. Then q > . If x ∈ Gx, then x is a fixed point. Let x /∈ Gx. Then by

Lemma . there exists x ∈Gx such that

 < d(x,x) < qd(x,Gx)≤ qα∗(Gx,Gx)d(x,Gx)

≤ qψ
(
d(x,x)

)
= ψ(qψ(

d(x,x)
))
.

By continuing the same process, we get a sequence {xn} in X such that xn+ ∈ Gxn. Also,
xn �= xn+, α(xn,xn+)≥  and  < d(xn,xn+) < ψn–(qψ(d(x,x))) or

 < d(xn,Gxn) <ψn–(qψ(
d(x,x)

))
. (.)
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For eachm > n, we have

d(xn,xm)≤
m–∑
i=n

d(xi,xi+) <
m–∑
i=n

ψ i–(qψ(
d(x,x)

))
.

Since ψ ∈ � , it follows that {xn} is a Cauchy sequence in X. Thus there is x ∈ X such that
xn → x. Letting n→ ∞ in (.), we have

lim
n→∞d(xn,Gxn) = . (.)

The rest of the proof follows from Lemma .. �

Example . Let X = R be endowed with the usual metric d. Define G : X → CL(X) and
α : X ×X → [,∞) by

Gx =

⎧⎨
⎩
[x,∞) if x≥ ,

(–∞, –x] if x < 
(.)

and

α(x, y) =

⎧⎨
⎩
 if x, y≥ ,

 otherwise.
(.)

Let ψ(t) = t
 for all t ≥ . For each x ∈ X and y ∈Gx, we have

α∗(Gx,Gy)d(y,Gy) =  ≤ 

d(x, y).

HenceG is a strictly generalized (α∗,ψ)-contractive mapping. Clearly,G is α∗-admissible.
Also, we have x =  and x =  ∈ Gx such that α(x,x) = . Therefore, all conditions of
Theorem . are satisfied and G has infinitely many fixed points. Note that Theorem .
in Section  is not applicable here. For example, take x =  and y = –.

Corollary . Let (X,	,d) be a complete ordered metric space, ψ ∈ � be a strictly in-
creasing map and G : X → CL(X) be a mapping such that for each x ∈ X and y ∈ Gx with
x 	 y, we have

d(y,Gy) ≤ ψ
(
d(x, y)

)
. (.)

Also, assume that
(i) there exist x ∈ X and x ∈Gx such that x 	 x,
(ii) if x	 y, then Gx ≺r Gy.

Then x is a fixed point of G if and only if f (ξ ) = d(ξ ,Gξ ) is lower semi-continuous at x.

Proof Define α : X ×X → [,∞) by

α(x, y) =

⎧⎨
⎩
 if x 	 y,

 otherwise.
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By using condition (i) and the definition of α, we have α(x,x) = . Also, from condition
(ii), we have x 	 y impliesGx ≺r Gy; by using the definitions of α and≺r , we have α(x, y) = 
implies α∗(Gx,Gy) = . Moreover, it is easy to check thatG is a strictly generalized (α∗,ψ)-
contractive mapping. Therefore, by Theorem ., x is a fixed point of G if and only if
f (ξ ) = d(ξ ,Gξ ) is lower semi-continuous at x. �

Definition . Let (X,d) be a metric space and G : X → B(X) be a mapping. We say that
G is a generalized (α∗,ψ , δ)-contractive mapping if there exists ψ ∈ � such that

α∗(Gx,Gy)δ(y,Gy) ≤ ψ
(
d(x, y)

)
(.)

for each x ∈ X and y ∈ Gx, where α∗(Gx,Gy) = inf{α(a,b) : a ∈Gx,b ∈Gy}.

Lemma . Let (X,d) be a metric space and G : X → B(X). Assume that there exists a
sequence {xn} in X such that limn→∞ δ(xn,Gxn) =  and xn → x ∈ X. Then {x} =Gx if and
only if the function f (ξ ) = δ(ξ ,Gξ ) is lower semi-continuous at x.

Proof Suppose that f (ξ ) = δ(ξ ,Gξ ) is lower semi-continuous at x, then

δ(x,Gx)≤ lim inf
n

f (xn) = lim inf
n

δ(xn,Gxn) = .

Hence, {x} = Gx because δ(A,B) =  implies A = B = {a}. Conversely, suppose that {x} =
Gx. Then f (x) =  ≤ lim infn f (xn). �

Theorem . Let (X,d) be a complete metric space and let G : X → B(X) be an
α∗-admissible generalized (α∗,ψ , δ)-contractive mapping. Assume that there exist x ∈ X
and x ∈Gx such that α(x,x) ≥ . Then there exists x ∈ X such that {x} =Gx if and only
if f (ξ ) = δ(ξ ,Gξ ) is lower semi-continuous at x.

Proof By the hypothesis of the theorem, there exist x ∈ X and x ∈ Gx such that
α(x,x) ≥ . Assume that x �= x, for otherwise, x is a fixed point. Let x /∈ Gx. As G
is α∗-admissible, we have α∗(Gx,Gx)≥ . Then

δ(x,Gx)≤ α∗(Gx,Gx)δ(x,Gx) ≤ ψ
(
d(x,x)

)
. (.)

Since Gx �= ∅, there is x ∈Gx. Then

 < d(x,x) ≤ δ(x,Gx). (.)

From (.) and (.), we have

 < d(x,x) ≤ ψ
(
d(x,x)

)
. (.)

Since ψ is nondecreasing, we have

ψ
(
d(x,x)

) ≤ ψ(d(x,x)
)
. (.)
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As x ∈ Gx, we have α(x,x) ≥ . Since Gx �= ∅, there is x ∈ Gx. Assume that x �= x,
for otherwise, x is a fixed point of G. Then

 < d(x,x) ≤ δ(x,Gx) ≤ α∗(Gx,Gx)δ(x,Gx)

≤ ψ
(
d(x,x)

) ≤ ψ(d(x,x)
)
. (.)

Since ψ is nondecreasing, we have

ψ
(
d(x,x)

) ≤ ψ(d(x,x)
)
. (.)

By continuing in this way, we get a sequence {xn} in X such that xn+ ∈ Gxn and xn �= xn+
for n = , , , , . . . . Further we have

 < d(xn,xn+) ≤ δ(xn,Gxn) ≤ ψn(d(x,x)
)
. (.)

For eachm > n, we have

d(xn,xm)≤
m–∑
i=n

d(xi,xi+) ≤
m–∑
i=n

ψ i(d(x,x)
)
.

Since ψ ∈ � , it follows that {xn} is a Cauchy sequence in X. As X is complete, there exists
x ∈ X such that xn → x. Letting n→ ∞ in (.), we have

lim
n→∞ δ(xn,Gxn) = . (.)

The rest of the proof follows from Lemma .. �

Example . Let X = {, , , , , , . . .} be endowed with the usual metric d. Define
G : X → B(X) and α : X ×X → [,∞) by

Gx =

⎧⎨
⎩

{(x – ),x} if x �= ,

{} if x = 

and

α(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

 if x = y �= ,

 if x = y = ,

 otherwise.

Let ψ(t) = t
 for all t ≥ . For each x ∈ X and y ∈Gx, we have

α∗(Gx,Gy)δ(y,Gy) ≤ 

(
d(x, y)

)
.

HenceG is a generalized (α∗,ψ , δ)-contractive mapping. Clearly,G is α∗-admissible. Also,
we have x =  ∈ X and x =  ∈ G such that α(x,x) = . Therefore, all conditions of
Theorem . are satisfied and G has infinitely many fixed points.
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Corollary . Let (X,	,d) be a complete ordered metric space, ψ ∈ � and G : X → B(X)
be a mapping such that for each x ∈ X and y ∈Gx with x 	 y, we have

δ(y,Gy) ≤ ψ
(
d(x, y)

)
. (.)

Also, assume that
(i) there exists x ∈ X such that {x} ≺ Gx, i.e., there exists x ∈Gx such that x 	 x,
(ii) if x	 y, then Gx ≺r Gy.

Then there exists x ∈ X such that {x} = Gx if and only if f (ξ ) = δ(ξ ,Gξ ) is lower semi-
continuous at x.

Proof Define α : X ×X → [,∞) by

α(x, y) =

⎧⎨
⎩
 if x 	 y,

 otherwise.

By using condition (i) and the definition of α, we have α(x,x) = . Also, from condition
(ii), we have x 	 y impliesGx ≺r Gy, by using the definitions of α and≺r , we have α(x, y) = 
implies α∗(Gx,Gy) = . Moreover, it is easy to check that G is a generalized (α∗,ψ , δ)-
contractive mapping. Therefore, by Theorem ., there exists x ∈ X such that {x} = Gx if
and only if f (ξ ) = δ(ξ ,Gξ ) is lower semi-continuous at x. �
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