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1 Introduction
Let A be any nonempty subset of a metric space (X,d). For x ∈ X, define

d(x,A) = inf
{
d(x, y) : y ∈ A

}
.

Let CB(X) denote the set of all nonempty closed bounded subset of X. For A,B ∈ CB(X),
define

δ(A,B) = sup
{
d(x,B) : x ∈ A

}
,

H(A,B) =max
{
δ(A,B), δ(B,A)

}
.

Then H is a metric on CB(X) and is called a Hausdorff metric.
Nadler [] generalized theBanach contractionmapping principle to set-valued functions

and proved the following fixed point theorem.

Theorem  Let (X,d) be a complete metric space and let T be a mapping from X into
CB(X) such that for all x, y ∈ X,

H(Tx,Ty) ≤ λd(x, y),

where  ≤ λ < . Then T has a fixed point.
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Later, an interesting and rich fixed point theory was developed. On the other hand,
Matthews [] introduced the notion of a partial metric space as a part of the study of
denotational semantics of dataflow networks, with the interesting property ‘non-zero self-
distance’ in space. He showed that the Banach contractionmapping theorem can be gener-
alized to the partial metric context for applications in program verification. Subsequently,
several authors (see, e.g., [–]) derived fixed point theorems in partial metric spaces.
Romaguera [] introduced the notion of -Cauchy sequence, -complete partial metric
spaces and proved some characterizations of partial metric spaces in terms of complete-
ness and -completeness. Recently, Aydi et al. [] introduced the notion of a partial Haus-
dorff metric and extended the Nadler’s theorem in partial metric spaces.
Bhaskar and Lakshmikantham [] introduced the concept of a coupled fixed point and

established some coupled fixed point theorems in partially ordered sets. As an application,
they studied the existence and uniqueness of a solution for a periodic boundary value
problem associated with a first-order ordinary differential equation. Recently Abbas et al.
[] extended these concepts to set-valued mappings and obtained coupled coincidence
points and coupled common fixed point theorems involving a hybrid pair of single-valued
and multi-valued maps satisfying generalized contractive conditions in the framework of
a complete metric space (see also [, ]). The study of a coincidence point and common
fixed points of a hybrid pair of mappings in Banach spaces andmetric spaces is interesting
and well developed. For applications of hybrid fixed point theory, we refer to [–].
In this paper, we extend and generalize the results of Abbas et al. [] and Aydi et al. []

for a hybrid pair of mappings in -complete partial metric spaces. Also, some new results
are obtained. An example is included to support our results.

2 Preliminaries
Consistent with [, , , , , ], the following definitions and results will be needed in
the sequel.

Definition  A partial metric on a nonempty set X is a function p : X × X → R+ (R+

stands for nonnegative reals) such that for all x, y, z ∈ X,
(P) x = y⇔ p(x,x) = p(x, y) = p(y, y),
(P) p(x,x) ≤ p(x, y),
(P) p(x, y) = p(y,x),
(P) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric
on X.

It is clear that if p(x, y) = , then from (P) and (P) x = y. But if x = y, p(x, y) may not
be . Also, every metric space is a partial metric space, with zero self-distance.

Example  If p : R+ × R+ → R+ is defined by p(x, y) = max{x, y}, for all x, y ∈ R+, then
(R+,p) is a partial metric space.

Some more examples of a partial metric space can be seen in [, , ].
Each partial metric on X generates a T topology τp on X which has as a base the family

of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x,x) + ε} for all
x ∈ X and ε > .
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Theorem  [] For each partial metric p : X × X → R+, the pair (X,d), where d(x, y) =
p(x, y) – p(x,x) – p(y, y) for all x, y ∈ X, is a metric space.

Here (X,d) is called an induced metric space and d is an induced metric. In further
discussion, unless specified otherwise, (X,d) will represent an induced metric space.
Let (X,p) be a partial metric space.
() A sequence {xn} in (X,p) converges to a point x ∈ X if and only if

p(x,x) = limn→∞ p(xn,x).
() A sequence {xn} in (X,p) is called a Cauchy sequence if there exists (and is finite)

limn,m→∞ p(xn,xm).
() (X,p) is said to be complete if every Cauchy sequence {xn} in X converges with

respect to τp to a point x ∈ X such that p(x,x) = limn,m→∞ p(xn,xm).
() A sequence {xn} in (X,p) is called -Cauchy sequence if limn,m→∞ p(xn,xm) = . The

space (X,p) is said to be -complete if every -Cauchy sequence in X converges
with respect to τp to a point x ∈ X such that p(x,x) = .

Lemma  [, , ] Let (X,p) be a partial metric space and {xn} be any sequence in X.
(i) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the

metric space (X,d).
(ii) (X,p) is complete if and only if the metric space (X,d) is complete. Furthermore,

limn→∞ d(xn,x) =  if and only if p(x,x) = limn→∞ p(xn,x) = limn,m→∞ p(xn,xm).
(iii) Every -Cauchy sequence in (X,p) is Cauchy in (X,d).
(iv) If (X,p) is complete, then it is -complete.

The converse assertions of (iii) and (iv) do not hold. Indeed, the partialmetric space (Q∩
[,∞),p), whereQ denotes the set of rational numbers and the partial metric p is given by
p(x, y) =max{x, y} for all x, y ∈ X, provides an easy example of a -complete partial metric
space which is not complete. It is easy to see that every closed subset of a -complete
partial metric space is -complete.
Let (X,p) be a partial metric space. Let CBp(X) be the family of all nonempty, closed and

bounded subsets of the partial metric space (X,p) induced by the partial metric p. Note
that closedness is taken from (X, τp) (τp is the topology induced by p) and boundedness is
given as follows: A is a bounded subset in (X,p) if there exist x ∈ X andM ≥  such that
for all a ∈ A, we have a ∈ Bp(x,M), that is, p(x,a) < p(a,a) +M.
For A,B ∈ CBp(X) and x ∈ X, define

p(x,A) = inf
{
p(x,a) : a ∈ A

}
, δp(A,B) = sup

{
p(a,B) : a ∈ A

}
.

Lemma [] Let (X,p) be a partial metric space,A ⊂ X.Then a ∈ A if and only if p(a,A) =
p(a,a).

Proposition  [] Let (X,p) be a partial metric space. For any A,B,C ∈ CBp(X), we have
the following:

(i) δp(A,A) = sup{p(a,a) : a ∈ A};
(ii) δp(A,A) ≤ δp(A,B);
(iii) δp(A,A) =  implies that A⊆ B;
(iv) δp(A,B) ≤ δp(A,C) + δp(C,B) – infc∈C p(c, c).

http://www.fixedpointtheoryandapplications.com/content/2013/1/145
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Let (X,p) be a partial metric space. For A,B ∈ CBp(X), define

Hp(A,B) =max
{
δp(A,B), δp(B,A)

}
.

Proposition  [] Let (X,p) be a partial metric space. For A,B,C ∈ CBp(X), we have
(h) Hp(A,A) ≤ Hp(A,B);
(h) Hp(A,B) =Hp(B,A);
(h) Hp(A,B) ≤ Hp(A,C) +Hp(C,B) – infc∈C p(c, c).

Corollary  [] Let (X,p) be a partial metric space. For A,B ∈ CBp(X), the following holds:

Hp(A,B) =  implies that A = B.

In view of Proposition  and Corollary , we call the mapping Hp : CBp(X)×CBp(X) →
[,∞) a partial Hausdorff metric induced by p.

Lemma  [] Let (X,p) be a partial metric space, A,B ∈ CBp(X) and h > . For any a ∈ A,
there exists b = b(a) ∈ B such that p(a,b)≤ hHp(A,B).

The following lemma is crucial for the proof of our main result and its proof is similar
to Lemma .

Lemma  Let (X,p) be a partial metric space and A,B ∈ CBp(X), a ∈ A. Let ε >  be arbi-
trary, then there exists b = b(a) ∈ B such that

p(a,b)≤ Hp(A,B) + ε.

Definition  [] Let X be a nonempty set, F : X × X → X (collection of all nonempty
subsets of X) and g : X → X. An element (x, y) ∈ X ×X is called

(i) a coupled fixed point of F if x ∈ F(x, y) and y ∈ F(y,x);
(ii) a coupled coincidence point of the hybrid pair {F , g} if gx ∈ F(x, y) and gy ∈ F(y,x);
(iii) a coupled point of coincidence if there exists (u, v) ∈ X ×X such that

x = gu ∈ F(u, v) and y = gv ∈ F(v,u);
(iv) a coupled common fixed point of the hybrid pair {F , g} if x = gx ∈ F(x, y) and

y = gy ∈ F(y,x).

Definition  Let X be a nonempty set, let F : X × X → X and g : X → X be two
mappings. The hybrid pair {F , g} is called weakly compatible if gF(x, y) ⊆ F(gx, gy) and
gF(y,x) ⊆ F(gy, gx) whenever (x, y) is a coupled coincidence point of the hybrid pair {F , g}.

Now we can state our main results.

3 Main results
The following result extends and generalizes the main result of [] in partial metric
spaces.

http://www.fixedpointtheoryandapplications.com/content/2013/1/145
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Theorem  Let (X,p) be a -complete partial metric space, let F : X × X → CBp(X) and
g : X → X be mappings satisfying

Hp
(
F(x, y),F(u, v)

) ≤ ap(gx, gu) + ap(gy, gv) + ap
(
F(x, y), gx

)
+ ap

(
F(x, y), gu

)
+ ap

(
F(u, v), gx

)
+ ap

(
F(u, v), gu

)
()

for all x, y,u, v ∈ X, where ai are nonnegative reals such that
∑

i= ai < . If F(X ×X) ⊆ g(X)
and g(X) is a closed subset of X, then F and g have a coupled point of coincidence (wc, zc) ∈
X ×X and p(wc,wc) = p(zc, zc) = .

Proof Let x, y ∈ X be arbitrary, then F(x, y),F(y,x) ∈ CBp(X). As F(X × X) ⊆
g(X), we can choose gx ∈ F(x, y) and gy ∈ F(y,x) for some x, y ∈ X. Again, as
F(x, y),F(y,x) ∈ CBp(X) and F(X × X) ⊆ g(X), so by Lemma , for any ε > , there
exist gx ∈ F(x, y) and gy ∈ F(y,x) such that

p(gx, gx) ≤ Hp
(
F(x, y),F(x, y)

)
+ ε,

p(gy, gy) ≤ Hp
(
F(y,x),F(y,x)

)
+ ε.

Continuing this process, we obtain two sequences {xn} and {yn} in X such that

gxn+ ∈ F(xn, yn) and gyn ∈ F(yn,xn),

p(gxn, gxn+) ≤ Hp
(
F(xn–, yn–),F(xn, yn)

)
+ εn,

p(gyn, gyn+)≤ Hp
(
F(yn–,xn–),F(yn,xn)

)
+ εn.

From the above inequalities and (), we obtain

p(gxn, gxn+) ≤ Hp
(
F(xn–, yn–),F(xn, yn)

)
+ εn

≤ ap(gxn–, gxn) + ap(gyn–, gyn)

+ ap
(
F(xn–, yn–), gxn–

)
+ ap

(
F(xn–, yn–), gxn

)
+ ap

(
F(xn, yn), gxn–

)
+ ap

(
F(xn, yn), gxn

)
+ εn

≤ ap(gxn–, gxn) + ap(gyn–, gyn) + ap(gxn, gxn–)

+ ap(gxn, gxn) + ap(gxn+, gxn–) + ap(gxn+, gxn) + εn

≤ ap(gxn–, gxn) + ap(gyn–, gyn) + ap(gxn, gxn–)

+ ap(gxn, gxn) + ap(gxn+, gxn) + ap(gxn, gxn–)

– ap(gxn, gxn) + ap(gxn+, gxn) + εn,

that is,

( – a – a)p(gxn, gxn+)≤ (a + a + a)p(gxn, gxn–) + ap(gyn–, gyn)

+ (a – a)p(gxn, gxn) + εn. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/145
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Interchanging the roles of xn and xn+ and using the symmetries of p and Hp, we obtain

( – a – a)p(gxn, gxn+) ≤ (a + a + a)p(gxn, gxn–) + ap(gyn–, gyn)

+ (a – a)p(gxn, gxn) + εn. ()

It follows from () and () that

( – a – a – a – a)p(gxn, gxn+) ≤ (a + a + a + a + a)p(gxn, gxn–)

+ ap(gyn–, gyn) + εn. ()

Similarly, it can be obtained that

( – a – a – a – a)p(gyn, gyn+)≤ (a + a + a + a + a)p(gyn, gyn–)

+ ap(gxn–, gxn) + εn. ()

For simplicity, set pn = p(gxn, gxn+) + p(gyn, gyn+), then it follows from () and () that

( – a – a – a – a)pn ≤ (a + a + a + a + a + a)pn– + εn,

that is,

pn ≤ a + a + a + a + a + a
 – a – a – a – a

pn– +
εn

 – a – a – a – a
. ()

As ε >  was arbitrary, choose ε = a+a+a+a+a+a
–a–a–a–a

; also, as
∑

i= ai < , we have ε < .
Therefore, from () we have

pn ≤ εpn– +
εn

 + a + a
.

From a successive application of the above inequality, we obtain

pn ≤ εpn– +
εn

 + a + a
,

pn ≤ ε

[
εpn– +

εn–

 + a + a

]
+

εn

 + a + a
,

pn ≤ εpn– +
εn

 + a + a
,

...

pn ≤ εnp +
nεn

 + a + a
.

()

Form,n ∈N with m > n, using () we obtain

p(gxn, gxm) + p(gyn, gym) ≤ p(gxn, gxn+) + p(gyn, gyn+) + p(gxn+, gxn+)

+ p(gyn+, gyn+) + · · · + p(gxm–, gxm) + p(gym–, gym)

http://www.fixedpointtheoryandapplications.com/content/2013/1/145
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= pn + pn+ + · · · + pm–

≤ εnp +
nεn

 + a + a
+ εn+p +

(n + )εn+

 + a + a

+ · · · + εm–p +
(m – )εm–

 + a + a

= p
m–n–∑
i=

εn+i +


 + a + a

m–n–∑
i=

(n + i)εn+i.

As ε < , it follows from the above inequality that

lim
n,m→∞p(gxn, gxm) = lim

n,m→∞p(gyn, gym) = .

So, {gxn} and {gyn} are -Cauchy sequences in g(X); therefore, by the closedness of g(X),
there exists w, z ∈ X such that

lim
n→∞p(gxn, gw) = lim

n,m→∞p(gxn, gxm) = p(gw, gw) = , ()

lim
n→∞p(gyn, gz) = lim

n,m→∞p(gyn, gym) = p(gz, gz) = . ()

Using () we obtain

p
(
F(w, z), gw

) ≤ p
(
F(w, z), gxn+

)
+ p(gxn+, gw)

≤ Hp
(
F(w, z),F(xn, yn)

)
+ p(gxn+, gw)

≤ ap(gw, gxn) + ap(gz, gyn) + ap
(
F(w, z), gw

)
+ ap

(
F(w, z), gxn

)
+ ap

(
F(xn, yn), gw

)
+ ap

(
F(xn, yn), gxn

)
+ p(gxn+, gw),

that is,

( – a – a)p
(
F(w, z), gw

) ≤ ap(gw, gxn) + ap(gz, gyn) + ap(gw, gxn)

+ ap(gxn+, gw) + ap(gxn+, gxn) + p(gxn+, gw)

= (a + a)p(gw, gxn) + ap(gz, gyn)

+ ( + a)p(gxn+, gw) + ap(gxn+, gxn).

Using () and () and the fact that  – a – a >  in the above inequality, we obtain

p
(
F(w, z), gw

)
= p(gw, gw) = .

Therefore, by Lemma , gw ∈ F(w, z). Similarly, gz ∈ F(z,w). Thus (w, z) is a coupled coin-
cidence point and (gw, gz) = (wc, zc) (say) is a point of coincidence of the mappings F and
g with p(gw, gw) = p(gz, gz) = p(wc,wc) = p(zc, zc) = . �

The following is a coupled fixed point result for a set-valued mapping and it can be
obtained by taking g = IX (that is an identity mapping of X) in the above theorem.

http://www.fixedpointtheoryandapplications.com/content/2013/1/145
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Corollary  Let (X,p) be a -complete partial metric space, let F : X ×X → CBp(X) be a
mapping satisfying

Hp
(
F(x, y),F(u, v)

) ≤ ap(x,u) + ap(y, v) + ap
(
F(x, y),x

)
+ ap

(
F(x, y),u

)
+ ap

(
F(u, v),x

)
+ ap

(
F(u, v),u

)

for all x, y,u, v ∈ X, where ai are nonnegative reals such that
∑

i= ai < . Then F has a
coupled fixed point (w, z) ∈ X ×X and p(w,w) = p(z, z) = .

With suitable values of control constants in Theorem , one can obtain the following
corollaries.

Corollary  Let (X,p) be a -complete partial metric space, let F : X × X → CBp(X) and
g : X → X be mappings satisfying

Hp
(
F(x, y),F(u, v)

) ≤ ap(gx, gu) + ap(gy, gv) ()

for all x, y,u, v ∈ X,where a and a are nonnegative reals such that a +a < . If F(X×X) ⊆
g(X) and g(X) is a closed subset of X, then F and g have a coupled point of coincidence
(wc, zc) ∈ X ×X and p(wc,wc) = p(zc, zc) = .

Corollary  Let (X,p) be a -complete partial metric space, let F : X × X → CBp(X) and
g : X → X be mappings satisfying

Hp
(
F(x, y),F(u, v)

) ≤ ap
(
F(x, y), gx

)
+ ap

(
F(x, y), gu

)
+ ap

(
F(u, v), gx

)
+ ap

(
F(u, v), gu

)

for all x, y,u, v ∈ X, where ai are nonnegative reals such that
∑

i= ai < . If F(X ×X) ⊆ g(X)
and g(X) is a closed subset of X, then F and g have a coupled point of coincidence (wc, zc) ∈
X ×X and p(wc,wc) = p(zc, zc) = .

The following example illustrates the case when the results in partial metric spaces are
applicable while the same results in usual metric spaces are not.

Example  Let X = [, ]∩Q, and let p : X ×X →R+ be defined by

p(x, y) = |x – y| +max{x, y} for all x, y ∈ X.

Then the metric induced by p is given by d(x, y) = |x – y| for all x, y ∈ X and (X,d) is not
complete, therefore (X,p) is not complete. Now, it is easy to see that (X,p) is a -complete
partial metric space and every singleton subset of X is closed with respect to p. Define
F : X ×X → CBp(X) and g : X → X by

F(x, y) =

⎧⎨
⎩

{} if x = y = ;

{, x+y } otherwise
and gx = x for all x ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2013/1/145


Long et al. Fixed Point Theory and Applications 2013, 2013:145 Page 9 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/145

We shall show that F and g satisfy all the conditions of Corollary , with a = a = α ∈
[  ,


 ), while the metric versions of Corollary  are not applicable. We consider the follow-

ing cases.
Case (i) If x, y,u, v ∈ X \ {} and x + y �= u + v, then suppose u + v < x + y, so

Hp
(
F(x, y),F(u, v)

)

=Hp

({
,

x + y


}
,
{
,

u + v


})

=max

{
sup

a∈{, x+y }
p
(
a,

{
,

u + v


})
, sup
a∈{, u+v }

p
(
a,

{
,

x + y


})}

=max

{
p
(
x + y


,
{
,

u + v


})
,p

(
u + v


,
{
,

x + y


})}

=max

{
min

{
x + y


,


|x – u + y – v| + 


max{x + y,u + v}

}
,

min

{
u + v


,


|x – u + y – v| + 


max{x + y,u + v}

}}

=max

{


|x – u + y – v| + x + y


,min

{
u + v


,


|x – u + y – v| + x + y



}}

=


|x – u + y – v| + x + y


≤ 


[|x – u| + |y – v|] + x + y



≤ α
[
p(gx, gu) + p(gy, gv)

]
,

where 
 ≤ α. Similarly, we obtain the same result for u + v > x + y.

Case (ii) If x, y,u, v ∈ X \ {} and x + y = u + v, then

Hp
(
F(x, y),F(u, v)

)
= Hp

({
,

x + y


}
,
{
,

x + y


})

= sup
a∈{, x+y }

p(a,a)

=
x + y


≤ max{x,u} +max{y, v}


≤ α
[
p(gx, gu) + p(gy, gv)

]
,

where 
 ≤ α. Similarly, if any one of x, y, u, v is equal to , then we obtain the same result.

Case (iii) If any one of (x, y), (u, v) is equal to (, ), for example, let (u, v) = (, ) and
(x, y) �= (, ), then we have

Hp
(
F(x, y),F(u, v)

)
= Hp

({
,

x + y


}
, {}

)

= max

{
sup

a∈{, x+y }
p
(
a, {}), sup

a∈{}
p
(
a,

{
,

x + y


})}

= max

{
x + y


,
}
=
x + y


≤ α
[
p(gx, gu) + p(gy, gv)

]
,
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where 
 ≤ α. Similarly, the condition () is satisfied for a = a = α ∈ [  ,


 ) in all possible

cases and  = g ∈ F(, ), that is, (, ) is a coupled coincidence point of F and g (here it
is the unique common fixed point of F and g).
Note that, themetric spaces (X,ρ) and (X,d) (where ρ is usual and d ismetric induced by

p) are not complete, therefore metric versions of Corollary  are not applicable. Also, this
example shows that F and g do not satisfy the metric versions of inequality (). Indeed,
if Hρ is the Hausdorff metric induced by the usual metric ρ , then for x = y = u = , v = 

 ,
we have

Hρ

(
F(x, y),F(u, v)

)
=Hρ

(
{},

{
,




})
=



and

aρ(gx, gu) + aρ(gy, gv) =



a.

Therefore, we cannot find the nonnegative reals a, a such that

Hρ

(
F(x, y),F(u, v)

) ≤ aρ(gx, gu) + aρ(gy, gv)

for all x, y,u, v ∈ X with a + a < . So, F is not a contraction (in view of contraction con-
dition ()) with respect to the usual metric ρ . Similarly, one can see that F is not a con-
traction with respect to the induced metric d.

The following theorem provides a sufficient condition for the uniqueness of a coupled
point of coincidence and a common fixed point of the hybrid pair {F , g}.

Theorem  Let (X,p) be a -complete partial metric space, let F : X × X → CBp(X) and
g : X → X be mappings such that all the conditions of Theorem  are satisfied and, for
any coupled coincidence point (w, z) of F and g , we have F(w, z) = {gw} and F(z,w) = {gz},
then F and g have a unique coupled point of coincidence. Suppose in addition that the
hybrid pair {F , g} is weakly compatible, then F and g have a unique coupled common fixed
point.

Proof The existence of a coupled coincidence point (w, z) and a point of coincidence
(wc, zc) follows from Theorem . Suppose that, for any coupled coincidence point (w, z)
of F and g , we have F(w, z) = {gw} = {wc} and F(z,w) = {gz} = {zc}. We shall show that the
coupled point of coincidence is unique. Let (w′, z′) be another coupled coincidence point
and (w′

c, z′
c) be the coupled point of coincidence of F and g , that is, w′

c = gw′ ∈ F(w′, z′),
z′
c = gz′ ∈ F(z′,w′) and F(w′, z′) = {gw′} = {w′

c}, F(z′,w′) = {gz′} = {z′
c}.

Using (), we obtain

p
(
gw, gw′) = Hp

({gw},{gw′})
= Hp

(
F(w, z),F

(
w′, z′))

≤ ap
(
gw, gw′) + ap

(
gz, gz′) + ap

(
F(w, z), gw

)
+ ap

(
F(w, z), gw′)

+ ap
(
F
(
w′, z′), gw)

+ ap
(
F
(
w′, z′), gw′)

http://www.fixedpointtheoryandapplications.com/content/2013/1/145
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= ap
(
gw, gw′) + ap

(
gz, gz′) + ap(gw, gw) + ap

(
gw, gw′)

+ ap
(
gw′, gw

)
+ ap

(
gw′, gw′). ()

Again, using () we obtain

p
(
gz, gz′) = Hp

({gz},{gz′})
= Hp

(
F(z,w),F

(
z′,w′))

≤ ap
(
gz, gz′) + ap

(
gw, gw′) + ap

(
F(z,w), gz

)
+ ap

(
F(z,w), gz′)

+ ap
(
F
(
z′,w′), gz) + ap

(
F
(
z′,w′), gz′)

= ap
(
gz, gz′) + ap

(
gw, gw′) + ap(gz, gz) + ap

(
gz, gz′)

+ ap
(
gz′, gz

)
+ ap

(
gz′, gz′). ()

It follows from () and () that

p
(
gw, gw′) + p

(
gz, gz′) ≤ (a + a + a + a)p

(
gw, gw′) + ap(gw, gw)

+ ap
(
gw′, gw′) + (a + a + a + a)p

(
gz, gz′)

+ ap(gz, gz) + ap
(
gz′, gz′)

= (a + a + a + a + a + a)
[
p
(
gw, gw′) + p

(
gz, gz′)].

As
∑

i= ai < , it follows from the above inequality that p(gw, gw′) + p(gz, gz′) = , that is,
p(gw, gw′) = p(gz, gz′) = , so wc = gw = gw′ = w′

c and zc = gz = gz′ = z′
c. Therefore, a coupled

point of coincidence, that is, (wc, zc), of F and g is unique.
Suppose that F and g are weakly compatible, then we have

g{wc} = gF(w, z) ⊆ F(gw, gz) that is {gwc} ⊆ F(wc, zc) and

g{zc} = gF(z,w) ⊆ F(gz, gw) that is {gzc} ⊆ F(zc,wc).

Therefore, (gwc, gzc) is another coupled point of coincidence of F and g , and by uniqueness
we have wc = gwc ∈ F(wc, zc) and zc = gzc ∈ F(zc,wc). Thus (zc,wc) is the unique coupled
common fixed point of F and g . �

The following theorem is a new result for a hybrid pair of mappings in partial metric as
well as in metric spaces.

Theorem  Let (X,p) be a -complete partial metric space, let F : X × X → CBp(X) and
g : X → X be mappings satisfying

Hp
(
F(x, y),F(u, v)

) ≤ ap
(
F(y,x), gy

)
+ ap

(
F(y,x), gv

)
+ ap

(
F(v,u), gy

)
+ ap

(
F(v,u), gv

)
()

for all x, y,u, v ∈ X, where ai are nonnegative reals such that
∑

i= ai < . If F(X ×X) ⊆ g(X)
and g(X) is a closed subset of X, then F and g have a coupled point of coincidence (wc, zc) ∈
X ×X and p(gwc, gwc) = p(gzc, gzc) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/145
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Proof By a similar process as used in Theorem , we can find two sequences {xn} and {yn}
such that

gxn+ ∈ F(xn, yn) and gyn+ ∈ F(yn,xn),

p(gxn, gxn+) ≤ Hp
(
F(xn–, yn–),F(xn, yn)

)
+ εn,

p(gyn, gyn+)≤ Hp
(
F(yn–,xn–),F(yn,xn)

)
+ εn,

where ε >  is arbitrary.
From the above inequality and (), we obtain

p(gxn, gxn+) ≤ Hp
(
F(xn–, yn–),F(xn, yn)

)
+ εn

≤ ap
(
F(yn–,xn–), gyn–

)
+ ap

(
F(yn–,xn–), gyn

)
+ ap

(
F(yn,xn), gyn–

)
+ ap

(
F(yn,xn), gyn

)
+ εn

≤ ap(gyn, gyn–) + ap(gyn, gyn) + ap(gyn+, gyn–)

+ ap(gyn+, gyn) + εn,

that is,

p(gxn, gxn+) ≤ (a + a)p(gyn, gyn–) + (a + a)p(gyn+, gyn) + εn

+ (a – a)ap(gyn, gyn). ()

Interchanging the roles of xn and xn+ and using the symmetries of p and Hp, we obtain

p(gxn, gxn+) ≤ (a + a)p(gyn, gyn–) + (a + a)p(gyn+, gyn)

+ (a – a)ap(gyn, gyn) + εn. ()

It follows from () and () that

p(gxn, gxn+) ≤ (a + a + a + a)
[
p(gyn, gyn–)

+ p(gyn+, gyn)
]
+ εn. ()

Similarly, it can be shown that

p(gyn, gyn+)≤ (a + a + a + a)
[
p(gxn, gxn–)

+ p(gxn+, gxn)
]
+ εn. ()

For simplicity, set pn = p(gxn, gxn+) + p(gyn, gyn+), then it follows from () and () that

pn ≤ a + a + a + a
 – a – a – a – a

pn– +
εn

 – a – a – a – a
.

As ε >  was arbitrary, choose ε = a+a+a+a
–a–a–a–a

; also, as
∑

i= ai < , we have ε < . There-
fore

pn ≤ εpn– +
εn

 – a – a – a – a
≤ εpn– + εn.

http://www.fixedpointtheoryandapplications.com/content/2013/1/145
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It follows from a successive application of the above inequality that

pn ≤ εpn– + εn,

pn ≤ ε
[
εpn– + εn–

]
+ εn,

pn ≤ εpn– + εn,

...

pn ≤ εnp + nεn.

()

Form,n ∈N with m > n, using () we obtain

p(gxn, gxm) + p(gyn, gym) ≤ p(gxn, gxn+) + p(gyn, gyn+) + p(gxn+, gxn+)

+ p(gyn+, gyn+) + · · · + p(gxm–, gxm)

+ p(gym–, gym)

= pn + pn+ + · · · + pm–

≤ εnp + nεn + εn+p + (n + )εn+ + · · · + εm–p

+ (m – )εm–

= p
m–n–∑
i=

εn+i + 
m–n–∑
i=

(n + i)εn+i.

As ε < , it follows from the above inequality that

lim
n,m→∞p(gxn, gxm) = lim

n,m→∞p(gyn, gym) = .

So, {gxn} and {gyn} are -Cauchy sequences in g(X), therefore by the closedness of g(X),
there exists w, z ∈ X such that

lim
n→∞p(gxn, gw) = lim

n,m→∞p(gxn, gxm) = p(gw, gw) = , ()

lim
n→∞p(gyn, gz) = lim

n,m→∞p(gyn, gym) = p(gz, gz) = . ()

We shall show that p(F(w, z), gw) = p(gw, gw) =  and p(F(z,w), gz) = p(gz, gz) = .
For all n ∈ N, we have

p
(
F(w, z), gw

) ≤ p
(
F(w, z), gxn+

)
+ p(gxn+, gw)

≤ Hp
(
F(w, z),F(xn, yn)

)
+ p(gxn+, gw)

≤ ap
(
F(z,w), gz

)
+ ap

(
F(z,w), gyn

)
+ ap

(
F(yn,xn), gz

)
+ ap

(
F(yn,xn), gyn

)
+ p(gxn+, gw)

≤ (a + a)p
(
F(z,w), gz

)
+ ap(gz, gyn) + ap(gyn+, gz)

+ ap(gyn+, gyn) + p(gxn+, gw).
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Using () and () in the above inequality, we obtain

p
(
F(w, z), gw

) ≤ (a + a)p
(
F(z,w), gz

)
< p

(
F(z,w), gz

)
. ()

Again, for all n ∈N, we have

p
(
F(z,w), gz

) ≤ p
(
F(z,w), gyn+

)
+ p(gyn+, gz)

≤ Hp
(
F(z,w),F(yn,xn)

)
+ p(gyn+, gz)

≤ ap
(
F(w, z), gw

)
+ ap

(
F(w, z), gxn

)
+ ap

(
F(xn, yn), gw

)
+ ap

(
F(xn, yn), gxn

)
+ p(gyn+, gz)

≤ (a + a)p
(
F(w, z), gw

)
+ ap(gw, gxn) + ap(gxn+, gw)

+ ap(gxn+, gxn) + p(gyn+, gz).

Using () and () in the above inequality, we obtain

p
(
F(z,w), gz

) ≤ (a + a)p
(
F(w, z), gw

)
< p

(
F(w, z), gw

)
. ()

Note that if p(F(w, z), gw) �= p(gw, gw) =  or p(F(z,w), gz) �= p(gz, gz) = , then () and ()
give a contradiction. Therefore, we have p(F(w, z), gw) = p(gw, gw) =  and p(F(z,w), gz) =
p(gz, gz) = , and by Lemma , gw ∈ F(w, z) and gz ∈ F(z,w). Thus (w, z) is a coupled coin-
cidence point and (gw, gz) = (wc, zc) (say) is a point of coincidence of the mappings F and
g with p(gw, gw) = p(gz, gz) = p(wc,wc) = p(zc, zc) = . �

The following is a coupled fixed point result for a set-valued mapping and can be ob-
tained by taking g = IX (that is an identity mapping of X) in the above theorem.

Corollary  Let (X,p) be a -complete partial metric space, let F : X → CBp(X) be amap-
ping satisfying

Hp
(
F(x, y),F(u, v)

) ≤ ap
(
F(y,x), y

)
+ ap

(
F(y,x), v

)
+ ap

(
F(v,u), y

)
+ ap

(
F(v,u), v

)

for all x, y,u, v ∈ X, where ai are nonnegative reals such that
∑

i= ai < . Then F has a
coupled fixed point (w, z) ∈ X ×X and p(w,w) = p(z, z) = .

Theorem  Let (X,p) be a -complete partial metric space, let F : X × X → CBp(X) and
g : X → X be mappings such that all the conditions of Theorem  are satisfied, and for any
coupled coincidence point (w, z) of F and g , we have F(w, z) = {gw} and F(z,w) = {gz}. Then
F and g have a unique coupled point of coincidence. Suppose in addition that the hybrid
pair {F , g} is weakly compatible, then F and g have a unique coupled common fixed point.

Proof The proof of this theorem is followed by a similar process as used in Theorem .
�
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