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Abstract
This paper discusses a more general contractive condition for a class of extended
2-cyclic self-mappings on the union of a finite number of subsets of a metric space
which are allowed to have a finite number of successive images in the same subsets
of its domain. If the space is uniformly convex and the subsets are nonempty, closed
and convex, then all the iterations converge to a unique closed limiting finite
sequence, which contains the best proximity points of adjacent subsets, and reduce
to a unique fixed point if all such subsets intersect.

1 Introduction
Strict pseudocontractive mappings and pseudocontractive mappings in the intermediate
sense formulated in the framework of Hilbert spaces have received a certain attention in
the last years concerning their convergence properties and the existence of fixed points.
See, for instance, [–] and references therein. Results about the existence of a fixed point
are discussed in those papers. On the other hand, important attention has been paid dur-
ing the last decades to the study of the convergence properties of distances in cyclic con-
tractive self-mappings on p subsets Ai ⊂ X of a metric space (X,d), or a Banach space
(X,‖ ‖). The cyclic self-mappings under study have been of standard contractive or weakly
contractive types and of Meir-Keeler type. The convergence of sequences to fixed points
and best proximity points of the involved sets has been investigated in the last years. See,
for instance, [–] and references therein. It has to be noticed that every nonexpansive
mapping [, ] is a -strict pseudocontraction and also that strict pseudocontractions
in the intermediate sense are asymptotically nonexpansive []. The uniqueness of the best
proximity points to which all the sequences of iterations converge is proven in [] for the
extension of the contractive principle for cyclic self-mappings in either uniformly convex
Banach spaces (then being strictly convex and reflexive []) or in reflexive Banach spaces
[]. The p subsets Ai ⊂ X of the metric space (X,d), or the Banach space (X,‖ ‖), where
the cyclic self-mappings are defined, are supposed to be nonempty, convex and closed.
If the involved subsets have nonempty intersections, then all best proximity points coin-
cide, with a unique fixed point being allocated in the intersection of all the subsets, and
framework can be simply given on complete metric spaces. The research in [] is centered
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on the case of the -cyclic self-mapping being defined on the union of two subsets of the
metric space. Those results are extended in [] for Meir-Keeler cyclic contraction maps
and, in general, with the p (≥ )-cyclic self-mapping T :

⋃
i∈p̄ Ai → ⋃

i∈p̄ Ai defined on any
number of subsets of the metric space with p̄ := {, , . . . ,p}. Other recent research which
has been performed in the field of cyclic maps is related to the introduction and discus-
sion of the so-called cyclic representation of a set M, as the union of a set of nonempty
sets asM =

⋃m
i=Mi, with respect to an operator f :M →M []. Subsequently, cyclic rep-

resentations have been used in [] to investigate operators fromM toM which are cyclic
ϕ-contractions, where ϕ : R+ → R+ is a given comparison function,M ⊂ X and (X,d) is a
metric space. The above cyclic representation has also been used in [] to prove the exis-
tence of a fixed point for a self-mapping defined on a completemetric space which satisfies
a cyclic weak ϕ-contraction. In [], a characterization of best proximity points is studied
for individual and pairs of non-self-mappings S,T : A → B, where A and B are nonempty
subsets of a metric space. The existence of common fixed points of self-mappings is in-
vestigated in [] for a class of nonlinear integral equations, while fixed point theory is
investigated in locally convex spaces and non-convex sets in [–]. More recently, the
existence and uniqueness of best proximity points ofmore general cyclic contractions have
been investigated in [, ] and a study of best proximity points for generalized proximal
contractions, a concept referred to non-self-mappings, has been proposed and reported
in detail in []. Also, the study and characterization of best proximity points for cyclic
weaker Meir-Keeler contractions have been performed in [] and recent contributions
on the study of best proximity and proximal points can be found in [–] and references
therein. In general, best proximity points do not fulfill the usual ‘best proximity’ condition
x = Sx = Tx under this framework. However, best proximity points are proven to jointly
globally optimize themappings from x to the distances d(x,Tx) and d(x,Sx). Furthermore,
a class of cyclic ϕ-contractions, which contains the cyclic contraction maps as a subclass,
has been proposed in [] in order to investigate the convergence and existence results of
best proximity points in reflexive Banach spaces completing previous related results in [].
Also, the existence and uniqueness of best proximity points of cyclic ϕ-contractive self-
mappings in reflexive Banach spaces have been investigated in []. This paper is devoted
to the convergence properties and the existence of fixed points of a generalized version of
pseudocontractive, strict pseudocontractive and asymptotically pseudocontractive in the
intermediate sense in the more general framework of metric spaces. The case of -cyclic
pseudocontractive self-mappings is also considered. The combination of constants defin-
ing the contraction may be different on each of the subsets and only the product of all the
constants is requested to be less than unity. It is assumed that the considered self-mapping
can perform a number of iterations on each of the subsets before transferring its image
to the next adjacent subset of the -cyclic self-mapping. The existence of a unique closed
finite limiting sequence on any sequence of iterations from any initial point in the union of
the subsets is proven if X is a uniformly convex Banach space and all the subsets of X are
nonempty, convex and closed. Such a limiting sequence is of size q ≥ p (with the inequality
being strict if there is at least one iteration with image in the same subset as its domain),
where p of its elements (all of them if q = p) are best proximity points between adjacent
subsets. In the case that all the subsets Ai ⊂ X intersect, the above limit sequence reduces
to a unique fixed point allocated within the intersection of all such subsets.
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2 Asymptotic contractions and pseudocontractions in the intermediate sense
inmetric spaces

IfH is a real Hilbert space with an inner product 〈·, ·〉 and a norm ‖ ·‖ andA is a nonempty
closed convex subset of H , then T : A→ A is said to be an asymptotically β-strictly pseu-
docontractive self-mapping in the intermediate sense for some β ∈ [, ) if

lim sup
n→∞

sup
x,y∈A

(∥∥Tnx – Tny
∥∥ – αn‖x – y‖ – β

∥∥(
I – Tn)x – (

I – Tn)y∥∥) ≤  (.)

for some sequence {αn} ⊂ [,∞), αn →  as n→ ∞ [–, ]. Such a conceptwas firstly in-
troduced in []. If (.) holds for β = , then T : A→ A is said to be an asymptotically pseu-
docontractive self-mapping in the intermediate sense. Finally, if αn → α ∈ [, ) as n → ∞,
then T : A → A is asymptotically β-strictly contractive in the intermediate sense, respec-
tively, asymptotically contractive in the intermediate sense if β = . If (.) is changed to
the stronger condition

(∥∥Tnx – Tny
∥∥ – αn‖x – y‖ – β

∥∥(
I – Tn)x – (

I – Tn)y∥∥)
≤ ; ∀x, y ∈ A,n ∈N, (.)

then the above concepts translate into T : A → A being an asymptotically β-strictly
pseudocontractive self-mapping, an asymptotically pseudocontractive self-mapping and
asymptotically contractive one, respectively. Note that (.) is equivalent to

∥∥Tnx – Tny
∥∥

≤ αn‖x – y‖ + β
∥∥(
I – Tn)x – (

I – Tn)y∥∥ + ξn; ∀x, y ∈ A,∀n ∈N (.)

or, equivalently,

〈
Tnx – Tny,x – y

〉
≤ 

β
[
(αn + β)‖x – y‖ + (β – )

∥∥Tnx – Tny
∥∥ + ξn

]
; ∀x, y ∈ A,n ∈N, (.)

where

ξn := max
{
, sup

x,y∈A

(∥∥Tnx – Tny
∥∥ – αn‖x – y‖

– β
∥∥(
I – Tn)x – (

I – Tn)y∥∥)}; ∀n ∈N. (.)

Note that the high-right-hand-side term ‖(I – Tn)x – (I – Tn)y‖ of (.) is expanded as
follows for any x, y ∈ A:

‖x – y‖ + ∥∥Tnx – Tny
∥∥ – ‖x – y‖∥∥Tnx – Tny

∥∥
≤ ∥∥(

I – Tn)x – (
I – Tn)y∥∥ ≤ 〈

x – Tnx, y – Tny
〉 = 〈

x – y,Tnx – Tny
〉

= ‖x – y‖ + ∥∥Tnx – Tny
∥∥ + 

〈
Tnx – Tny,x – y

〉
=

〈
x – y,Tnx – Tny

〉〈
x – y,Tnx – Tny

〉
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≤ ‖x – y‖ + ∥∥Tnx – Tny
∥∥ + 

∣∣〈Tnx – Tny,x – y
〉∣∣

≤ ‖x – y‖ + ∥∥Tnx – Tny
∥∥ + ‖x – y‖∥∥Tnx – Tny

∥∥. (.)

The objective of this paper is to discuss the various pseudocontractive in the intermedi-
ate sense concepts in the framework of metric spaces endowed with a homogeneous and
translation-invariant metric and also to generalize them to the β-parameter to eventu-
ally be replaced with a sequence {βn} in (, ). Now, if instead of a real Hilbert space H
endowed with an inner product 〈·, ·〉 and a norm ‖ · ‖, we deal with any generic Banach
space (X,‖ · ‖), then its norm induces a homogeneous and translation invariant metric
d : X ×X → R+ defined by d(x, y) = d(x– y, ) = ‖x– y‖/; ∀x, y ∈ A so that (.) takes the
form

d(x, y) + d(Tnx,Tny
)
– d(x, y)d

(
Tnx,Tny

)
≤ ∥∥(

I – Tn)x – (
I – Tn)y∥∥ = d(x – y –

(
Tnx – Tny

)
, 

)
= d(x – y,Tnx – Tny

)
≤ (

d(x – y, ) + d
(
Tnx – Tny, 

)) = (
d(x, y) + d

(
Tnx,Tny

))
= d(x, y) + d(Tnx,Tny

)
+ d(x, y)d

(
Tnx,Tny

)
; ∀x, y ∈ A. (.)

Define

μn(x, y) := min
(
ρ ∈ [–, ] : d(x – y,Tnx – Tny

) ≤ d(x, y) + d(Tnx,Tny
)

+ ρd(x, y)d
(
Tnx,Tny

))
; ∀x, y ∈ A,∀n ∈N, (.)

which exists since it follows from (.), since the metric is homogeneous and translation-
invariant, that

{} ⊂ {
ρ ∈ R :

∥∥(
I – Tn)x – (

I – Tn)y∥∥

≤ d(x, y) + d(Tnx,Tny
)
+ ρd(x, y)d

(
Tnx,Tny

)}
(�=∅). (.)

The following result holds related to the discussion (.)-(.) in metric spaces.

Theorem . Let (X,d) be ametric space and consider a self-mapping T : X → X.Assume
that the following constraint holds:

d(Tnx,Tny
)

≤ αn(x, y)d(x, y) + βn(x, y)
(
d(x, y) + d(Tnx,Tny

))
+ μn(x, y)βn(x, y)d(x, y)d

(
Tnx,Tny

)
+ ξn(x, y); ∀x, y ∈ X,∀n ∈N (.)

with

ξn = ξn(x, y)

:= max
(
,

(
 – βn(x, y)

)
d(Tnx,Tny

)
–

(
αn(x, y) + βn(x, y)

)
d(x, y)

– μn(x, y)βn(x, y)d(x, y)d
(
Tnx,Tny

)) → ; ∀x, y ∈ X as n→ ∞ (.)
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for some parameterizing bounded real sequences {αn(x, y)}, {βn(x, y)} and {μn(x, y)} of gen-
eral terms αn = αn(x, y), βn = βn(x, y), μn = μn(x, y) satisfying the following constraints:

[(
μn(x, y) ∈

[
–

αn(x, y) + βn(x, y)
βn(x, y)

,
 – αn(x, y) – βn(x, y)

βn(x, y)

])
∧ (

βn(x, y) < 
)]

∨
[(

μn(x, y) < –
αn(x, y) + βn(x, y)

βn(x, y)

)
∧ (

βn(x, y) > 
) ⇔ ξn(x, y) = 

]

∨
[
μn(x, y) ∈

[
 – αn(x, y) – βn(x, y)

βn(x, y)
,
 – βn(x, y)
βn(x, y)

)]
; ∀x, y ∈ X,∀n ∈N (.)

with lim supn→∞[βn(x, y)max(, +μn(x, y))] <  and, furthermore, the following condition
is satisfied:

(
μn(x, y) –

 – αn(x, y) – βn(x, y)
βn(x, y)

)
→ ; ∀x, y ∈ X as n→ ∞ (.)

if and only if αn + βn( +μn) → ; ∀x, y ∈ X as n→ ∞.
Then the following properties hold:
(i) ∃ limn→∞ d(Tnx,Tny) ≤ d(x, y) for any x, y ∈ X so that T : X → X is asymptotically

nonexpansive.
(ii) Let (X,d) be complete, d : X × X → R+ be, in addition, a translation-invariant ho-

mogeneous norm and let (X,‖ ‖) ≡ (X,d), with ‖ ‖ being the metric-induced norm from
d : X × X → R+, be a uniformly convex Banach space. Assume also that T : X → X is
continuous. Then any sequence {Tnx}; ∀x ∈ A is bounded and convergent to some point
zx = zx(x) ∈ C, being in general dependent on x, in some nonempty bounded, closed and
convex subset C of A, where A is any nonempty bounded subset of X. Also, d(Tnx,Tn+mx) is
bounded; ∀n,m ∈ N, limn→∞ d(Tnx,Tn+mx) = ; ∀x ∈ A, ∀m ∈ N and zx = zx(x) = Tzx ∈ C
is a fixed point of the restricted self-mapping T : C → C; ∀x ∈ A. Furthermore,

lim
n→∞

(
d(Tn+x,Tn+y

)
– d(Tnx,Tny

))
= ; ∀x, y ∈ A. (.)

Proof Consider two possibilities for the constraint (.), subject to (.), to hold for each
given x, y ∈ X and n ∈N as follows:
(A) d(Tnx,Tny) ≤ d(x, y) for any x, y ∈ X, n ∈N. Then one gets from (.)

d(Tnx,Tny
) ≤ (αn + βn)d(x, y) + βnd(Tnx,Tny

)
+ μnβnd(x, y) + ξn

⇒ d
(
Tnx,Tny

) ≤ kand(x, y) +
ξn

 – βn
; (.)

∀x, y ∈ A, ∀n ∈ N, where

kan = kan(x, y) =
αn + βn( + μn)

 – βn
→ ; ∀x, y ∈ X as n→ ∞, (.)

which holds from (.)-(.) if lim supn→∞ βn(x, y) <  since

(
μn(x, y) –

 – αn(x, y) – βn(x, y)
βn(x, y)

)
→ ;
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∀x, y ∈ X as n→ ∞ in (.) is equivalent to (.). Note that ≤ kan ≤  is ensured either
with min(αn + βn( + μn),  – βn) ≥  or with max(αn + βn( + μn),  – βn) ≤  if

[(
μn(x, y) ∈

[
–

αn(x, y) + βn(x, y)
βn(x, y)

,
 – αn(x, y) – βn(x, y)

βn(x, y)

])
∧ (

βn(x, y) ∈ (, )
)]

∨
[(

μn(x, y) <
 – αn(x, y) – βn(x, y)

βn(x, y)

)
∧ (

βn(x, y) ≥ 
)]
. (.)

However, βn >  with ξn >  has to be excluded because of the unboundedness or nonneg-
ativity of the second right-hand-side term of (.).
(B) d(Tnx,Tny) ≥ d(x, y) for some x, y ∈ X, n ∈N. Then one gets from (.)

d
(
Tnx,Tny

) ≤ (αn + βn)d(x, y) + βnd(Tnx,Tny
)
+ μnβnd(Tnx,Tny

)
+ ξn

⇒ d
(
Tnx,Tny

) ≤ kbnd(x, y) +
ξn

 – βn( + μn)
, (.)

where

kbn = kbn(x, y) =
αn + βn

 – βn( + μn)
→  as n→ ∞, (.)

which holds from (.) and kbn ≥  if lim supn→∞[βn(x, y)max(,  + μn(x, y))] < , and

μn(x, y) ∈
[
 – αn(x, y) – βn(x, y)

βn(x, y)
,
 – βn(x, y)
βn(x, y)

)
. (.)

Thus, (.)-(.), with the second option in the logic disjunction being true if and only if
ξn =  togetherwith (.)-(.), are equivalent to (.)-(.) by taking kn = kn(x, y) to be
either kan or kbn for each n ∈ N. It then follows that ∃ limsupn→∞(d(Tnx,Tny)–d(x, y)) ≤ ;
∀x, y ∈ X from (.)-(.) since  ≤ kn = kn(x, y)≤  and kn(x, y) → ; ∀x, y ∈ X as n → ∞.
Thus, T : X → X is asymptotically nonexpansive. Thus, Property (i) has been proven.
Property (ii) is proven as follows. Consider the metric-induced norm ‖ ‖ equivalent to
the translation-invariant homogeneous metric d : X ×X → R+. Such a norm exists since
the metric is homogeneous and translation-invariant so that norm and metric are for-
mally equivalent. Rename A ≡ A and define a sequence of subsets Aj := {Tjx : x ∈ A}
of X. From Property (i), {d(Tnx,Tny)} is bounded; ∀x, y ∈ X if d(x, y) is finite, since it is
bounded for any finite n ∈ N and, furthermore, it has a finite limit as n → ∞. Thus, all
the collections of subsets

⋃k
i=Ai; ∀k ∈ N are bounded since A is bounded. Define the

set C = C(A) := cl[convex(
⋃∞

i=Ak)] which is nonempty bounded, closed and convex by
construction. Since (X,d) is complete, (X,‖ ‖) ≡ (X,d) is a uniformly convex Banach space
and T : C → C is asymptotically nonexpansive from Property (i), then it has a fixed point
z = Tz ∈ C [, ]. Since the restricted self-mapping T : C → C is also continuous, one gets
from Property (i)

∃ lim
n→∞d

(
Tnx,Tnz

)
= lim

n→∞d
(
Tnx, z

)
= d

(
lim
n→∞Tnx, z

)
≤ d(x, z) <∞; ∀x ∈ A. (.)

Then any sequence {Tnx} is convergent (otherwise, the above limit would not exist con-
tradicting Property (i)), and then bounded in C; ∀x ∈ A. This also implies d(Tnx,Tn+mx) is

http://www.fixedpointtheoryandapplications.com/content/2013/1/146
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bounded; ∀x ∈ A, ∀n,m ∈N and limn→∞ d(Tnx,Tn+mx) = ; ∀x ∈ A, ∀m ∈N. This implies
alsoTnx → zx(x) as n→ ∞; ∀x ∈ A such that zx(x) = Tzx; ∀x ∈ Awhich is then a fixed point
of T : C → C (otherwise, the above property limn→∞ d(Tnx,Tn+mx) = ; ∀x ∈ A, ∀m ∈ N
would be contradicted). Hence, Property (ii) is proven. �

First of all, note that Property (ii) of Theorem . applies to a uniformly convex space
which is also a complete metric space. Since the metric is homogeneous and translation-
invariant, a norm can be induced by such a metric. Alternatively, the property could be
established on any uniformly convexBanach space by taking a norm-inducedmetricwhich
always exists. Conceptually similar arguments are used in later parallel results through-
out the paper. Note that the proof of Theorem .(i) has two parts: Case (A) refers to an
asymptotically nonexpansive self-mapping which is contractive for any number of finite
iteration steps and Case (B) refers to an asymptotically nonexpansive self-mapping which
is allowed to be expansive for a finite number of iteration steps. It has to be pointed out
concerning such a Theorem .(ii) that the given conditions guarantee the existence of at
least a fixed point but not its uniqueness. Therefore, the proof is outlined with the exis-
tence of a z ∈ Fix(T |C) for any nonempty, bounded and closed subset A of X. Note that
the set C, being in general dependent on the initial set A, is bounded, convex and closed
by construction while any taken nonempty set of initial conditions A ⊂ X is not required
to be convex. However, the property that all the sequences converge to fixed points opens
two potential possibilities depending on particular extra restrictions on the self-mapping
T : C → C, namely: () the fixed point is not unique so that zx ≡ z for any x ∈ A (and any A
in X) so that some set Fix(T |C) for some C = C(A) ⊂ X contains more than one point. In
other words, d(Tnx,Tny) →  as n→ ∞; ∀x, y ∈ A has not been proven although it is true
that limn→∞(d(Tn+x,Tn+y) – d(Tnx,Tny)) = ; ∀x, y ∈ A; () there is only a fixed point
in X. The following result extends Theorem . for a modification of the asymptotically
nonexpansive condition (.).

Theorem . Let (X,d) be a metric space and consider the self-mapping T : X → X. As-
sume that the constraint below holds:

d(Tnx,Tny
) ≤ αn(x, y)d(x, y) + βn(x, y)

(
d(x, y) + d(Tnx,Tny

))
+ μn(x, y)βn(x, y)d(Tnx,Tny

)
+ ξn(x, y); ∀x, y ∈ X,∀n ∈N (.)

with

ξn = ξn(x, y)

:= max
(
,

(
 – βn(x, y)

)
d(Tnx,Tny

)
–

(
αn(x, y) + βn(x, y)

)
d(x, y)

– μn(x, y)βn(x, y)d(Tnx,Tny
)) → ; ∀x, y ∈ X as n→ ∞ (.)

for some parameterizing real sequences αn = αn(x, y), βn = βn(x, y) and μn = μn(x, y) satis-
fying, for any n ∈N,

{
αn(x, y)

} ⊂ [,∞),
{
μn(x, y)

} ⊂
[
–,

 – βn(x, y)
βn(x, y)

)
,

{
βn(x, y)

} ⊂ [, ]; ∀x, y ∈ X,∀n ∈N.
(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/146
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Then the following properties hold:
(i) ∃ limn→∞ d(Tnx,Tny) ≤ d(x, y) so that T : X → X is asymptotically nonexpansive, and

then ∃ limn→∞ d(Tnx,Tny) ≤ d(x, y); ∀x, y ∈ X if

αn(x, y) + βn(x, y)
 – βn(x, y)( + μn(x, y))

≥ 

⇔ μn(x, y) ∈
[
 – αn(x, y) – βn(x, y)

βn(x, y)
,
 – βn(x, y)
βn(x, y)

)
; ∀x, y ∈ X,∀n ∈N

(.)

and the following limit exists:

αn(x, y) + βn(x, y)
(
 +μn(x, y)

) → ; ∀x, y ∈ X as n → ∞. (.)

(ii) Property (ii) of Theorem . if (X,d) is complete and (X,‖ ‖) ≡ (X,d) is a uniformly
convex Banach space under the metric-induced norm ‖ ‖.

Sketch of the proof Property (i) follows in the sameway as the proof of Property (i) of Theo-
rem . for Case (B). Using proving arguments similar to those used to prove Theorem .,
one proves Property (ii). �

The relevant part in Theorem . being of usefulness concerning the asymptotic pseu-
docontractions in the intermediate sense and the asymptotic strict contractions in the
intermediate sense relies on Case (B) in the proof of Property (i) with the sequence of
constants kn(x, y) ≥ ; ∀x, y ∈ X, ∀n ∈ N and kn(x, y) → ; as n → ∞, ∀x, y ∈ X. The con-
cepts of an asymptotic pseudocontraction and an asymptotic strict pseudocontraction in
the intermediate sense motivated in Theorem . by (.)-(.), under the asymptotically
nonexpansive constraints (.) subject to (.) and in Theorem . by (.) subject to
(.) are revisited as follows in the context of metric spaces.

Definition . Assume that (X,d) is a complete metric space with d : X×X → R+ being
a homogeneous translation-invariant metric. Thus, T : A→ A is asymptotically β-strictly
pseudocontractive in the intermediate sense if

lim sup
n→∞

((
 – βn( + μn)

)
d(Tnx,Tny

)
– (αn + βn)d(x, y)

) ≤ ; ∀x, y ∈ A (.)

for βn = β ∈ [, ); ∀n ∈N and some real sequences {αn}, {μn} being, in general, dependent
on the initial points, i.e., αn = αn(x, y), μn = μn(x, y) and

{μn} ⊂
[
–,

 – β

β

)
and {αn} ⊂ [,∞);

∀n ∈N,αn →  and μn → – as n→ ∞;∀x, y ∈ A,∀n ∈N. (.)

Definition . T : A → A is asymptotically pseudocontractive in the intermediate sense
if (.) holds with {μn} ⊂ [–, –βn

βn ), {βn} ⊂ [, ], {αn} ⊂ [,∞), αn → , βn → ,μn → –
as n→ ∞ and the remaining conditions as inDefinition . with αn = αn(x, y), βn = βn(x, y)
and μn = μn(x, y).
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Definition . T : A → A is asymptotically β-strictly contractive in the intermediate
sense if αn ∈ [,∞), βn = β ∈ [, ), μn ∈ [–, –β

β ); ∀n ∈ N, μn → μ ∈ [–, –β

β min(, 
α+β

)),
αn → α ∈ [, ) as n→ ∞, in Definition . with αn = αn(x, y), μn = μn(x, y).

Definition . T : A → A is asymptotically contractive in the intermediate sense if αn ∈
[,∞), {βn} ⊂ [, ), μn ∈ [–, –βn

βn ); ∀n ∈ N, μn → μ ∈ [–,– +α
 ), αn → α ∈ [, ), and

βn → β =  as n→ ∞ in Definition . with αn = αn(x, y), βn = βn(x, y) and μn = μn(x, y).

Remark . Note that Definitions .-. lead to direct interpretations of their role in
the convergence properties under the constraint (.), subject to (.), by noting the
following:
() If T : A→ A is asymptotically β-strictly pseudocontractive in the intermediate

sense (Definition .), then the real sequence {kn} of asymptotically nonexpansive
constants has a general term kn := ( αn+β

–β(+μn) )
/ ∈ [( αn+β

+β
)/,∞) ⊂ [,∞); ∀n ∈N,

and it converges to a limit k =  since ξn →  and αn →  as n→ ∞; ∀x, y ∈ A from
(.) since μn → – from (.). Then T : A→ A is trivially asymptotically
nonexpansive as expected.

() If T : A→ A is asymptotically pseudocontractive in the intermediate sense
(Definition .), then the sequence {kn} of asymptotically nonexpansive constants
has the general term: kn := ( αn+βn

–βn(+μn) )
/ ∈ [( αn+βn

+βn
)/,∞) ⊂ [,∞); ∀n ∈N, and it

converges to a limit k =  since αn → , βn →  as n→ ∞. Then T : A → A is also
trivially asymptotically nonexpansive as expected. Since αn ≥ , note that
βn > β ⇒ kn > kn and βn < β ⇒ kn < kn for any n ∈N, while kn → , kn →  as
n→ ∞ since ξn →  as n→ ∞; ∀x, y ∈ A from (.)-(.).

() If T : A→ A is asymptotically β-strictly contractive in the intermediate sense
(Definition .), then the sequence of asymptotically contractive constants is
defined by kn := ( αn+β

–β(+μn) )
/ ∈ [( αn+β

+β
)/,∞)⊂ [( β

+β
)/,∞); ∀n ∈N and

kn → k = ( α+β

–β(+μ) )
/ ∈ [, ) as n→ ∞ for any μ ∈ [–, –α–β

β ) such that μn → μ

as n→ ∞, since α + β( +μ) < . Then T : A→ A is an asymptotically strict
contraction as expected since ξn →  as n→ ∞; ∀x, y ∈ A from (.)-(.). Note
that the asymptotic convergence rate is arbitrarily fast as α and β are arbitrarily
close to zero, since k =O(α + β) = o(α + β) = o(max(

√
α,

√
β)) becomes also

arbitrarily close to zero, and k ≤ K(α + β) with K = K(β ,μ) = 
–β(+μ) ∈ (,∞).

() If T : A→ A is asymptotically contractive in the intermediate sense (Definition .),
then the sequence of asymptotically contractive constants is defined by

kn :=
(

αn + βn

 – βn( + μn)

)/

∈
[(

αn + βn

 + βn

)/

,∞
)

⊂
[(

βn

 + βn

)/

,∞
)
; ∀n ∈N

with βn → β =  and kn → k = ( +α
|μ| )

/ ∈ [  , ) as n→ ∞ for some μ ∈ [–,– +α
 )

since μ <  with |μ| > +α
 so that k ∈ [( +α

 )/, ). Then T : A→ A is an
asymptotically strict contraction as expected since ξn →  as n→ ∞; ∀x, y ∈ A from
(.). Note that k = k if μ <  and |μ| = +α

α and k ≥ 
 + o(α)≥ 

 . Note also that
k < k if μ ≤  and |μ| < +α

α , while k ≥ k if μ ≤  and |μ| ≥ +α
α . In the first case,

the convergence to fixed points (see Theorem . below) is guaranteed to be
asymptotically faster if the self-mapping is asymptotically β-strictly contractive in
the intermediate sense than if it is just asymptotically contractive in the
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intermediate sense if βn > β , n ∈N. Note also that if the sequences {αn} and {μn} are
identical in both cases, then kn < kn for any n ∈N such that βn > β and kn ≥ kn
for any n ∈N such that βn ≤ β .

() The above considerations could also be applied to Theorem . for the case
d(Tnx,Tny) ≥ d(x, y) (Case (B) in the proof of Property (i)) being asymptotically
nonexpansive for the asymptotically nonexpansive condition (.) subject to (.).

The subsequent result, being supported by Theorem ., relies on the concepts of
asymptotically contractive and pseudocontractive self-mappings in the intermediate
sense. Therefore, it is assumed that {αn(x, y)} ⊂ [,∞).

Theorem . Let (X,d) be a complete metric space endowed with a homogeneous
translation-invariant metric d : X × X → R+ and consider the self-mapping T : X → X.
Assume that (X,‖ ‖) ≡ (X,d) is a uniformly convex Banach space endowed with a metric-
induced norm ‖ ‖ from the metric d : X × X → R+. Assume that the asymptotically non-
expansive condition (.), subject to (.), holds for some parameterizing real sequences
αn = αn(x, y), βn = βn(x, y) and μn = μn(x, y) satisfying, for any n ∈N,

{
αn(x, y)

} ⊂ [,∞),
{
μn(x, y)

} ⊂
[
–,

 – βn(x, y)
βn(x, y)

)
,

{
βn(x, y)

} ⊂ [,β) ⊂ [, ];
(.)

∀x, y ∈ X, ∀n ∈ N. Then ∃ limn→∞ d(Tnx,Tny) ≤ d(x, y) for any x, y ∈ X satisfying the con-
ditions

αn(x, y) + βn(x, y)
 – βn(x, y)( + μn(x, y)d(x, y))

≥ ;

αn(x, y) + βn(x, y)
(
 +μn(x, y)

) → ; ∀x, y ∈ X as n→ ∞.
(.)

Furthermore, the following properties hold:
(i) T : C → C is asymptotically β-strictly pseudocontractive in the intermediate sense for

some nonempty, bounded, closed and convex set C = C(A) ⊂ X and any given nonempty,
bounded and closed subset A ⊂ X of initial conditions if (.) hold with  ≤ βn = β < ,
{μn} ⊂ [–, –β

β ), {αn} ⊂ [,∞), αn →  and μn → – as n → ∞; ∀x, y ∈ A, ∀n ∈ N. Also,
T : C → C has a fixed point for any such set C if T : X → X is continuous.
(ii) T : C → C is asymptotically pseudocontractive in the intermediate sense for some

nonempty, bounded, closed and convex set C = C(A) ⊂ X andany given nonempty, bounded
and closed subset A ⊂ X of initial conditions if (.) hold with {βn} ⊂ [, ], {μn} ⊂
[–, –βn

βn ), {αn} ⊂ [,∞), βn → , αn →  and μn → – as n → ∞; ∀x, y ∈ A, ∀n ∈ N. Also,
T : C → C has a fixed point for any such set C if T : X → X is continuous.
(iii) If (.) hold with αn ∈ [,∞), βn = β ∈ [, ), μn ∈ [–, –β

β ), μn → μ ∈ [–, –α–β
β );

∀n ∈ N and αn → α ∈ [, ) as n → ∞, then T : X → X is asymptotically β-strictly con-
tractive in the intermediate sense. Also, T : X → X has a unique fixed point.
(iv) If (.) hold with αn ∈ [,∞), {βn} ⊂ [, ), μn ∈ [–, –βn

βn ), μn → μ ∈ [–,– +α
 );

∀n ∈ N, βn →  and αn → α ∈ [, ) as n → ∞, then T : X → X is asymptotically strictly
contractive in the intermediate sense. Also, T : X → X has a unique fixed point.
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Proof (i) It follows fromDefinition . and the fact that Theorem . holds under the par-
ticular nonexpansive condition (.), subject to (.), so thatT : A→ A is asymptotically
nonexpansive (see Remark .()). Property (ii) follows in a similar way fromDefinition .
(see Remark .()). Properties (iii)-(iv) follow from Theorem . and Definitions .-.
implying also that the asymptotically nonexpansive self-mapping T : X → X is also a strict
contraction, then continuous with a unique fixed point, since α + β( + μ) <  (see Re-
mark .()) and μ <  with |μ| > +α

 (see Remark .()), respectively. (The above prop-
erties could also be got from Theorem . for Case (B) of the proof of Theorem .(ii) -
see Remark .().) �

Example . Consider the time-varying pth order nonlinear discrete dynamic system

xk+n = Tnxk ≡ xk+ + Fn(xk)(xk+ – xk) + ηn(xk); x ∈ A ⊂ Rp,∀k ∈N; (.)

∀k,n ∈N for some given nonempty bounded setA, where {Fnk} is aRp×p matrix sequence
of elements Fnk : Rp → Rp×p with Fnk = Fn(xk) and ηnk : Rp → Rp with ηnk = ηn(xk); ∀k ∈N,
andT : Rp → Rp defines the state-sequence trajectory solution {xk(x,x)}. Equation (.)
requires the consistency constraint F �=  to calculate x. However, other discrete systems
being dealt with in the same way as, for instance, that obtained by replacing xk+ → xk–
in (.) with the initial condition x ∈ A (and appropriate ad hoc re-definition of the
mapping which generates the trajectory solution from given initial conditions) do not
require such a consistency constraint. The dynamic system (.) is asymptotically lin-
ear if ηn(x) →  as n → ∞; ∀x ∈ Rp. Note that for the Euclidean distance (and norm),
d(xk+n,xk+) ≤ ‖Fnk‖d(xk ,xk+) + ‖ηnk‖; ∀k ∈ N. Assume that the squared spectral norm
of Fnk is upper-bounded by knk = kn(xk) =

αnk+βnk
–βnk (+μnk )

for some parameterizing scalar se-
quences {αnk}, {βnk} and {μn} which can be dependent, in a more general case, on the
state xk . This holds, for instance, if Fnk = Fn(xk) = 

ank
( αnk+βnk
–βnk (+μnk )

)/Pnk , where {ank} is a
real positive sequence satisfying ank ≥ ‖Pnk‖ and Pnk (= Pn(xk)) :N×Rp → Rp×p both be-
ing potentially dependent on the state as the rest of the parameterizing sequences. Since
the spectral norm equalizes the spectral radius if the matrix is symmetric, then kn can be
taken exactly as the spectral radius of Fnk in such a case, i.e., it equalizes the absolute value
of its dominant eigenvalue. We have to check the condition

lim sup
n→∞

(
( + μnk – βnk)d(Tnxk ,Tnyk

)
– (αnk + βnk)d(xk , yk)

) ≤ ; ∀k ∈N (.)

provided, for instance, that the distance is the Euclidean distance, induced by the Euclidean
norm, then both being coincident, and provided also that we take the metric space (Rp,d)
which holds, in particular, if
(a) {|ηnk|} ⊂ R+, {αnk} ⊂ [,∞), βnk = β ∈ [, ), {μnk} ⊂ [–, –β

β ); ∀n,k ∈ N, αnk → 
and ηnk → , μnk → –, as n → ∞; ∀k ∈ N. This implies that knk =

αnk+β

–βnk (+μnk )
≥ ;

∀n,k ∈N and knk →  as n→ ∞; ∀k ∈N. Thus, T : Rp → Rp is asymptotically nonexpan-
sive being also an asymptotic strict β-pseudocontraction in the intermediate sense. This
also implies that (.) is globally stable as it is proven as follows. Assume the contrary so
that there is an infinite subsequence Lu of {‖xnk‖} which is unbounded, and then there is
also an infinite subsequence Lua which is strictly increasing. Since ηnk = ηn(xk) →  and
knk = kn(xk)→  as n → ∞; ∀k ∈N, one has that for ∀x ∈ A, any given k ∈N and some
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sufficiently large m =m(xk), m =m(xk) ∈ N, ∃ε = ε(m) ∈ R+, ε = ε(m) ∈ R+

such that km = km (xk) ≤  + ε and ‖ηm (xk)‖ ≤ ε; ∀m ≥ m, ∀m ≥ m. Now, take
m =max(m,m) and ε =max(ε, ε). Then ‖xk+m‖/‖xk‖ ≤ +ε+ε/‖xk‖; ∀m(∈N) ≥ m

and any given k ∈ N. If xk ≡ , then stability holds trivially. Assume not, and there are un-
bounded solutions. Thus, take xk (�= ),xk+m ∈ Lua such that ‖ xk+m

xk
‖ ≥ M for any given

M ∈ R+, ∀m(∈N) ≥ m and somem =m(M) ≥ m. Note that since Lua is a strictly increas-
ing real sequence {M(m)} implyingM(m) → ∞ asm → ∞, which leads to a contradiction
to the inequalityM ≤ +ε(+ 

‖xk‖ ) for ε → + for some sufficiently largem, then for some
sufficiently largeM, if such a strictly increasing sequence Lua exists. Hence, there is no such
sequence, and then no unbounded sequence Lu for any initial condition in A. As a result,
for any initial condition in any given subset A of Rp (even if it is unbounded), any solu-
tion sequence of (.) is bounded, and then (.) is globally stable. The above reasoning
implies that there is an infinite collection of numerable nonempty bounded closed sets
{Ai ⊂ Rp : i ∈ N}, which are not necessarily connected, such that xk ∈ Ak ; ∀k ∈ N and any
given x ∈ A. Assume that the set A of initial conditions is bounded, convex and closed
and consider the collection of convex envelopes {convexAi ⊂ Rp : i ∈N}, define construc-
tively the closure convex setC(A) = cl(convex(

⋃∞
i= convexAi)) which is trivially bounded,

convex and closed. Note that it is not guaranteed that
⋃∞

i= convexAi is either open or
closed since there is a union of infinitely many closed sets involved. Note also that the
convex hull of all the convex envelopes of the collection of sets is involved to ensure that A
is convex since the union of convex sets is not necessarily convex (so that

⋃∞
i= convexAi is

not guaranteed to be convexwhileA is convex). Consider now the self-mappingT : C → C
which defines exactly the same solution as T : Rp → Rp for initial conditions in A so that
T is identified with the restricted self-mapping T : Rp|C → C from a nonempty bounded,
convex and closed set to itself. Note that (Rp,d) for the Euclidean distance is a convexmet-
ric space which is also complete since it is finite dimensional. Then Fnk : A ⊂ Rp → Rp×p

and ηnk : A ⊂ Rp → Rp are both continuous, then T : C → C is also continuous and has a
fixed point in A from Theorem .(i).
(b) If the self-mapping is asymptotically pseudocontractive in the intermediate sense,

then the above conclusions still hold with the modification knk =
αnk+βnk

–βnk (+μnk )
(≥ ) → 

and –μnk → αnk → βnk →  as n → ∞; ∀k ∈ N. From Remark .(), βnk > β ⇒ knk >
knk and βnk < β ⇒ knk < knk for any n,k ∈ N. Thus the convergence is guaranteed to
be faster for an asymptotic β-strict pseudocontraction in the intermediate sense than for
an asymptotic pseudocontraction in the intermediate sense with a sequence {βnk} such
that βnk > β ; ∀n ∈ N with the remaining parameters and parametrical sequences being
identical in both cases. If Fnk : A ⊂ Rp → Rp×p and ηnk : A ⊂ Rp → Rp; ∀n,k ∈ N are both
continuous, then T : A→ A is continuous and has a fixed point inA fromTheorem .(ii).
(c) If T : X → X is asymptotically β-strictly contractive in the intermediate sense, then

knk = αnk+βnk
–βnk (+μnk )

→ k = o(max(
√

α,
√

β)) ∈ [, ); ∀k ∈ N so that it is asymptotically
strictly contractive and has a unique fixed point from Theorem .(iii).
(d) If T : X → X is asymptotically contractive in the intermediate sense, knk =

( αnk+βnk
–βnk (+μnk )

)/ → k ≥ √
 + o(α) ≥ √

 ; ∀k ∈ N. Thus, T : X → X is an asymptotic strict
contraction and has a unique fixed point from Theorem .(iv).

Remark . Note that conditions like (.) can be tested on dynamic systems being dif-
ferent from (.) by redefining, in an appropriate way, the self-mapping which generates
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the solution sequence from given initial conditions. This allows to investigate the asymp-
totic properties of the self-mapping, the convergence of the solution to fixed points, then
the system stability, etc. in a unified way for different dynamic systems. Close consider-
ations can be discussed for different dynamic systems and convergence of the solutions
generated by the different cyclic self-mappings defined on the union of several subsets to
the best proximity points of each of the involved subsets.

3 Asymptotic contractions and pseudocontractions of cyclic self-mappings in
the intermediate sense

Let A,B ⊂ X be nonempty subsets of X. T : A ∪ B → A ∪ B is a cyclic self-mapping if
T(A) ⊆ B and T(B) ⊆ A. Assume that the asymptotically nonexpansive condition (.),
subject to (.), is modified as follows:

d(Tnx,Tny
) ≤ αn(x, y)d(x, y) + βn(x, y)

(
d(x, y) + d(Tnx,Tny

))
+ μn(x, y)βn(x, y)d(x, y)d

(
Tnx,Tny

)
+ ξn(x, y) + γn(x, y)D; ∀x ∈ A, y ∈ B,∀n ∈ N, (.)

ξn = ξn(x, y)

:=max
(
,

(
 – βn(x, y)

)
d(Tnx,Tny

)
–

(
αn(x, y) + βn(x, y)

)
d(x, y)

– μn(x, y)βn(x, y)d(x, y)d
(
Tnx,Tny

))
; ∀x ∈ A, y ∈ B,∀n ∈N (.)

with (ξn – γn(x, y)D) → ; ∀x, y ∈ X as n→ ∞, and that the asymptotically nonexpansive
condition (.), subject to (.), is modified as follows:

d(Tnx,Tny
) ≤ αn(x, y)d(x, y) + βn(x, y)

(
d(x, y) + d(Tnx,Tny

))
+ μn(x, y)βn(x, y)d(Tnx,Tny

)
+ ξn(x, y) + γn(x, y)D; ∀x ∈ A, y ∈ B,∀n ∈ N, (.)

ξn = ξn(x, y)

:=max
(
,

(
 – βn(x, y)

)
d(Tnx,Tny

)
–

(
αn(x, y) + βn(x, y)

)
d(x, y)

– μn(x, y)βn(x, y)d
(
Tnx,Tny

))
; ∀x, y ∈ X as n→ ∞ (.)

with (ξn – γn(x, y)D) → ; ∀x, y ∈ X as n → ∞, where {γn(x, y)} ∈ [,∞) and D =
dist(A,B) ≥ . If A ∩ B �= ∅, then D =  and Theorems ., . and . hold with the re-
placement A → A ∩ B. Then if A and B are closed and convex, then there is a unique
fixed point of T : A ∪ B → A ∪ B in A ∩ B. In the following, we consider the case that
A ∩ B = ∅ so that D > . The subsequent result based on Theorems ., . and .
holds.

Theorem . Let (X,d) be a metric space and let T : A ∪ B → A ∪ B be a cyclic self-
mapping, i.e.,T(A) ⊆ B and T(B) ⊆ A,where A and B are nonempty subsets of X.Define the
sequence {kn}n∈N ⊂ [,∞) of asymptotically nonexpansive iteration-dependent constants
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as follows:

kn = kn(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αn + βn( + μn)
 – βn

≤  if d(Tnx,Tny) ≤ d(x, y); (.a)

αn + βn

 – βn( + μn)
≥  if d(Tnx,Tny) ≥ d(x, y); (.b)

∀(x, y) ∈ (A×B)∪ (B×A), ∀n ∈N provided that T : A∪B→ A∪B satisfies the constraint
(.), subject to (.), and

[(
d
(
Tnx,Tny

) ≤ d(x, y)∧ βn = 
)

⇒ (γn = ),∀(x, y) ∈ (A× B)∪ (B×A),∀n ∈N
]

(.)

and

kn = kn(x, y) =
αn + βn

 – βn( + μn)
≥ ; (.)

∀n ∈ N for x ∈ A (y ∈ B) and for x ∈ B (y ∈ A) provided that T : A∪B → A∪B satisfies the
constraint (.) subject to (.) provided that the parameterizing bounded real sequences
{αn(x, y)}, {βn(x, y)}, {μn(x, y)} and {γn(x, y)} of general terms αn = αn(x, y), βn = βn(x, y) and
μn = μn(x, y) fulfill the following constraints:

[(
μn(x, y) ∈

[
–

αn(x, y) + βn(x, y)
βn(x, y)

,
 – αn(x, y) – βn(x, y)

βn(x, y)d(x, y)

])
∧ (

βn(x, y) < 
)]

∨
[(

μn(x, y) < –
αn(x, y) + βn(x, y)

βn(x, y)

)
∧ (

βn(x, y) > 
) ⇔ ξn(x, y) = 

]

∨
[
μn(x, y) ∈

[
 – αn(x, y) – βn(x, y)

βn(x, y)
,
 – βn(x, y)
βn(x, y)

)]
;

∀(x, y) ∈ (A× B)∪ (B×A),∀n ∈N, (.)

γn = γn(x, y) ≥ max(,  – kn) and assuming that the following limits exist:

(
μn(x, y) –

 – αn(x, y) – βn(x, y)
βn(x, y)

)
→ 

⇔ αn + βn( +μn) → ; γn(x, y) → ;

∀(x, y) ∈ (A× B)∪ (B×A) as n → ∞. (.)

Then, the following properties hold:
(i) T : A∪B → A∪B satisfies (.) subject to (.)-(.); ∀(x, y) ∈ (A×B)∪ (B×A). Then

∃ lim
n→∞d

(
Tnx,Tny

) ∈ [
D,d(x, y)

]
; ∀(x, y) ∈ (A× B)∪ (B×A)

so that T : A ∪ B → A ∪ B is a cyclic asymptotically nonexpansive self-mapping. If
x ∈ A is a best proximity point of A and y ∈ B is a best proximity point of B, then
limn→∞ d(Tnx,Tny) = D and Tnx → zx = z(x) and Tny → zy = z(y), which are best
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proximity points of A and B (not being necessarily identical to x and y), respectively if
T : A∪ B→ A∪ B is continuous.
(ii) Property (i) also holds if T : A∪ B → A∪ B satisfies (.) subject to (.), (.), (.)-

(.) and (.b) provided that d(Tnx,Tny) ≥ d(x, y); ∀(x, y) ∈ (A× B)∪ (B×A).

Proof The second condition of (.) now becomes under either (.)-(.) and (.)-(.)

d
(
Tnx,Tny

) ≤ kbnd(x, y) +
ξn + γnD

 – βn

⇒ ∃ lim
n→∞d

(
Tnx,Tny

) ∈ [
D,d(x, y)

]
; ∀(x, y) ∈ (A× B)∪ (B×A), (.)

and it now becomes under (.)-(.) and (.)-(.)

d
(
Tnx,Tny

) ≤ kbnd(x, y) +
ξn + γnD

 – βn( + μn)

⇒ ∃ lim
n→∞d

(
Tnx,Tny

) ∈ [
D,d(x, y)

]
; ∀(x, y) ∈ (A× B)∪ (B×A) (.)

since Tnx,Tnx ∈ A ∪ B; ∀n ∈ N since T(A) ⊆ B and T(B) ⊆ A, and kn →  and γn(x, y) →
( – kn) →  as n→ ∞; ∀(x, y) ∈ (A×B)∪ (B×A). Note that (.) implies that there is no
division by zero in (.). Now, assume that (.) holds with βn = . From (.) and (.),
μn ∈ [– +αn

 , ], equivalently, |μn| ≤ +αn
 and d(Tnx,Tny) > αn+

|μn|d
(x, y) ≥ d(x, y), which

contradicts (.a) if ξn >  so that βn =  in (.a) under (.) implies that ξn =  and, since
γn =  from (.), there is no division by zero on the right-hand side of (.) if βn = .
Also, if T : A ∪ B → A ∪ B is continuous, then limn→∞ d(Tnx,Tny) = d(limn→∞ Tnx,

limn→∞ Tny) = D so that Tnx ∈ A; ∀n ∈ N, limn→∞ Tnx ∈ clA, Tny ∈ B and
limn→∞ Tnx ∈ clB since T(A) ⊆ B and T(B)⊆ A. This proves Properties (i)-(ii). �

Remark . Note that Theorem . does not guarantee the convergence of {Tnx} and
{Tny} to best proximity points if the initial points for the iterations x ∈ A and y ∈ B are
not best proximity points if T : A∪ B → A∪ B is not contractive.

The following result specifies Theorem . for asymptotically nonexpansive mappings
with kn = αn+βn(+μn)

–βn
< ; ∀n ∈N subject to limn→∞ kn = kc ≤ .

Theorem . Let (X,d) be a metric space and let T : A ∪ B → A ∪ B be a cyclic self-
mapping which satisfies the asymptotically nonexpansive constraint (.), subject to (.),
where A and B are nonempty subsets of X. Let the sequence {kn}n∈N ⊂ [, ) of asymptot-
ically nonexpansive iteration-dependent constants be defined by a general term kn(x, y) =
kn := αn+βn(+μn)

–βn
∈ [, ) under the constraints γn(x, y) = γn := δj( – kn)( – βn) = o( – βn),

βn ≤  ⇒ μn ≤ –+αn
 , ∀n ∈N and limn→∞ kn = . Then the subsequent properties hold:

(i) The following limits exist:

lim
n→∞d

(
Tnx,Tny

)
=D; ∀(x, y) ∈ (A× B)∪ (B×A);

lim
n→∞d

(
Tnx,Tn+x

)
=D; ∀x ∈ A∪ B.

(.)

(ii) Assume, furthermore, that (X,d) is complete, A and B are closed and convex and d :
X ×X is translation-invariant and homogeneous and (X,d) ≡ (X,‖ ‖) is uniformly convex
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where ‖ ‖ is the metric-induced norm. Then

lim
n→∞d

(
Tnx,Tn+x

)
= lim

n→∞d
(
Tn+x,Tn+x

)
= ; ∀x ∈ A∪ B, (.)

{Tnx} → z ∈ A, {Tn+x} → Tz ∈ B; ∀x ∈ A, and {Tny} → Tz ∈ B, {Tn+x} → z ∈ A;
∀x ∈ A, ∀y ∈ B, where z and Tz are unique best proximity points in A and B, respectively.
If A∩ B �=∅, then z = Tz is the unique fixed point of T : A∪ B→ A∪ B.

Proof Note from (.), under (.) and (.), that there is no division by zero on the right-
hand side of (.) and ξn = γn =  if βn = . Then one has from (.)-(.), (.a), (.) and
(.) that

d(T (j+)nx,T (j+)ny
) ≤ kjnd(Tjnx,Tjny

)
+ ( – kjn)D +

ξjn

 – βjn
; ∀j,n ∈N. (.)

There are several possible cases as follows.
Case A: {d(Tjnx,Tjny)} is non-increasing. Then d(Tjnx,Tjny) → g = g(x, y) ≥ D as

n→ ∞; ∀(x, y) ∈ (A× B)∪ (B×A). Since {kn} ⊂ [, ), one gets (.).
Case B: {d(Tjnx,Tjny)} is non-decreasing. Then either {d(Tjnx,Tjny)}d(Tjnx,Tjny) → g =

g(x, y) ≥ D as n → ∞; ∀(x, y) ∈ (A × B) ∪ (B × A) or it is unbounded. Then it has a sub-
sequence which diverges, from which a strictly increasing subsequence can be taken. But
this contradicts lim supn→∞(d(T (j+)nx,T (j+)ny)–d(Tjnx,Tjny)) ≤  following from (.)
subject to the given parametrical constraints. Thus, if {d(Tjnx,Tjny)} is non-decreasing, it
cannot have a strictly increasing subsequence so that it is bounded and has a finite limit
as in Case A.
Case C: {d(Tjnx,Tjny)} has an oscillating subsequence. It is proven that such a subse-

quence is finite. Assume not, then if lim supn→∞(d(T (j+)nx,T (j+)ny) –d(Tjnx,Tjny)) ≤ ,
there is an integer sequence {pn} of general term subject to pn ∈ (n, n) such that

lim sup
n→∞

(
d(T (j+)n+pnx,T (j+)n+pny

)
– d(Tjn+pnx,Tjn+pny

))
> ,

but the above expression is equivalent, for xpn = Tpnx and ypn = Tpny which are in A ∪ B,
but not jointly in either A or B, to

lim sup
n→∞

(
d(T (j+)nxpn,T (j+)nypn

)
– d(Tjn+pnxpn,Tjn+pnypn

))
> ,

which contradicts lim supn→∞(d(T (j+)nx,T (j+)ny) – d(Tjnx,Tjny)) ≤  since both se-
quences {Tjnx} and {Tjny} are bounded; ∀(x, y) ∈ (A×B)∪ (B×A). Then there is no infinite
oscillating sequence {d(Tjnx,Tjny)} for some (x, y) ∈ (A × B) ∪ (B × A) so that there is a
finite limit g = g(x, y) ≥ D of {d(Tjnx,Tjny)}, ∀(x, y) ∈ (A × B) ∪ (B × A). Now, proceed
by contradiction by assuming the existence of some (x, y) ∈ (A × B) ∪ (B × A) such that
d(Tjnx,Tjny) → g = g(x, y) = D + ε >  as n → ∞; ∀j ∈ N. Thus, for any j,n ∈ N, there is
some n (≥ n) ∈ N such that there are two consecutive nonzero elements of a nonzero real
sequence {εn}, which can depend on x and y, which satisfy εn+ ≥ εn and

d
(
Tjnx,Tjny

)
=D + εn+ ≥ d

(
Tjnx,Tjny

)
=D + εn; (.)
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∀j ∈ N. Otherwise, if εn+ < εn for any n (∈ N) ≥ n and any given j,n ∈ N and (x, y) ∈
(A×B)∪ (B×A), then d(Tjnx,Tjny) →D as n → ∞; ∀(x, y) ∈ (A×B)∪ (B×A). One gets,
by combining (.) and (.), that

(D + εn) ≤ (D + εn+)

= d(T (j+)nx,T (j+)ny
)

≤ kjnd(Tjnx,Tjny
)
+ ( – kjn)D +

ξjn

 – βjn

= kjn(D + εn) + ( – kjn)D +
ξjn

 – βjn

= kjn(D + εn) + ( + δjn + ρjn)( – kjn)D

⇒ (D + εn) ≤ ( + δjn + ρjn)D; (.)

∀j,n ∈N since kjn < ; ∀j,n ∈N, and somenonnegative real sequence {ρjn}which converges
to zero since ξjn → γjnD → δj(–kjn)(–βjn)D = o(–βjn) →  as n→ ∞; ∀j ∈N for any
(x, y) ∈ (A×B)∪ (B×A) so that ξjn

–βjn
= –kjn

γjn
ξjnδjn (∀n ∈ N) → (–kjn)δjnD +ρjn as n→ ∞;

∀j ∈ N. The relations (.) contradict lim supn→∞�(D + εn) – ( + δjn + ρjn)D� >  since
{εn} is positive ∀n ∈N (and it does not converge to zero) and ρjn → , δjn →  as n → ∞.
Thus, one concludes that {εn} converges to zero, and then limn→∞ d(Tnx,Tny) = D;
∀(x, y) ∈ (A×B)∪ (B×A); ∀(x, y) ∈ (A×B)∪ (B×A). This leads to limn→∞ d(Tnx,Tn+x) =
D; ∀x ∈ A∪ B by taking y = Tx with y ∈ B if x ∈ A and y ∈ A if x ∈ B. Property (i) has been
proven.
Now, Property (ii) is proven. It is first proven that limn→∞ d(Tnx,Tn+x) =

limn→∞ d(Tn+x,Tn+x) = ; ∀x ∈ A ∪ B if the metric is translation-invariant and ho-
mogeneous so that it induces a norm ‖ ‖ if A and B are nonempty, closed and convex
subsets of X and (X,‖ ‖) ≡ (X,d) is a uniformly convex Banach space. Assume not and
take such a norm to yield d(Tnx,Tn+x) > . Then if A is nonempty, closed and con-
vex and B is nonempty and closed and x ∈ A, then {Tnx}, {Tn+x} ⊂ A. It is known that
d(Tnx,Tn+x) → dx ≤ d(x,Tx) from Theorem .(i) for y = Tx. Since (X,‖ ‖) ≡ (X,d)
is a uniformly convex Banach space for the metric-induced norm (being equivalent to
the translation-invariant homogeneous metric), we have the following property for the
sequences {Tnx}, {Tn+x} ⊂ A and {pn} ⊂ X satisfying for some strictly increasing non-
negative sequence of functions {δn : [, rn

Rn
] → R+} and any nonnegative sequences {rn}

and {Rn} satisfying rn ≤ Rn and any sequence {pn} ⊂ X; ∀n ∈N that

max
(
d
(
Tnx,pn

)
,d

(
Tn+x,pn

))
=max

(∥∥Tnx – pn
∥∥,∥∥Tn+x – pn

∥∥)
≤ Rn, (.)

rn ≤ d
(
Tnx,Tn+x

)
=

∥∥Tn+x – Tnx
∥∥

≤ ∥∥Tn+x
∥∥ +

∥∥Tnx
∥∥, (.)∣∣∥∥Tnx + Tn+x

∥∥ – ‖pn‖
∣∣ ≤ ∥∥Tnx + Tn+x – pn

∥∥
≤ 

(
 – δ

(
rn
Rn

))
Rn; (.)
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∀x ∈ A∪ B, ∀n ∈N, which implies that

max

(
rn, 

[
‖pn‖ –

(
 – δ

(
rn
Rn

))
Rn

])
≤ ∥∥Tnx + Tn+x

∥∥
≤ 

[(
 – δ

(
rn
Rn

))
Rn + ‖pn‖

]
, (.)

which has to be valid for Rn = ‖pn‖
–δ() ≤ ( – δ()) ‖pn‖

–δ() + ‖pn‖ = ‖pn‖; ∀n ∈ N. Now,
for pn (∈ X) �=  and Rn = ‖pn‖ > ; ∀n ∈ N, it follows that δ() = δ(s) = ; ∀s ∈ [, ],
which is a contradiction to δn : [, ] → R+ being strictly increasing, then contradicting
(X,‖ ‖) being a uniformly convex Banach space, unless rn → Rn →  as n→ ∞ so that
{δn : [, rn

Rn
] → R+} converges to δ() = . Taking x ∈ A, pn = Tn+x ∈ A; ∀n ∈ N, (.)

for rn → Rn →  as n → ∞ implies the existence of the first zero limit in (.). The
existence of the second zero limit in (.) is proven in the same way since Tx ∈ B. Since
those limits are zero, {Tnx}, {Tn+x} are Cauchy sequences in A converging to a best
proximity point z ∈ A for x ∈ A. Note that z ∈ A is necessarily the unique best proximity
point in A since {Tnx} and {Tn(Tx)} converge to the same point. Otherwise, the first
limit of (.) would not exist if the sequences do not converge, then a contradiction holds
to a proven result, and also Property (i) would not be true, since (.)would not hold, if the
limit of the sequence would not be a best proximity point in A, then a contradiction holds
to another proven result. In the same way, {Tn+x}, {Tn+x} converge to a unique best
proximity point z ∈ B for any x ∈ A. Now, z = Tz. Assume not. Then since {Tnx} → z,
{Tn+x} → z and d(Tnx,Tn+x) → D, one has d(z, z) = D. Assume that z �= Tz so that
since A and B are convex,

D = d(z, z) = 
∥∥∥∥ z –

z


∥∥∥∥ = 
∥∥∥∥
(
z

–
Tz


)
+

(
Tz


–
z


)∥∥∥∥ >D,

which is a contradiction. Then z = Tz is the unique best proximity of B. If A∩B =∅, then
z = z = Tz is the unique fixed point of T : A∪B → A∪B which coincides with the unique
best proximity point in A and B. �

Remark . Theorem . is known for strictly contractive cyclic self-mappings [] sat-
isfying the contractive condition (.) in the case that ξn ≡  and kn = αn < , βn = ξn = 
and γn =  – αn [–].

It is now assumed that the cyclic self-mapping T : A∪B → A∪B is asymptotically non-
expansive while not being strictly contractive for any finite number of iterations. The con-
cepts of cyclic pseudocontractions and a strict contraction in the intermediate sense play
an important role in the obtained results.

Theorem . Let (X,‖ ‖) be a uniformly convex Banach space endowed with a metric-
induced norm ‖ ‖ from a translation-invariant homogeneous metric d : X × X → R+,
where A and B ⊂ X are nonempty, closed and convex subsets of X and assume that T : A∪
B → A∪B is a cyclic self-mapping. Define the sequence {kn}n∈N ⊂ [,∞) of asymptotically
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nonexpansive iteration-dependent constants as follows:

kn = kn(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αn + βn( + μn)
 – βn

≤  if d(Tnx,Tny) < d(x, y); (.a)

αn + βn

 – βn( + μn)
≥  if d(Tnx,Tny) ≥ d(x, y); (.b)

∀(x, y) ∈ (A×B)∪ (B×A), ∀n ∈N provided that T : A∪B→ A∪B satisfies the constraint
(.), subject to (.); and

kn = kn(x, y) =
αn + βn

 – βn( + μn)
≥ ; (.)

∀n ∈ N for x ∈ A (y ∈ B) and for x ∈ B (y ∈ A) provided that T : A∪B → A∪B satisfies the
constraint (.), subject to (.), provided that the parameterizing bounded real sequences
{αn(x, y)}, {βn(x, y)}, {μn(x, y)} and {γn(x, y)} of general terms αn = αn(x, y), βn = βn(x, y) and
μn = μn(x, y) fulfill the following constraints:

[(
μn(x, y) ∈

[
–

αn(x, y) + βn(x, y)
βn(x, y)

,
 – αn(x, y) – βn(x, y)

βn(x, y)d(x, y)

])
∧ (

βn(x, y) < 
)]

∨
[(

μn(x, y) < –
αn(x, y) + βn(x, y)

βn(x, y)

)
∧ (

βn(x, y) > 
) ⇔ ξn(x, y) = 

]

∨
[
μn(x, y) ∈

[
 – αn(x, y) – βn(x, y)

βn(x, y)
,
 – βn(x, y)
βn(x, y)

)]
;

∀(x, y) ∈ (A× B)∪ (B×A),∀n ∈N, (.)

γn = γn(x, y) ≥ max(,  – kn) and assuming that the following limits exist:

μn(x, y) →  – αn(x, y) – βn(x, y)
βn(x, y)

⇔ αn + βn( +μn) → ; γn(x, y) → ;

∀(x, y) ∈ (A∪ B)× (B∪A) as n → ∞. (.)

Then the following properties hold:
(i) If T : A∪B→ A∪B satisfies (.) subject to (.)-(.); ∀(x, y) ∈ (A×B)∪ (B×A),

then

∃ lim
n→∞d

(
Tnx,Tny

) ∈ [
D,d(x, y)

]
; ∀(x, y) ∈ (A× B)∪ (B×A)

so that T : A∪B → A∪B is asymptotically nonexpansive. If x ∈ A is a best proximity point
of A and y ∈ B is a best proximity point of B, then limn→∞ d(Tnx,Tny) =Dand Tnx→ zx =
z(x) and Tny→ zy = z(y) which are best proximity points of A and B (not being necessarily
identical to x and y), respectively, if furthermore, T : A∪ B→ A∪ B is continuous.
(ii) Property (i) also holds if T : A∪B → A∪B satisfies (.) subject to (.), (.), (.)-

(.) and (.b) with d(Tnx,Tny) ≥ d(x, y); ∀(x, y) ∈ (A∪ B)× (B∪A).
(iii) Assume that T : A ∪ B → A ∪ B is asymptotically β-strictly pseudocontractive in

the intermediate sense so that (.a)-(.b) holds with  ≤ βn = β < , {μn} ⊂ [–, –β

β ),

http://www.fixedpointtheoryandapplications.com/content/2013/1/146


De la Sen Fixed Point Theory and Applications 2013, 2013:146 Page 20 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/146

{αn} ⊂ [,∞), αn →  and μn → –, as n → ∞; ∀x, y ∈ A, ∀n ∈N. Then T : A∪B → A∪B
is asymptotically nonexpansive and Property (i) holds.
(iv) T : A ∪ B → A ∪ B is asymptotically pseudocontractive in the intermediate sense if

(.) holds with {βn} ⊂ [, ], {μn} ⊂ [–, –βn
βn ), {αn} ⊂ [,∞), βn → , αn →  and μn →

– as n → ∞; ∀x, y ∈ A, ∀n ∈ N. Then T : A ∪ B → A ∪ B is asymptotically nonexpansive
and Property (i) holds.
(v) If the conditions of Property (iv) are modified as αn ∈ [,∞), μn ∈ [–, –β

β ), μn →
μ ∈ [–, –α–β

β ); ∀n ∈ N, αn → α ∈ [, ) as n → ∞ and βn = β ∈ [, ) in (.), then
T : A ∪ B → A ∪ B is asymptotically β-strictly contractive in the intermediate sense. Also,
T : A ∪ B → A ∪ B has a unique best proximity point z in A and a unique best proximity
point Tz in B to which the sequences {Tnx} and {Tn+x} converge; ∀x ∈ A. If x ∈ B, then
Tnx → Tz and Tn+x → z as n → ∞.
(vi) If (.) is modified by αn ∈ [,∞), {βn} ⊂ [, ), μn ∈ [–, –βn

βn ), μn → μ ∈ [–,– +α
 );

∀n ∈ N, αn → α ∈ [, ) and βn →  as n → ∞, then T : A∪ B → A∪ B is asymptotically-
strictly contractive in the intermediate sense. Also, T : A ∪ B → A ∪ B has a unique best
proximity point in A and a unique best proximity point in B to which the sequences {Tnx}
and {Tn+x} converge as in Property (v).

Proof The second condition of (.) now becomes under (.)-(.), or (.)-(.), and
(.)-(.)

d
(
Tnx,Tny

) ≤ kbnd(x, y) +
ξn + γnD

 – βn( + μn)

⇒ ∃ lim
n→∞d

(
Tnx,Tny

) ∈ [
D,d(x, y)

]
; ∀(x, y) ∈ (A∪ B)× (B∪A)

since kn →  and γn(x, y)→ ( – kn) →  as n→ ∞; ∀(x, y) ∈ (A∪B)× (B∪A). Also, if T :
A∪B → A∪B is continuous, then limn→∞ d(Tnx,Tny) = d(limn→∞ Tnx, limn→∞ Tn ×
y) = D so that Tnx ∈ A, limn→∞ Tnx ∈ A, Tny ∈ B and limn→∞ Tnx ∈ B since A and B
are closed and T(A) ⊆ B and T(B) ⊆ A. This proves Properties (i)-(ii). To prove Prop-
erty (iii), note that if T : A ∪ B → A ∪ B is asymptotically β-strictly pseudocontrac-
tive in the intermediate sense under (.a)-(.b)-(.) with  < βn = β < ; ∀n ∈ N,
 ≤ αn →  as n → ∞ and (.) holds for μn → – as n → ∞, then T : A∪ B → A∪ B is
asymptotically nonexpansive and D ≤ d(Tnx,Tny) ≤ d(x, y) as n → ∞ with d(x, y) = D
if x ∈ A and y ∈ B are best proximity points. Also, ∃ limn→∞ d(Tnx,Tny) ∈ [D,d(x, y)];
∀(x, y) ∈ (A×B)∪ (B×A) and Tnx ∈ A, limn→∞ Tnx ∈ A, Tny ∈ B and limn→∞ Tnx ∈ B
if T : A ∪ B → A ∪ B is continuous. Then Property (i) holds. Property (iv) is proven in a
similar way as (iii) since T : A∪ B → A∪ B is again asymptotically nonexpansive. Proper-
ties (v)-(vi) follow since in both cases T : A∪B → A∪B becomes a cyclic strictly contrac-
tive self-mapping for all n (∈ N) ≥ n with kjn < ; ∀j,n (≥ n) ∈ N and some finite n ∈ N
in Theorem ., Eq. (.). Thus, it is a direct proof that ∃ limn→∞ d(Tnx,Tny) = D;
∀(x, y) ∈ A× B∪ B×A with {Tnx} ⊂ A and {Tny} ⊂ B if x ∈ A and y ∈ B since T(A) ⊆ B
andT(B) ⊆ A. Also, ∃ limn→∞ d(Tnx,Tn+x) = ; ∀x ∈ A∪B. Furthermore,Tnx → z and
Tny → Tz; ∀x ∈ A, ∀y ∈ B and there are unique best proximity points z ∈ A and Tz ∈ B.
The convergence of the iterations to unique best proximity points follows using similar
arguments as those used in the proof of Theorem .(ii) based on the uniform convexity
of the complete metric space and the fact that the subsets A and B are nonempty, convex
and closed. �
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Remark . Note that the existence of Theorem . of x ∈ A and y ∈ B such that D =
d(x, y) is guaranteed if A is nonempty, bounded, closed and convex and B is nonempty
closed and convex is also guaranteed if A is compact and B is approximately compact with
respect to A, i.e., if every sequence {xn} ⊂ B, such that d(y,xn) → d(y,B) for some y ∈ A,
has a convergent subsequence [, , ].

Example . Consider the time-varying scalar controlled discrete dynamic system:

xk+ = Txk ≡ F(xk) =G(xk)xk + uk(xk) =
(
G(xk) +Kk(xk)

)
xk ; x ∈ R,∀k ∈N (.)

under the feedback control sequence

uk = uk(xk) = Kk = Kk(xk) = F(xk) –G(xk)xk ; ∀k ∈N (.)

=
α(xk–n+) + β(xk–n+)

 – β(xk–n+)( + μ(xk–n+))

(n–∏
j=

[
F

(
xk+j–n+(xk–n+)

)])–

–G(xk)xk ; ∀k ∈N (.)

so that

xk+n = Fn(xk)xk ; x ∈ R;∀k ∈N, (.)

where Fn(xk) =
∏n–

j= [F(xk+j(xk))] = F(xk+n–(xk))(
∏n–

j= [F(xk+j(xk))]); ∀k,n ∈ N for some
given nonempty bounded set A, where {uk(xk)} is the control sequence. The abovemodel
can describe discrete-time dynamic systems under time-varying sampling periods or un-
der a time-varying parameterization in general []. Assume that the suitable controlled
solution (.) is of the form

∣∣Fn(xk)∣∣ = αn(xk) + βn(xk)
 – βn(xk)( + μn(xk))

; ∀k ∈N.

Then

|Fn| =
∣∣Fn(xk)∣∣ = kn = kn(xk) =

αn(xk) + βn(xk)
 – βn(xk)( + μn(xk))

= F
(
xk+n–(xk)

)(n–∏
j=

[
F

(
xk+j(xk)

)])
; ∀k ∈N

=
α(xk–n+) + β(xk–n+)

 – β(xk–n+)( + μ(xk–n+))

(n–∏
j=

[
k

(
xk+j(xk)

)])
; ∀k ∈N (.)

=
n–∏
j=

[
uk+j(xk) +G(xk)xk

]

=
(
uk+n–(xk) +G(xk+n–)xk+n–

)(n–∏
j=

[
uk+j(xk) +G(xk+k)xk+j

])
; ∀k ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/146


De la Sen Fixed Point Theory and Applications 2013, 2013:146 Page 22 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/146

The identities (.) allow the feedback generation of the control sequence (.) from its
previous values and previous solution values as follows:

uk+n–(xk) =
αn(xk) + βn(xk)

 – βn(xk)( + μn(xk))

(n–∏
j=

[
uk+j(xk) +G(xk+k)xk+j

])–

–G(xk+n–)xk+n–

= F(xk+n–) –G(xk+n–)xk+n–; ∀k ∈ N (.)

for given parameterizing scalar sequences which can be dependent on the state xk (see Ex-
ample .). We are now defining a cyclic self-map T : [D/,∞)∪ (–∞,D/]→ [D/,∞)∪
(–∞,D/] so that the solution belongs alternately to positive (respectively, nonnegative)
and negative (respectively, nonpositive) real intervals [D/,∞) and (–∞,D/] if D :=
dist([D/,∞), (–∞,D/]) >  (respectively, if D = ), that is, T([D/,∞))⊆ (–∞,D/] and
T((–∞,D/]) ⊆ [D/,∞). For such an objective, consider the scalar bounded sequences
{λnk(xk)}, {α

nk(xk)} and {β
nk(xk)} such that λnk = λnk(xk), α

nk = α
nk(xk) and β

nk = β
nk(xk);

∀k ∈ N, ∀n ∈N which satisfy

αnk = λnα

nk ; βnk = λnβ


nk ; λnk ≥ 



(
α
nk + β

nk
 – βnk( + μnk)

)–

D,
(.a)

min
(
α
nk + β

nk
)
> ; ∀k,n ∈ N,

∃ lim
n→∞λnk =



D lim

n→∞

(
α
nk + β

nk
 – βnk( + μnk)

)–

= λ; ∀k ∈N. (.b)

Note that by using the Euclidean distance and norm on R, it is possible to apply the theo-
retical formalism to the expressionsD/ ≤ ‖xk+n‖ = d(Tnxk , ) ≤ ‖Fn‖d(xk , ); ∀k,n ∈N to
prove convergence to the best proximity points ±D/ to which the sequences {Tnx} and
{Tn+x} converge, respectively if x ∈ [D/,∞) and conversely if x ∈ (–∞,D/]. Assume
that:
() The constraints (.a)-(.b) hold;
() The parametrical constraints of the various parts (a) to (d) of Example . hold with

the replacements and its appropriate replacements of the constraints αnk (Example .) →
α
nk (Example .), βnk (Example .) → β

nk (Example .);
() {αnk} and {βnk} are redefined for this example from {α

nk} and {β
nk}, respectively, from

(.a)-(.b).
From Theorem ., the various properties of Example . hold also for this example

if D =  so that the cyclic self-map is such that it alternates the values of the solution
sequence between R+ and R–. The unique fixed point to which the solution converges
is {}. If D > , then the corresponding results are modified by convergence to each of
the unique best proximity points to which the sequences {Tnx} and {Tn+x} converge;
∀x ∈ [D/,∞)∪ (–∞,D/].
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