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1 Introduction and preliminaries
Let C be a nonempty closed convex subset of a real Banach space E and let E* be the dual
space of E. Let 〈·, ·〉 denote the pairing between E and E*. The normalized duality mapping
J : E → E* is defined by

J(x) =
{
f ∈ E* : 〈x, f 〉 = ‖x‖ = ‖f ‖}

for all x ∈ E. In the sequel, we use j to denote the single-valued normalized duality map-
ping. Let UE = {x ∈ E : ‖x‖ = }. E is said to be smooth or is said to have a Gâteaux differ-
entiable norm if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ UE . E is said to have a uniformly Gâteaux differentiable norm if for
each y ∈UE , the limit is attained uniformly for all x ∈UE . E is said to be uniformly smooth
or is said to have a uniformly Fréchet differentiable norm if the limit is attained uniformly
for x, y ∈ UE . It is known that if the norm of E is uniformly Gâteaux differentiable, then
the duality mapping J is single-valued and uniformly norm to weak* continuous on each
bounded subset of E.
Recall that a closed convex subsetC of a Banach spaceE is said to have anormal structure

if for each bounded closed convex subset K of C which contains at least two points, there
exists an element x of K which is not a diametral point of K , i.e.,

sup
{‖x – y‖ : y ∈ K

}
< d(K),
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where d(K) is the diameter ofK . It is well known that a closed convex subset of a uniformly
convex Banach space has the normal structure and a compact convex subset of a Banach
space has the normal structure; see [] for more details.
Let T : C → C be a nonlinear mapping. In this paper, we use F(T) to denote the set of

fixed points of T . Recall that T is said to be contractive if there exits a constant α ∈ (, )
such that

‖Tx – Ty‖ ≤ α‖x – y‖, ∀x, y ∈ C.

For such a case, we also call T an α-contraction. T is said to be a strong contraction if there
exits a constant α ∈ (, ) and some j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ α‖x – y‖, ∀x, y ∈ C.

For such a case, we also call T an α-strong pseudocontraction. T is said to be nonexpansive
if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

T is said to be pseudocontractive if there exists some j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖, ∀x, y ∈ C.

For the class of nonexpansive mappings, one classical way to study nonexpansive map-
pings is to use contractions to approximate a nonexpansivemapping [, ].More precisely,
take t ∈ (, ) and define a contraction Tt : C → C by

Ttx = tu + ( – t)Tx, ∀x ∈ C,

where u ∈ C is a fixed point. Banach’s contraction mapping principle guarantees that Tt

has a unique fixed point xt in C. That is,

xt = tu + ( – t)Txt .

In the case that T enjoys a fixed point, Browder [] proved that if E is a Hilbert space,
then xt converges strongly to a fixed point of T . Reich [] extended Browder’s result to the
setting of Banach spaces and proved that if E is a uniformly smooth Banach space, then xt
converges strongly to a fixed point of T .
Let D be a nonempty subset of C. Let Q : C → D. Q is said to be contraction if Q = Q;

sunny if for each x ∈ C and t ∈ (, ), we have Q(tx + ( – t)Qx) =Qx; sunny nonexpansive
retraction if Q is sunny, nonexpansive, and contraction. K is said to be a nonexpansive
retract of C if there exists a nonexpansive retraction from C onto D.
The following result, which was established in [, ], describes a characterization of

sunny nonexpansive retractions on a smooth Banach space.
Let E be a smooth Banach space and let C be a nonempty subset of E. Let Q : E → C

be a retraction and let j be the normalized duality mapping on E. Then the following are
equivalent:
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() Q is sunny and nonexpansive;
() ‖Qx –Qy‖ ≤ 〈x – y, j(Qx –Qy)〉, ∀x, y ∈ E;
() 〈x –Qx, j(y –Qx)〉 ≤ , ∀x ∈ E, y ∈ C.
Recently, Xu [] improved Reich’s results by considering the viscosity approximation

method which was first introduced by Moudafi []. To be more precise, he studied the
following continuous scheme:

xt = tf (xt) + ( – t)Txt , (X)

where f is an α-contraction and T is a nonexpansive mapping. He showed that the se-
quence {xt} converges strongly to a point in F(T) in a uniformly smooth Banach space. If
one defines Q :�C → F(T), where �C denotes the set of α-contractions, by

Q(f ) := lim
t→∞xt ,

then Q(f ) solves the following variational inequality:

〈
(I – f )Q(f ), j

(
Q(f ) – p

)〉 ≤ , ∀p ∈ F(T).

The questions that naturally arise in connection with Xu’s results are as follows.
() Can one extend the framework of the space from uniformly smooth Banach spaces

to a more general Banach space?
() Can one extend the viscosity approximation method by considering strong

pseudocontractions instead of contractions?
() Do Xu’s results still hold for a larger class of nonlinear mappings?
In Section , we give an affirmative answer to the above questions.
Let I denote the identity operator on E. An operator A⊂ E×E with domainD(A) = {z ∈

E : Az �= ∅} and range R(A) =
⋃{Az : z ∈ D(A)} is said to be accretive if for each xi ∈ D(A)

and yi ∈ Axi, i = , , there exists j(x – x) ∈ J(x – x) such that

〈
y – y, j(x – x)

〉 ≥ .

An accretive operator A is said to be m-accretive if R(I + rA) = E for all r > . In a real
Hilbert space, an operator A is m-accretive if and only if A is maximal monotone. In this
paper, we use A–() to denote the set of zeros of A. Interest in accretive operators, which
is an important class of nonlinear operators, stems mainly from their firm connection
with equations of evolution. It is known that many physically significant problems can be
modeled by initial value problems of the form

x′(t) +Ax(t) = , x() = x, (.)

where A is an accretive operator in an appropriate Banach space. Typical examples where
such evolution equations occur can be found in the heat, wave or Schrödinger equations.
If x(t) is dependent on t, then (.) is reduced to

Au = , (.)
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whose solutions correspond to the equilibrium points of the system (.). Consequently,
considerable research efforts have been devoted, especially within the past  years or so,
to methods for finding approximate solutions (when they exist) of equation (.). An early
fundamental result in the theory of accretive operators, due to Browder [], states that the
initial value problem (.) is solvable if A is locally Lipschitz and accretive on E.
For an accretive operator A, we can define a nonexpansive single-valued mapping Jr :

R(I + rA) →D(A) by Jr = (I + rA)– for each r > , which is called the resolvent of A.
One of classical methods for studying the problem  ∈ Ax, where A⊂ E×E is an accre-

tive operator, is the following:

x ∈ E, xn+ = Jrnxn, ∀n≥ ,

where Jrn = (I + rnA)– and {rn} is a sequence of positive real numbers.
As we know, many well-known problems arising in various branches of science can be

studied by using algorithmswhich are iterative in their nature. As an example, in computer
tomography with limited data, each piece of information implies the existence of a convex
set in which the required solution lies. The problem of finding a point in the intersection
of the sets is then of crucial interest, and it cannot be usually solved directly. Therefore,
an iterative algorithm must be used to approximate such a point.
Recall that the normal Mann iterative process was introduced byMann [] in . The

normal Mann iterative process generates a sequence {xn} in the following manner:

∀x ∈ C, xn+ = ( – αn)xn + αnTxn, ∀n≥ , (M)

where {αn} is a sequence in the interval (, ). If T is a nonexpansive mapping with a fixed
point and the control sequence {αn} is chosen so that

∑∞
n= αn( – αn) = ∞, then the se-

quence {xn} generated in the normal Mann iterative process converges weakly to a fixed
point of T . In an infinite-dimensional Hilbert space, the normal Mann iteration process
has only weak convergence, in general, even for nonexpansive mappings. Therefore, many
authors try to modify the normal Mann iterative process to have strong convergence for
nonexpansive mappings; see, e.g., [–] and the references therein.
Recently, Qin and Su [] studied the problem of modifying the normal Mann iterative

process to have strong convergence for m-accretive operators. To be more precise, they
considered the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = βnxn + ( – βn)Jrnxn,

xn+ = αu + ( – αn)yn, ∀n≥ ,

(QS)

where u is a fixed element in C and Jrn = (I + rnA)–. They proved that the sequence {xn}
generated in the above iterative process converges strongly to a zero of A.
In this paper, we study the convergence of paths for continuous pseudocontractions in

a real Banach space by viscosity approximation methods. As applications, we consider
the problem of finding zeros of m-accretive operators based on an iterative process with
errors. Strong convergence theorems of zeros are established in a real Banach space.
In order to prove our main results, we also need the following lemmas.
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Lemma . [] Let {an}, {bn}, and {cn} be three nonnegative real sequences satisfying

an+ ≤ ( – tn)an + bn + cn, ∀n≥ ,

where {tn} is a sequence in (, ). Assume that the following conditions are satisfied:
(a)

∑∞
n= tn = ∞ and bn = o(tn);

(b)
∑∞

n= cn < ∞.
Then limn→∞ an = .

Lemma . [] Let C be a nonempty, bounded, closed, and convex subset of a reflexive
Banach space E which also has the normal structure. Let T be a nonexpansive mapping of
C into itself. Then F(T) is nonempty.

Lemma . [] Let C be a nonempty, closed, and convex subset of a Banach space E, and
let T : C → C be a continuous and strong pseudocontraction. Then T has a unique fixed
point in C.

Lemma . [] In a Banach space E, there holds the inequality

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀x, y ∈ E,

where j(x + y) ∈ J(x + y).

Set A = (, ), let B(A) denote the Banach space of all bounded real-valued functions on
A with a supremum norm and let X be a subspace of B(A).

Lemma . [] Let C be a nonempty, closed, and convex subset of a Banach space E. Sup-
pose that the norm of E is uniformly Gâteaux differentiable. Let {xt} be a bounded set in
E, and z ∈ C. Let μt be a mean on X. Then μt‖xt – z‖ = miny∈C ‖xt – y‖ if and only if
μt〈y – z,xt – z〉 ≤  for all y ∈ C.

Lemma . [] Let E be a Banach space and let A be an m-accretive operator. For λ > ,
μ > , and x ∈ E, we have

Jλx = Jμ
(

μ

λ
x +

(
 –

μ

λ

)
Jλx

)
,

where Jλ = (I + λA)– and Jμ = (I +μA)–.

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space E, and let {βn}
be a sequence in (, ) with

 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Suppose that xn+ = ( – βn)yn + βnxn, ∀n≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .
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2 Main results
Now, we are in a position to prove the strong convergence of paths for continuous pseu-
docontractions.

Theorem . Let E be a real reflexive Banach space with the uniformly Gâteaux differen-
tiable norm and the normal structure, and let C be a nonempty closed convex subset of E.
Let T : C → C be a continuous pseudocontraction with a fixed point, and let f : C → C
be a fixed continuous bounded and strong pseudocontraction with the coefficient α ∈ (, ).
Let {xt} be a sequence generated by the following:

xt = tf (xt) + ( – t)Txt , (.)

where t ∈ (, ). Then {xt} converges strongly as t →  to a fixed point x* of T , which is the
unique solution in F(T) to the following variational inequality:

〈
f
(
x*

)
– x*, j

(
x* – p

)〉 ≥ , ∀p ∈ F(T).

Proof For t ∈ (, ), define a mapping Tf
t : C → C by

Tf
t x = tf (x) + ( – t)Tx.

Then Tf
t : C → C is a continuous, strong pseudocontraction for each t ∈ (, ). Indeed, we

have

〈
Tf
t x – Tf

t y, j(x – y)
〉
= t

〈
f (x) – f (y), j(x – y)

〉
+ ( – t)

〈
Tx – Ty, j(x – y)

〉
≤ tα‖x – y‖ + ( – t)‖x – y‖

=
(
 – t( – α)

)‖x – y‖, ∀x, y ∈ C.

In view of Lemma ., we see that Tf
t has a unique fixed point xt in C for each t ∈ (, ).

Hence (.) is well defined. Next, we show that {xt} is bounded. For any p ∈ F(T) and
t ∈ (, ), we see that

‖xt – p‖ =
〈
xt – p, j(xt – p)

〉
= t

〈
f (xt) – p, j(xt – p)

〉
+ ( – t)

〈
Txt – p, j(xt – p)

〉
= t

〈
f (xt) – f (p), j(xt – p)

〉
+ t

〈
f (p) – p, j(xt – p)

〉
+ ( – t)

〈
Txt – p, j(xt – p)

〉
≤ tα‖xt – p‖ + t

〈
f (p) – p, j(xt – p)

〉
+ ( – t)‖xt – p‖

≤ (
 – t( – α)

)‖xt – p‖ + t
〈
f (p) – p, j(xt – p)

〉
,

which implies that

‖xt – p‖ ≤ 
 – α

〈
f (p) – p, j(xt – p)

〉
. (.)

It follows that

‖xt – p‖ ≤ 
 – α

∥∥f (p) – p
∥∥. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/148
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This shows that {xt} is bounded, so is {Txt}. On the other hand, we see from (.) that

xt – Txt = t
(
f (xt) – Txt

)
.

Since f and {xt} are bounded, we obtain that f (xt) is bounded. It follows that

lim
t→

‖xt – Txt‖ = . (.)

Define g(x) = μt‖xt – x‖, ∀x ∈ C, where μt is a Banach limit. Then g(x) is continuous,
convex and g(x) → ∞ as ‖x‖ → ∞. We see that g attains its infinimum over C (see, e.g.,
[]). Set

D =
{
x ∈ C : g(x) = inf

y∈C g(y)
}
.

Then D is a nonempty bounded closed convex subset of C. Next, we show that there exits
a point x* ∈D such that Tx* = x*.
Indeed, for any y ∈ C, define a mapping S : C → C by

Sx =


y +



Tx, ∀x ∈ C.

It is easy to see that S is a continuous strong pseudocontraction. From Lemma ., we see
that S has a unique fixed point x in C, that is, x = 

y +

Tx. This implies that

y = (I – T)x ∈ (I – T)(C).

This shows that C ⊆ (I – T)(C). Define another mapping h : C → C by

h(x) = (I – T)–x, ∀x ∈ C.

We see that h is a nonexpansive mapping. Indeed, we have

∥∥h(x) – h(y)
∥∥ =

∥∥(I – T)–x – (I – T)–y
∥∥

≤ ∥∥(
I + (I – T)

)–x – (
I + (I – T)

)–y∥∥
≤ ‖x – y‖, ∀x, y ∈ C.

We also see that F(h) = F(T). Indeed,

x = h(x) ⇐⇒ x – Tx = x ⇐⇒ x = Tx.

On the other hand, we have

∥∥x – h(x)
∥∥ =

∥∥hh–(x) – h(x)
∥∥

≤ ∥∥h–(x) – x
∥∥

=
∥∥(I – T)(x) – x

∥∥
= ‖x – Tx‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/148
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It follows from (.) that

lim
t→

∥∥xt – h(xt)
∥∥ = .

Fixing x ∈D, we have

g
(
h(x)

)
= μt

∥∥xt – h(x)
∥∥

= μt
∥∥h(xt) – h(x)

∥∥

≤ μt‖xt – x‖

= g(x).

This implies that h(x) ∈ D, that is, h(D) ⊆ D. Since C is a nonempty closed convex subset
of E which has the normal structure, we see that h has a fixed point. We denote it by x*. It
follows from F(h) = F(T) that Tx* = x*. From Lemma ., we see that

μt
〈
p – x*, j

(
xt – x*

)〉 ≤ , ∀p ∈ C.

In particular, we have

μt
〈
f
(
x*

)
– x*, j

(
xt – x*

)〉 ≤ . (.)

In view of (.), we arrive at

μt
∥∥xt – x*

∥∥ ≤ .

This implies that there exists a subnet {xtα } of {xt} such that xtα → x*.
On the other hand, we have

xt – f (xt) = ( – t)
(
Txt – f (xt)

)
.

For any p ∈ F(T), we see that

〈
xt – f (xt), j(xt – p)

〉
= ( – t)

〈
Txt – f (xt), j(xt – p)

〉
= ( – t)

〈
Txt – xt , j(xt – p)

〉
+ ( – t)

〈
xt – f (xt), j(xt – p)

〉
= ( – t)

〈
Txt – p, j(xt – p)

〉
+ ( – t)

〈
p – xt , j(xt – p)

〉
+ ( – t)

〈
xt – f (xt), j(xt – p)

〉
≤ ( – t)

〈
xt – f (xt), j(xt – p)

〉
,

which implies that

〈
xt – f (xt), j(xt – p)

〉 ≤ , ∀p ∈ F(T). (.)

In particular, we have

〈
xtα – f (xtα ), j(xtα – p)

〉 ≤ , ∀p ∈ F(T). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/148
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It follows that

〈
x* – f

(
x*

)
, j
(
x* – p

)〉 ≤ , ∀p ∈ F(T). (.)

If there exits another subnet {xtβ } of {xt} such that xtβ → x** ∈ F(T). From (.), we arrive
at

〈
x* – f

(
x*

)
, j
(
x* – x**

)〉 ≤ . (.)

It also follows from (.) that

〈
xtβ – f (xtβ ), j

(
xtβ – x*

)〉 ≤ . (.)

It follows that

〈
x** – f

(
x**

)
, j
(
x** – x*

)〉 ≤ . (.)

Adding up (.) and (.), we obtain that

〈
x* – f

(
x*

)
– x** + f

(
x**

)
, j
(
x* – x**

)〉 ≤ .

This implies that

∥∥x* – x**
∥∥ ≤ α

∥∥x* – x**
∥∥.

Note that α ∈ (, ). We see that x* = x**. This shows that {xt} converges strongly to x* ∈
F(T), which is the unique solution to the variational inequality

〈
(f – I)x*,p – x*

〉 ≤ , ∀p ∈ F(T).

This completes the proof. �

Remark . Note that uniformly smooth Banach spaces enjoy the uniformly Gâteaux dif-
ferentiable norm and the uniform normal structure. Theorem ., which gives an affirma-
tive answer to the questions presented in Section , improves Theorem . of Xu [] in the
following aspects:
() improves the framework of spaces from uniformly smooth Banach spaces to the

Banach space with the uniformly Gâteaux differentiable norm;
() improves the mapping f from the class of contractions to the class of strongly

pseudocontractions;
() improves the mapping T from the class of nonexpansive mappings to the class of

pseudocontractions.

Remark . Under the conditions of Theorem ., we can define a mapping Q : �C →
F(T), where �C denotes the set of continuous bounded and strong pseudocontractions,
by

Q(f ) := lim
t→

xt , f ∈ �C .

http://www.fixedpointtheoryandapplications.com/content/2013/1/148
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It is not hard to see that Q is a sunny nonexpansive retraction from �C onto F(T).

Remark . If T is a nonexpansive mapping and f (x) = u, a fixed element for every x ∈ C
in Theorem ., then {xt} defined by

xt = tu + ( – t)Txt ,

where t ∈ (, ), converges strongly as t →  to a fixed point Q(u) of T , where Q is the
sunny nonexpansive retraction from C onto F(T). The point Q(u) is the unique solution
in F(T) to the following variational inequality:

〈
u –Q(u), j

(
Q(u) – p

)〉 ≥ , ∀p ∈ F(T).

Next, we prove strong convergence of iterative processes with errors for m-accretive
operators.

Theorem . Let E be a real reflexive Banach space with the uniformly Gâteaux differ-
entiable norm and let A be an m-accretive operator in E. Assume that C :=D(A) is convex
and has the normal structure. Let {αn}, {βn}, {γn}, and {δn} be real number sequences in
(, ). Let QC be a sunny nonexpansive retraction from E onto C and let {xn} be a sequence
generated in the following manner:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = βnxn + γnJrn (xn + en+) + δnQCfn,

xn+ = αnu + ( – αn)yn, ∀n≥ ,

(�)

where {en} is a sequence in E, {fn} is a bounded sequence in E, {rn} is a positive real numbers
sequence, u is a fixed element in C and Jrn = (I + rnA)–. Assume that A–() �= ∅ and the
above control sequences satisfy the following restrictions:
(a) βn + γn + δn =  for each n≥ ;
(b) limn→∞ αn =  and

∑∞
n= αn = ∞;

(c)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(d)

∑∞
n= ‖en‖ < ∞ and

∑∞
n= δn <∞;

(e) rn ≥ ε for each n≥  and limn→∞ |rn – rn+| = .
Then the sequence {xn} generated by (�) converges strongly to a zero Q(u) of A,which is the
unique solution to the following variational inequality:

〈
(f – I)Q(u),p –Q(u)

〉 ≤ , ∀p ∈ A–().

Proof First, we prove that {xn} is bounded. Fixing p ∈ A–(), we see that

‖x – p‖
=

∥∥α(u – p) + ( – α)(y – p)
∥∥

≤ α‖u – p‖ + ( – α)‖y – p‖
= α‖u – p‖ + ( – α)

(∥∥β(x – p) + γ
(
Jr (x + e) – p

)
+ δ(QCf – p)

∥∥)

http://www.fixedpointtheoryandapplications.com/content/2013/1/148
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≤ α‖u – p‖ + ( – α)
(
β‖x – p‖ + γ

∥∥Jr (x + e) – p
∥∥ + δ‖f – p‖)

≤ α‖u – p‖ + ( – α)
(
( – δ)‖x – p‖ + ‖e‖ + δ‖f – p‖)

≤ K ,

where K = ‖u – p‖ + ‖x – p‖ + ‖e‖ + ‖f – p‖ < ∞. Put

M =max
{
K , sup

n≥
‖fn – p‖

}
.

Next, we prove that

‖xn – p‖ ≤ M +
n∑
i=

‖ei‖, ∀n≥ . (.)

It is easy to see that (.) holds for n = . We assume that the result holds for some n. It
follows that

‖xn+ – p‖
≤ αn‖u – p‖ + ( – αn)‖yn – p‖
= αn‖u – p‖ + ( – αn)

(∥∥βn(xn – p) + γn
(
Jrn (xn + en+) – p

)
+ δn(QCfn – p)

∥∥)
≤ αn‖u – p‖ + ( – αn)

(
βn‖xn – p‖ + γn

∥∥Jrn (xn + en+) – p
∥∥ + δn‖fn – p‖)

≤ αn‖u – p‖ + ( – αn)
(
( – δn)‖xn – p‖ + ‖en+‖ + δn‖fn – p‖)

≤ αnM + ( – αn)

(
( – δn)

(
M +

n∑
i=

‖ei‖
)
+ ‖en+‖ + δnM

)

=M +
n+∑
i=

‖ei‖.

This shows that (.) holds for all n ≥ . If rn+ ≥ rn, we see from Lemma . that

∥∥Jrn (xn + en+) – Jrn+ (xn+ + en+)
∥∥

≤
∥∥∥∥ rn
rn+

(xn + en+) +
(
 –

rn
rn+

)
Jrn+ (xn + en+) – (xn+ + en+)

∥∥∥∥
=

∥∥∥∥ rn
rn+

(
(xn + en+) – (xn+ + en+)

)
+
rn+ – rn
rn+

(
Jrn+ (xn + en+) – (xn+ + en+)

)∥∥∥∥
≤ ‖xn – xn+‖ + ‖en+‖ + ‖en+‖ + M

ε
(rn+ – rn), (.)

whereM is an appropriate constant such that

M ≥ sup
n≥

{∥∥Jrn+ (xn + en+) – (xn+ + en+)
∥∥}

.

Put gn = xn+–βnxn
–βn

. This implies that

xn+ = ( – βn)gn + βnxn, n≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/148
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Now, we compute ‖gn+ – gn‖. Note that

gn+ – gn =
αn+u + ( – αn+)yn+ – βn+xn+

 – βn+
–

αnu + ( – αn)yn – βnxn
 – βn

=
αn+(u – yn+) + γn+Jrn+ (xn+ + en+) + δn+QCfn+

 – βn+

–
αn(u – yn) + γnJrn (xn + en+) + δnQCfn

 – βn

=
αn+(u – yn+) + δn+(QCfn+ – Jrn+ (xn+ + en+))

 – βn+

–
αn(u – yn) + δn(QCfn – Jrn (xn + en+))

 – βn

+ Jrn+ (xn+ + en+) – Jrn (xn + en+). (.)

It follows that

‖gn+ – gn‖
≤ αn+

 – βn+
‖u – yn+‖ + αn

 – βn
‖yn – u‖

+
∥∥∥∥ δn+

 – βn+

(
QCfn+ – Jrn+ (xn+ + en+)

)
–

δn

 – βn

(
QCfn – Jrn (xn + en+)

)∥∥∥∥
+

∥∥Jrn+ (xn+ + en+) – Jrn (xn + en+)
∥∥

≤ αn+

 – βn+
‖u – yn+‖ + αn

 – βn
‖yn – u‖ + δn+

 – βn+

∥∥QCfn+ – Jrn+ (xn+ + en+)
∥∥

+
δn

 – βn

∥∥QCfn – Jrn (xn + en+)
∥∥ +

∥∥Jrn+ (xn+ + en+) – Jrn (xn + en+)
∥∥. (.)

Substituting (.) into (.), we arrive at

‖gn+ – gn‖ – ‖xn – xn+‖
≤ αn+

 – βn+
‖u – yn+‖ + αn

 – βn
‖yn – u‖ + ‖en+‖ + ‖en+‖

+
M

ε
|rn+ – rn| + αn

 – βn
‖yn – u‖ + δn+

 – βn+

∥∥QCfn+ – Jrn+ (xn+ + en+)
∥∥

+
δn

 – βn

∥∥QCfn – Jrn (xn + en+)
∥∥. (.)

In a similar way, we can obtain (.) when rn ≥ rn+. From the conditions (b)-(e), we see
that

lim sup
n→∞

(‖gn+ – gn‖ – ‖xn – xn+‖
) ≤ .

It follows from Lemma . that

lim
n→∞‖gn – xn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/148
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In view of (.), we have

xn+ – xn = ( – βn)(gn – xn),

which combines with the condition (c) and (.) gives that

lim
n→∞‖xn+ – xn‖ = . (.)

On the other hand, we see from the algorithm (�) that

∥∥xn – Jrn (xn + en+)
∥∥

≤ ‖xn – xn+‖ + ‖xn+ – yn‖ +
∥∥yn – Jrn (xn + en+)

∥∥
≤ ‖xn – xn+‖ + αn‖u – yn‖ + βn

∥∥xn – Jrn (xn + en+)
∥∥ + δn‖QCfn – xn‖.

This implies that

( – βn)
∥∥xn – Jrn (xn + en+)

∥∥ ≤ ‖xn – xn+‖ + αn‖u – yn‖ + δn‖QCfn – xn‖.

From the conditions (b)-(d) and (.), we conclude that

lim
n→∞

∥∥xn – Jrn (xn + en+)
∥∥ = . (.)

Since
∑∞

n= ‖en‖ <∞, we see that

lim
n→∞‖xn – Jrnxn‖ = . (.)

Take a fixed number r such that ε > r > . From Lemma ., we obtain that

‖Jrnxn – Jrxn‖ =
∥∥∥∥Jr

(
r
rn
xn +

(
 –

r
rn

)
Jrnxn

)
– Jrxn

∥∥∥∥
≤

∥∥∥∥
(
 –

r
rn

)
(Jrnxn – xn)

∥∥∥∥
≤ ‖Jrnxn – xn‖. (.)

Note that

‖xn – Jrxn‖ = ‖xn – Jrnxn + Jrnxn – Jrxn‖
≤ ‖xn – Jrnxn‖ + ‖Jrnxn – Jrxn‖
≤ ‖xn – Jrnxn‖.

From (.), we see that

lim
n→∞‖xn – Jrxn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/148
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Next, we claim that

lim sup
n→∞

〈
u –Q(u), j

(
xn –Q(u)

)〉 ≤ , (.)

where

Qu = lim
t→

zt , u ∈ C

and zt solves the fixed point equation

zt = tu + ( – t)Jrzt , ∀t ∈ (, ),

from which it follows that

‖zt – xn‖ =
∥∥( – t)(Jrzt – xn) + t(u – xn)

∥∥.
For any t ∈ (, ), we see that

‖zt – xn‖ = ( – t)
〈
Jrzt – xn, j(zt – xn)

〉
+ t

〈
u – xn, j(zt – xn)

〉
= ( – t)

(〈
Jrzt – Jrxn, j(zt – xn)

〉
+

〈
Jrxn – xn, j(zt – xn)

〉)
+ t

〈
u – zt , j(zt – xn)

〉
+ t

〈
zt – xn, j(zt – xn)

〉
≤ ( – t)

(‖zt – xn‖ + ‖Jrxn – xn‖‖zt – xn‖
)

+ t
〈
u – zt , j(zt – xn)

〉
+ t‖zt – xn‖

≤ ‖zt – xn‖ + ‖Jrxn – xn‖‖zt – xn‖ + t
〈
u – zt , j(zt – xn)

〉
.

It follows that

〈
zt – u, j(zt – xn)

〉 ≤ 
t
‖Jrxn – xn‖‖zt – xn‖, ∀t ∈ (, ).

In view of (.), we see that

lim sup
n→∞

〈
zt – u, j(zt – xn)

〉 ≤ . (.)

Since zt → Q(u) as t →  and the fact that j is strong to weak* uniformly continuous on
bounded subsets of E, we see that

∣∣〈u –Q(u), j
(
xn –Q(u)

)〉
–

〈
zt – u, j(zt – xn)

〉∣∣
≤ ∣∣〈u –Q(u), j

(
xn –Q(u)

)〉
–

〈
u –Q(u), j(xn – zt)

〉∣∣
+

∣∣〈u –Q(u), j(xn – zt)
〉
–

〈
zt – u, j(zt – xn)

〉∣∣
≤ ∣∣〈u –Q(u), j

(
xn –Q(u)

)
– j(xn – zt)

〉∣∣ + ∣∣〈zt –Q(u), J(xn – zt)
〉∣∣

≤ ∥∥u –Q(u)
∥∥∥∥j(xn –Q(u)

)
– j(xn – zt)

∥∥ +
∥∥zt –Q(u)

∥∥‖xn – zt‖ →  as t → .
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Hence, for any ε > , there exists δ >  such that ∀t ∈ (, δ) the following inequality holds:

〈
u –Q(u), j

(
xn –Q(u)

)〉 ≤ 〈
zt – u, j(zt – xn)

〉
+ ε.

This implies that

lim sup
n→∞

〈
u –Q(u), j

(
xn –Q(u)

)〉 ≤ lim sup
n→∞

〈
zt – u, j(zt – xn)

〉
+ ε.

Since ε is arbitrary and (.), we see that lim supn→∞〈u–Q(u), j(xn –Q(u))〉 ≤ . That is,

lim sup
n→∞

〈
u –Q(u), j

(
xn+ –Q(u)

)〉 ≤ . (.)

Finally, we show that xn →Q(u) as n→ ∞. Note that

∥∥yn –Q(u)
∥∥ =

∥∥βnxn + γnJrn (xn + en+) + δnQCfn –Q(u)
∥∥

≤ βn
∥∥xn –Q(u)

∥∥ + γn
∥∥Jrn (xn + en+) –Q(u)

∥∥ + δn
∥∥QCfn –Q(u)

∥∥
≤ (βn + γn)

∥∥xn –Q(u)
∥∥ + ‖en+‖ + δn

∥∥fn –Q(u)
∥∥

≤ ∥∥xn –Q(u)
∥∥ + ηn,

where ηn = ‖en+‖+δnM. From the condition (d), we see that
∑∞

n= ηn < ∞. It follows from
Lemma . that

∥∥xn+ –Q(u)
∥∥

=
∥∥( – αn)

(
yn –Q(u)

)
+ αn

(
u –Q(u)

)∥∥

≤ ( – αn)
∥∥yn –Q(u)

∥∥ + αn
〈
u –Q(u), J

(
xn+ –Q(u)

)〉
≤ ( – αn)

(∥∥xn –Q(u)
∥∥ + ηn

) + αn
〈
u –Q(u), J

(
xn+ –Q(u)

)〉
= ( – αn)

(∥∥xn –Q(u)
∥∥ + ηn

∥∥xn –Q(u)
∥∥ + η

n
)

+ αn
〈
u –Q(u), J

(
xn+ –Q(u)

)〉
≤ ( – αn)

∥∥xn –Q(u)
∥∥ + ηnM + αn

〈
u –Q(u), J

(
xn+ –Q(u)

)〉
, (.)

whereM is an appropriate constant such thatM ≥ supn≥{‖xn –Q(u)‖+ηn}. Let λn+ =
max{〈u–Q(u), J(xn+ –Q(u))〉, }. Next, we show that limn→∞ λn+ = . Indeed, from (.),
for any given ε > , there exists a positive integer n such that

〈
u –Q(u), J

(
xn+ –Q(u)

)〉
< ε, ∀n≥ n.

This implies that  ≤ λn+ < ε, ∀n≥ n. Since ε >  is arbitrary, we see that limn→∞ λn+ = .
It follows from (.) that

∥∥xn+ –Q(u)
∥∥ ≤ ( – αn)

∥∥xn –Q(u)
∥∥ + ηnM + αnλn+.
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Put an = ‖xn – Q(u)‖, tn = αn, bn = αnλn+ and cn = ηnM for every n ≥ . In view of
Lemma ., we can obtain the desired conclusion easily. �

As an application of Theorem ., we have the following results.

Corollary . Let E be a real reflexive Banach space with the uniformly Gâteaux differ-
entiable norm and let A be an m-accretive operator in E. Assume that C :=D(A) is convex
and has the normal structure. Let {αn} and {βn} be real number sequences in (, ). Let {xn}
be a sequence generated by (QS) ,where {rn} is a positive real numbers sequence, u is a fixed
element in C and Jrn = (I + rnA)–. Assume that A–() �= ∅ and the above control sequences
satisfy the following restrictions:
(a) limn→∞ αn =  and

∑∞
n= αn = ∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c) rn ≥ ε for each n≥  and limn→∞ |rn – rn+| = .

Then the sequence {xn} converges strongly to a zero of A.

Remark . Corollary . improves Theorem . of Qin and Su []. To be more pre-
cise, we partially relax the restrictions on the parameters and extend the framework of the
space; see [] for more details.

Remark . It is of interest to design an explicit iterative process to approximate zeros of
accretive operators by Moudafi’s viscosity approximation method with continuous strong
pseudocontractions.
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