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Abstract
We define the notion of an integral G-contraction for mappings on metric spaces and
establish some fixed point theorems for such mappings. Our results generalize and
unify some recent results by Jachymski, Branciari and those contained therein. As an
application, we obtain a result for cyclic operators. Moreover, we provide an example
to show that our results are substantial improvements of some known results in
literature.
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1 Introduction
Branciari [] generalized the Banach contraction principle by proving the existence of a
unique fixed point of a mapping on a complete metric space satisfying a general contrac-
tive condition of integral type. Afterwards,many authors undertook further investigations
in this direction (see, e.g., [–]). Ran and Reurings [] initiated the study of fixed points
of mappings on partially ordered metric spaces. A number of interesting fixed point the-
orems have been obtained by different authors for this setting; see, for example, [–].
Jachymski [] used the platform of graph theory instead of partial ordering and unified
the results given by authors [, , ]. He showed that a mapping on a complete metric
space still has a fixed point provided the mapping satisfies the contraction condition for
pairs of points which form edges in the graph. Subsequently, Beg et al. [] established a
multivalued version of themain result of Jachymski []. Aydi et al. [] studied fixed point
theorems for weaklyG-contraction mappings inG-metric spaces. Later on, Bojor [] ob-
tained some results in such settings by weakening the condition of BanachG-contractivity
and introducing some new type of connectivity of a graph.
In this paper, motivated by the work of Jachymski [] and Branciari [], we introduce

two new contraction conditions for mappings on complete metric spaces and, using these
contractive conditions, obtain somefixed point theorems.Our results generalize and unify
some results by the above mentioned authors.

2 Preliminaries
Let (X,�) be a partially ordered set. A mapping f : X → X is said to be nonincreasing if
x, y ∈ X, x � y ⇒ f (x) � f (y). A mapping f is said to be nondecreasing if x, y ∈ X, x � y ⇒
f (x) � f (y). A mapping f from a metric space (X,d) into (X,d) is called a Picard operator
(PO) [] if f has a unique fixed point t ∈ X and limn→∞ f nx = t for all x ∈ X. Two sequences
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{xn} and {yn} in a metric space (X,d) are said to be equivalent if d(xn, yn) → .Moreover, if
each of them is Cauchy, then these are called Cauchy equivalent. Amapping from ametric
space (X,d) into (X,d) is called orbitally continuous if for all x, y ∈ X and any sequence {kn}
of positive integers, f knx→ y implies f (f knx)→ fy as n→ ∞.
Let G = (V (G),E(G)) be a directed graph. By G– we denote the graph obtained from G

by reversing the direction of edges, and by letter G̃ we denote the undirected graph ob-
tained from G by ignoring the direction of edges. It will be more convenient to treat G̃ as
a directed graph for which the set of its edges is symmetric, i.e., E(G̃) = E(G) ∪ E(G–). If
x and y are vertices in a graph G, then a path in G from x to y of length l is a sequence
(xi)li= of l +  vertices such that x = x, xl = y and (xi–,xi) ∈ E(G) for i = , . . . , l. A graph
G is called connected if there is a path between any two vertices. G is weakly connected
if G̃ is connected. For a graph G such that E(G) is symmetric and x is a vertex in G, the
subgraph Gx consisting of all edges and vertices which are contained in some path begin-
ning at x is called component of G containing x. In this case V (Gx) = [x]G̃, where [x]G̃ is
the equivalence class of a relation R defined on V (G) by the rule: yRz if there is a path
in G from y to z. Clearly, Gx is connected. A graph G is known as a (C)-graph in X []
if for any sequence {xn} in X with xn −→ x and (xn,xn+) ∈ E(G) for n ∈ N, there exists a
subsequence {xnk } of {xn} such that (xnk ,x) ∈ E(G) for k ∈N.
Subsequently, in this paper, X is a complete metric space with metric d, and � is the

diagonal of the Cartesian product X×X.G is a directed graph such that the set V (G) of its
vertices coincides with X, and the set E(G) of its edges contains all loops, i.e., E(G) ⊇ �.
Assume that G has no parallel edges. We may treat G as a weighted graph by assigning
to each edge the distance between its vertices. A mapping f : X → X is called orbitally
G-continuous [] if for all x, y ∈ X and any sequence (kn)n∈N of positive integers, f knx→ y
and (f knx, f kn+x) ∈ E(G), ∀n ∈N imply f (f knx) → fy.
We state, for convenience, the following definition and result.

Definition . [, Definition .] Amapping f : X → X is called a BanachG-contraction
or simply a G-contraction if f preserves edges of G, i.e.,

∀x, y ∈ X
(
(x, y) ∈ E(G)⇒ (fx, fy) ∈ E(G)

)
, (.)

and f decreases weights of edges of G in the following way:

∃c ∈ (, ), ∀x, y ∈ X
(
(x, y) ∈ E(G)⇒ d(fx, fy) ≤ cd(x, y)

)
. (.)

Let � denote the class of all mappings φ : [, +∞) → [, +∞) which are Lebesgue in-
tegrable, summable on each compact subset of [,+∞), nonnegative and for each ε > ,∫ ε

 φ(s)ds > .

Theorem . [, Theorem .] Let (X,d) be a complete metric space, c ∈ (, ), and let
f : X → X be a mapping such that for each x, y ∈ X,

∫ d(fx,fy)


φ(s)ds≤ c

∫ d(x,y)


φ(s)ds, (.)

where φ ∈ �.Then f has a unique fixed point t ∈ X such that for each x ∈ X, limn→∞ f nx = t.
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3 Main results
We begin this section, motivated by Jachymski [] and Branciari [], by introducing the
following definition.

Definition . A mapping f : X → X is called an integral G-contraction if f preserves
edges (see (.)) and

∀x, y ∈ X, (x, y) ∈ E(G) implies
∫ d(fx,fy)


φ(s)ds≤ c

∫ d(x,y)


φ(s)ds (.)

for some c ∈ (, ) and φ ∈ �.

Remark . Note that if f : X → X satisfies (.), then f is an integral G-contraction
whereG = (X,X×X).Moreover, every BanachG-contraction is an integralG-contraction
(take φ(x) = ), but the converse may not hold.

Proposition . Let f : X → X be an integral G-contraction with contraction constant
c ∈ (, ) and φ ∈ �, then:

(i) f is both an integral G–-contraction and an integral G̃-contraction with the same
contraction constant c ∈ (, ) and φ.

(ii) [x]G̃ is f -invariant and f |[x]G̃ is an integral G̃x -contraction provided that there
exists some x ∈ X such that fx ∈ [x]G̃.

Proof (i) is a consequence of symmetry of d.
(ii) Let x ∈ [x]G̃. Then there is a path x = z, z, . . . , zm = x between x and x in G̃. Since f

is an integralG-contraction, then (fzi–, fzi) ∈ E(G̃), ∀i = , , . . . , l. Thus fx ∈ [fx]G̃ = [x]G̃.
Suppose that (x, y) ∈ E(G̃x ), then (fx, fy) ∈ E(G) as f is an integral G-contraction. But

[x]G̃ is f invariant, so we conclude that (fx, fy) ∈ E(G̃x ). Furthermore, (.) is satisfied
automatically because G̃x is a subgraph of G. �

Lemma . Let f : X → X be an integral G-contraction and y ∈ [x]G̃, then

lim
n→∞d

(
f nx, f ny

)
= . (.)

Proof Let x ∈ X and y ∈ [x]G̃, then there existsN ∈N such that x = x, xN = y and (xi–,xi) ∈
E(G̃) for all i = , , . . . ,N . By Proposition . it follows that (f nxi–, f nxi) ∈ E(G̃) and

∫ d(f nxi–,f nxi)


φ(s)ds≤ c

∫ d(f n–xi–,f n–xi)


φ(s)ds (.)

holds for all n ∈ N and i = , , , . . . ,N . Denote dn = d(f nxi–, f nxi) for all n ∈ N. If dm = 
for somem ∈N, then it follows from (.) that dn =  for all n ∈Nwith n >m. Therefore, in
this case, limn→∞ dn = . Now, assume that dn > . We claim that {dn} is a non-increasing
sequence. Otherwise, there exists n◦ ∈ N such that dn◦ > dn◦–. Now, using the properties
of φ, it follows from (.) that

 <
∫ dn◦–


φ(s)ds≤

∫ dn◦


φ(s)ds≤ c

∫ dn◦–


φ(s)ds.
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Since,  < c < , this yields a contradiction. Therefore, limn→∞ dn = r ≥ . Let r > , then it
follows from (.) that

∫ r


φ(s)ds = lim

n→∞

∫ dn


φ(s)ds≤ c lim

n→∞

∫ dn–


φ(s)ds

= c
∫ r


φ(s)ds, (.)

which implies ( – c)
∫ r
 φ(s)ds ≤  and it further implies that

∫ r
 φ(s)ds = , a contradic-

tion. Thus, limn→∞ dn = limn→∞ d(f nxi–, f nxi) = , ∀i = , , . . . ,N , in both cases. From the
triangular inequality, we have d(f nx, f ny) ≤ ∑N

i= d(f nxi–, f nxi), and letting n → ∞ gives
limn→∞ d(f nx, f ny) = . �

Now we define a subclass of integral G-contractions. We call this a class of sub-integral
G-contractions. Let us denote by � the class of all mappings φ ∈ � satisfying following:

∫ α+β


φ(s)ds≤

∫ α


φ(s)ds +

∫ β


φ(s)ds (.)

for every α,β ≥ . Note that every constant function φ(x) = k >  belongs to the class �.

Example . Define φ,φ : [,∞)→ [,∞) by

φ(x) =


x + 
, φ(x) =

{



√
x , x �= ,

, otherwise.

It is easy to see that φ, φ satisfy (.) and thus belong to the class �.

Definition . We say that an integral G-contraction is a sub-integral G-contraction if
φ ∈ �.

Lemma . Let f : X → X be a sub-integral G-contraction and y ∈ [x]G̃. Then there exists
p(x, y) ≥  such that

∫ d(f nx,f ny)


φ(s)ds≤ cnp(x, y), ∀n ∈N. (.)

Proof Let x ∈ X and y ∈ [x]G̃, then there existsN ∈N such that x = x, xN = y and (xi–,xi) ∈
E(G̃) for all i = , , . . . ,N . Since φ ∈ �, using the triangular inequality, it follows that

∫ d(f nx,f ny)


φ(s)ds≤

N∑
i=

∫ d(f nxi–,f nxi)


φ(s)ds. (.)

Moreover,

∫ d(f nxi–,f nxi)


φ(s)ds≤ cn

∫ d(xi–,xi)


φ(s)ds, (.)
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since (f nxi–, f nxi) ∈ E(G) for all i = , , , . . . ,N and n ∈N. From (.) and (.) we get

∫ d(f nx,f ny)


φ(s)ds ≤ cn

N∑
i=

∫ d(xi–,xi)


φ(s)ds

= cnp(x, y), (.)

where p(x, y) =
∑N

i=
∫ d(xi–,xi)
 φ(s)ds. �

Definition . Let f : X → X, y ∈ X and the sequence {f ny} inX be such that f ny → x* ∈ X
with (f ny, f n+y) ∈ E(G) for n ∈ N. We say that the graph G is a (Cf )-graph if there exists a
subsequence {f nk y} such that (f nk y,x*) ∈ E(G) for k ∈N.

Obviously, every (C)-graph is a (Cf )-graph for any self-mapping f onX, but the converse
may not hold as shown in the following.

Example . Let X := [, ] with respect to the usual metric d(x, y) = |x– y|. Consider the
graph G consisting of V (G) := X and E(G) := {( n

n+ ,
n+
n+ ) : n ∈ N} ∪ {( x

n ,
x

n+ ) : n ∈ N,x ∈
[, ]} ∪ {( x

n , ) : n ∈ N,x ∈ [, ]}. Note that G is not a (C)-graph as n
n+ → . Define f :

X → X as fx = x
 . Then G is a (Cf )-graph since f nx = x

n →  for each x ∈ [, ].

Theorem . Let f : X → X be a sub-integral G-contraction. Assume that
(i) Xf := {x ∈ X : (x, fx) ∈ E(G)} �= ∅,
(ii) G is a (Cf )-graph.

Then, for any z ∈ Xf , f |[z]G̃ is a Picard operator. Further, if G is weakly connected, then f
is a Picard operator.

Proof Let z ∈ Xf , then fz ∈ [z]G̃. Let m > n≥ , using Lemma ., we have

∫ d(f mz,f nz)


φ(s)ds ≤

∫ d(f nz,f n+z)


φ(s)ds + · · · +

∫ d(f m–z,f mz)


φ(s)ds

≤ (
cn + cn+ + cn+ + · · · + cm–)p(z, fz)

≤
[

cn

 – c

]
p(z, fz) →  as n → ∞.

It follows that {f nz} is a Cauchy sequence in X. Therefore, f nz → t ∈ X. Let y be another
element in [z]G̃, then it follows from Lemma . that f ny → t, too. Next, we show that t
is a fixed point of f . Since f nz → t ∈ X and (f nz, f n+z) ∈ E(G) for all n ∈ N and G is a
(Cf )-graph, then there exists a subsequence {f nk z} of {f nz} such that (f nk z, t) ∈ E(G) for
all k ∈ N. Therefore, (z, fz, f z, . . . , f nz, t) is a path in G and so in G̃ from z to t, thus
t ∈ [z]G̃. From (.), we get

∫ d(f nk+z,ft)


φ(s)ds≤ c

∫ d(f nk z,t)


φ(s)ds, ∀k ∈N,

letting k → ∞, we have
∫ d(t,ft)
 φ(s)ds = , which implies that d(t, ft) = . This shows that

f |[z]G̃ is a Picard operator. Moreover, if G is weakly connected, then f is a Picard operator
since [z]G̃ = X. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/149
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Corollary . Let (X,d) be a complete metric space endowed with a graph G such that G
is (Cf )-graph. Then the following statements are equivalent:

() G is weakly connected.
() Every sub-integral G-contraction f on X is a Picard operator provided that Xf �= ∅.

Proof () ⇒ (): It is immediate from Theorem ..
() ⇒ (): On the contrary, suppose that G is not weakly connected, then G̃ is discon-

nected, i.e., there exists x◦ ∈ X such that [x◦]G̃ �= ∅ and X \ [x◦]G̃ �= ∅. Let y◦ ∈ X \ [x◦]G̃, we
construct a self-mapping f by (as in [, Theorem .]):

fx =

⎧⎨⎩x◦ if x ∈ [x◦]G̃,

y◦ if x ∈ X \ [x◦]G̃.

Let (x, y) ∈ E(G), then [x]G̃ := [y]G̃, which implies fx = fy hence (fx, fy) ∈ E(G), since G con-
tains all loops and further (.) is trivially satisfied (take φ(s) = ). But x◦ and y◦ are two
fixed points of f contradicting the fact that f has a unique fixed point. �

Theorem . Let f : X → X be a sub-integral G-contraction. Assume that f is orbitally
G-continuous and Xf := {x ∈ X : (x, fx) ∈ E(G)} �= ∅. Then, for any z ∈ Xf and y ∈ [z]G̃,
limn→∞ f ny = t ∈ X where t is a fixed point of f . Further, if G is weakly connected, then f is
a Picard operator.

Proof Let z ∈ Xf , then the arguments used in the proof of Theorem . imply that {f nz}
is a Cauchy sequence. Therefore, f nz → t ∈ X. Since (f nz, f n+z) ∈ E(G) for all n ∈ N

and f is orbitally G-continuous, therefore t = limn→∞ ff nz = ft. Note that if y is another
element from [z]G̃, then it follows from Lemma . that limn→∞ f ny = t. Finally, if G is
weakly connected, then [z]G̃ := X, which yields that f is a Picard operator. �

Remark . Theorem . generalizes claims  &  of [, Theorem .].

Theorem . Let f : X → X be a sub-integral G-contraction. Assume that f is orbitally
continuous and if there exists some z ∈ X such that fz ∈ [z]G̃, then, for y ∈ [z]G̃,
limn→∞ f ny = t ∈ X, where t is a fixed point of f . Further, if G is weakly connected, then
f is a Picard operator.

Proof Let z ∈ X be such that fz ∈ [z]G̃, then using the same arguments as in the
proof of Theorem ., {f nz} is Cauchy and thus limn→∞ f nz = t ∈ X. Moreover, t =
limn→∞ ff nz = ft, since f is orbitally continuous. Note that if y is another element from
[z]G̃, then it follows from Lemma . that limn→∞ f ny = t. If G is weakly connected, then
[z]G̃ := X. This yields that f is a Picard operator. �

Remark . Theorem . generalizes claims  &  of [, Theorem .] and thus
generalizes and extends the results of Nieto and Rodrýguez-López [, Theorems . and
.], Petrusel and Rus [, Theorem .] and Ran and Reurings [, Theorem .].

Corollary . Let (X,d) be a complete metric space endowed with a graph G. Then the
following statements are equivalent:

http://www.fixedpointtheoryandapplications.com/content/2013/1/149
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() G is weakly connected.
() Every sub-integral G-contraction f on X is a Picard operator provided that f is

orbitally continuous.

Proof () ⇒() is obvious from Theorem .. Note that the example constructed in
Corollary . is orbitally continuous. Hence, () ⇒ (). �

Remark . Corollary . generalizes claims  &  of [, Corollary .].

Kirk et al. [] introduced cyclic representations and cyclic contractions and they have
been further investigated by many authors (see, e.g., [–]). Let X be a nonempty set,m
be a positive integer and {Ai}mi= be nonempty closed subsets ofX and f :

⋃m
i=Ai → ⋃m

i=Ai

be an operator. Then X :=
⋃m

i=Ai is known as a cyclic representation of X w.r.t. f if

f (A)⊂ A, . . . , f (Am–) ⊂ Am, f (Am) ⊂ A (.)

and the operator f is known as a cyclic operator.

Theorem . Let (X,d) be a complete metric space. Let m be a positive integer, {Ai}mi= be
nonempty closed subsets of X,Y :=

⋃m
i=Ai and f : Y → Y . Assume that

(i)
⋃m

i=Ai is a cyclic representation of Y w.r.t. f ;
(ii) there exists φ ∈ � such that

∫ d(fx,fy)
 φ(s)ds≤ c

∫ (d(x,y))
 φ(s)ds whenever, x ∈ Ai,

y ∈ Ai+, where Am+ = A.
Then f has a unique fixed point t ∈ ⋂m

i=Ai and f ny→ t for any y ∈ ⋃m
i=Ai.

Proof We note that (Y ,d) is a complete metric space. Let us consider a graphG consisting
of V (G) := Y and E(G) := � ∪ {(x, y) ∈ Y × Y : x ∈ Ai, y ∈ Ai+; i = , . . . ,m}. By (i) and (ii) it
follows that f is a sub-integralG-contraction.Now let f nx → x* inY such that (f nx, f n+x) ∈
E(G) for all n ≥ . Then in view of (.), the sequence {f nx} has infinitely many terms in
each Ai so that one can easily extract a subsequence of {f nx} converging to x* in each Ai.
SinceAi’s are closed, then x* ∈ ⋂m

i=Ai. Now it is easy to form a subsequence {f nk x} in some
Aj, j ∈ {, . . . ,m} such that (f nk x,x*) ∈ E(G) for k ≥ , it vindicates G is a weakly connected
(Cf )-graph and thus conclusion follows from Theorem .. �

Remark . Taking φ(s) = , Theorem . subsumes the main result of [].

Theorem . Let f : X → X be an integral G-contraction. Assume that the following
assertions hold:

(i) there exists z ∈ Xf such that

∫ d(fx,fy)


φ(s)ds≤ c

∫ d(x,y)


φ(s)ds, ∀x, y ∈O(z) ⊂ [z]G̃, (.)

where O(z) = {z, fz, f z, . . .}.
(ii) G is a (Cf )-graph.

Then, for any z ∈ Xf , f |[z]G̃ is a Picard operator. Furthermore, if G is weakly connected
then f is a Picard operator.

http://www.fixedpointtheoryandapplications.com/content/2013/1/149
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Proof Let z ∈ Xf , then fz ∈ [z]G̃. Now, it follows from Proposition .(ii) that O(z) ⊂
[z]G̃. Moreover, from Lemma . we get

lim
n→∞d

(
f nz, f n+z

)
= . (.)

We claim that {f nz} is Cauchy sequence. Otherwise, there exists some ε >  in such a way
that, for each k ∈N, there aremk ,nk ∈N with nk >mk > k satisfying

d
(
f mk z, f nk z

) ≥ ε. (.)

We may choose sequences {mk}, {nk} such that corresponding to mk , natural number nk
is smallest satisfying (.). Therefore,

ε ≤ d
(
f nk z, f mk z

) ≤ d
(
f nk z, f nk–z

)
+ d

(
f nk–z, f mk z

)
< d

(
f nk z, f nk–z

)
+ ε.

On letting k → ∞ and using (.), we get

lim
k→∞

d
(
f nk z, f mk z

)
= ε. (.)

Moreover, using (.) and (.), it follows from

d
(
f nk–z, f mk–z

) ≤ d
(
f nk–z, f nk z

)
+ d

(
f nk z, f mk z

)
+ d

(
f mk z, f mk–z

)
and

d
(
f nk z, f mk z

) ≤ d
(
f nk z, f nk–z

)
+ d

(
f nk–z, f mk–z

)
+ d

(
f mk–z, f mk z

)
that

lim
n→∞d

(
f nk–z, f mk–z

)
= ε. (.)

Since f nk–z, f mk–z ∈O(z), it follows from assertion (ii) that

∫ d(f nk z,f mk z)


φ(s)ds≤ c

∫ d(f nk–z,f mk–z)


φ(s)ds. (.)

Letting k → ∞ and using (.), (.), we get (–c)
∫ ε

 φ(s)ds≤ .As  < c < , this implies
that ε = . Therefore, {f nz} is a Cauchy sequence in X. The rest of the proof runs on the
same lines as the proof of Theorem .. �

Remark . Theorem . generalizes [, Theorem .].

Remark . The conclusion of Theorem . that f is a Picard operator remains valid if
we replace assertion (ii) by (ii)′ f is orbital G-continuous or (ii)′′ f is orbitally continuous.

http://www.fixedpointtheoryandapplications.com/content/2013/1/149
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Example . Let X := [, ] be equipped with the usual metric d. Define f : X → X,
φ : [, +∞) → [, +∞) by

fx =

⎧⎨⎩ x
+px if x = 

n ,

 if x �= 
n

and φ(s) =

⎧⎨⎩s s –( – log s) if s > ,

 if s = 

for all n ∈ N and p≥  is any fixed positive integer. Consider the graphG such that V (G) :=
X and E(G) :=�∪{(,x) : x ∈ X}∪{( 

n+ ,

n ) : n ∈N}.We observe that (.) holds.Moreover,∫ τ

 φ(s)ds = τ

τ , so that (.) is equivalent to

d(fx, fy)


d(fx,fy) ≤ cd(x, y)


d(x,y) for (x, y) ∈ E(G). (.)

Next we show that (.) is satisfied for c = 
+p < .

Case i. Let (x,x) ∈ E(G), then (.) is trivially satisfied.
Case ii. Let (,x) ∈ E(G); x �= 

n for n ∈ N, (.) is trivially satisfied. Let (,x) ∈ E(G); x = 
n

for n ∈N

d(fx, fy)


d(fx,fy) =
∣∣∣∣ 
n + p

– 
∣∣∣∣ 

| 
n+p –|

=


(n + p)(n+p)
(.)

and

d(x, y)


d(x,y) =
∣∣∣∣ n – 

∣∣∣∣ 
| n –|

=


(n)n
. (.)

From inequality (.) we need to show that


(n + p)(n+p)

≤ 
( + p)(n)n

(.)

or, equivalently,[
n

n + p

]n 
(n + p)p

≤ 
 + p

.

Since 
(n+p)p ≤ 

(n+p) <


(+p) for all n ∈N and n
n+p < , thus inequality (.) is satisfied.

Case iii. Let ( 
n+ ,


n ) ∈ E(G) for n ∈ N, then we have

d(fx, fy)


d(fx,fy) =
∣∣∣∣ 
n +  + p

–


n + p

∣∣∣∣ 
| 
n++p –


n+p |

=
[


(n +  + p)(n + p)

](n++p)(n+p)

(.)

and

d(x, y)


d(x,y) =
∣∣∣∣ n –


n + 

∣∣∣∣ 
| n – 

n+ |
=

[


n(n + )

]n(n+)

, (.)

so we need to show that[


(n +  + p)(n + p)

](n++p)(n+p)

≤ 
( + p)

[


n(n + )

]n(n+)

. (.)
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On rearranging we have

[n(n + )]n(n+)

[(n +  + p)(n + p)](n++p)(n+p)
≤ 

(p + )

or [
n

n + p

]n(n+)[ n + 
n +  + p

]n(n+) 
[(n +  + p)(n + p)](p+np+p)

≤ 
 + p

.

By analyzing L.H.S., we see that n
n+p <  and n+

n++p <  for all n ∈N and 
[(n++p)(n+p)](p+np+p)

<


[(n++p)(n+p)] <


(n+p) ≤ 
(+p) for all n ∈ N, which infers that inequality (.) is indeed true.

Therefore, f is an integral G-contraction with contraction constant c = 
+p . Note that G

is a weakly connected (C)-graph and (.) also holds forO(). Thus all the conditions of
Theorem . are satisfied and f is a Picard operator with fixed point . Note that f is not
a Banach G-contraction since, for ( 

n+ ,

n ) ∈ E(G),

d(f 
n+ , f


n )

d( 
n+ ,


n )

=
| 
n++p –


n+p |

| n – 
n+ |

→  as n→ ∞.

By setting p =  in the above example, we have

d
(
f


, f



) 
d(f  ,f


 )

=
(



)

= d
(


,



) 
d(  ,


 )
.

Therefore one cannot apply Theorem . [].

Conclusion
The notion of an integral G-contraction not only generalizes/extends the notion of a Ba-
nach G-contraction, but it also improves the integral inequality (.). Whereas, the no-
tion of a sub-integral G-contraction generalizes the notion of a Banach G-contraction,
but it partially generalizes the integral inequality (.). Therefore, Theorem . general-
izes/extends some results of Jachymski [] and provides partial improvement to themain
result of Branciari []. A very natural question is bound to be posed: Are the conclusions
of Theorems ., ., . still valid for integral G-contractions? In Theorem ., we
have provided a partial answer to this question by imposing condition (.). But it re-
mains open to investigate an affirmative answer without the crucial condition of (.).
Furthermore, Example . invokes the generality of Theorem ..
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