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Abstract
We consider the problem of the convergence of the three-steps iterative sequences
for asymptotically nonexpansive mappings in a real Banach space. Under suitable
conditions, it has been proved that the iterative sequence converges strongly to a
fixed point, which is also a solution of certain variational inequality. The results
presented in this paper extend and improve some recent results.
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1 Introduction
Let X be a real Banach space with dual X∗, J : X → X∗ denotes the normalized duality
mapping from X into X∗ given by

J(x) =
{
f ∈ X∗ : 〈x, f 〉 = ‖x‖‖f ‖ ∧ ‖f ‖ = ‖x‖}, ∀x ∈ X.

LetC be a subset ofX. Amapping T : C → C is called contraction if there exists a constant
α ∈ (, ) such that ‖Tx –Ty‖ ≤ α‖x – y‖ for any x, y ∈ C. The mapping T is called nonex-
pansive if ‖Tx–Ty‖ ≤ ‖x– y‖ for any x, y ∈ C, and it is called asymptotically nonexpansive
if there exists a sequence {kn} in the interval [,∞) with limn→∞ kn =  and such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ ()

for all x, y ∈ C and all n ∈N , where N is the set of natural numbers.
The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk

[] as an important generalization of nonexpansive mappings. They proved that if C is a
nonempty, bounded, closed and convex subset of a real uniformly convex Banach space
and T is an asymptotically nonexpansive self-mapping of C, then T has a fixed point in C.
In , Noor [] introduced a three-steps iterative scheme and studied the approximate
solutions of a variational inclusion in Hilbert spaces. In , Xu andNoor [] introduced
and studied a new class of three-steps iterative schemes for solving the nonlinear equation
Tx = x for asymptotically nonexpansive mappings T in uniformly convex Banach spaces.
In , Nilsrakoo and Saejung [] defined a three-steps mean value iterative scheme and
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extended the results of Xu and Noor []. In , Yao and Noor [] made a refinement
and improvement of the previously known results.
Now we define a new three-steps iteration scheme for asymptotically nonexpansive

mappings as follows.

Definition . Let X be a Banach space, C be a nonempty convex subset of X, T : C → C
be an asymptotically nonexpansive mapping and f : C → C be a contraction. For a given
x ∈ C and n ∈N , let us define the sequences {xn}, {yn} and {zn} by the iterative scheme

⎧⎪⎪⎨
⎪⎪⎩
zn = ( – γn)xn + γnTnxn,

yn = ( – βn)xn + βnTnzn,

xn+ = ( – αn)f (xn) + αnTnyn,

()

where {αn}, {βn} and {γn} are approximate sequences in [, ].

If γn ≡ , then the iterations defined in () reduces to the two-steps iterations defined
as follows.

Definition . For a given x ∈ C and n ≥ , let us define the sequences {xn} and {yn} by
the iterative scheme

⎧⎨
⎩
yn = ( – βn)xn + βnTnxn,

xn+ = ( – αn)f (xn) + αnTnyn,
()

where {αn} and {βn} are approximate sequences in [, ].

If βn = γn ≡ , then the iterations defined in () reduces to the one-step iterations defined
as follows.

Definition . For a given x ∈ C and n ∈ N, define the sequence {xn} by the iterative
scheme

xn+ = ( – αn)f (xn) + αnTnxn, ()

where {αn} is an approximate sequence in [, ].

The purpose of this paper is to establish a strong convergence theoremof the three-steps
iterations for asymptotically nonexpansivemappings in a real Banach space equippedwith
a uniformly Gâteaux differentiable norm and to present some corollaries. Our results ex-
tend and improve the corresponding ones announced by Ceng et al. [], Chang et al. [],
Lou et al. [], Shahzad and Udomene [] and others.

2 Preliminaries
Throughout this paper, we will use the following notions. Let X be a real Banach space
with the norm ‖ · ‖ and let X∗ be its dual space.When {xn} is a sequence in X, then xn → x
(respectively xn ⇀ x, xn ⇁ x) will denote the strong (respectively the weak, the weak star)
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convergence of the sequence {xn} to x. Of course, the weak star convergence is consid-
ered in Banach spaces X which are dual spaces. We shall denote the single-valued duality
mapping and the set of fixed points for a mapping T by j and F(T), respectively.

Definition . Let SX denote the unit sphere of a Banach space X. The space X is said to
have a uniformly Gâteaux differentiable norm ‖ · ‖, if for each y ∈ C the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists uniformly with respect to x ∈ SX .

It is well known [] that if X is equipped with a uniformly Gâteaux differentiable norm,
then any duality mapping on X is single-valued and it is norm-to-weak* uniformly con-
tinuous, that is, xn → x implies that j(xn)⇁ j(x).

Lemma . [] Let X be a real Banach space. Then for each x, y ∈ X, the following in-
equality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀j(x + y) ∈ J(x + y).

Lemma . [] Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying

an+ ≤ ( – tn)an + bn + cn

with {tn} ⊂ [, ],
∑∞

n= tn = ∞, bn = o(tn), and
∑∞

n= cn < ∞. Then an → .

Now, we start with our first result.

Lemma. Let X be a real Banach space,C be a nonempty convex subset of X andT : C →
C be an asymptotically nonexpansive mapping defined by () with F(T) �= ∅ and {xn}∞n= be
the composite process defined by iterative scheme (). Then the sequence {xn} is bounded.

Proof Let p ∈ F(T) and γ ′ = supn{(kn) : n≥ }. We have from () that

‖zn – p‖ ≤ ( – γn)‖xn – p‖ + γn
∥∥Tnxn – p

∥∥ ≤ (
 + γn(kn – )

)‖xn – p‖,
‖yn – p‖ ≤ ( – βn)‖xn – p‖ + βn

∥∥Tnzn – p
∥∥ ≤ ( – βn)‖xn – p‖

+ βnkn‖zn – p‖ ≤ (
 + βn(kn – )( + γnkn)

)‖xn – p‖,

and so

‖xn+ – p‖ ≤ ( – αn)
∥∥f (xn) – p

∥∥ + αn
∥∥Tnyn – p

∥∥
≤ α( – αn)‖xn – p‖ + ( – αn)

∥∥f (p) – p
∥∥ + αnkn‖yn – p‖

≤ (
α( – αn) + αnkn

(
 + βn(kn – )( + γnkn)

))‖xn – p‖ + ( – αn)
∥∥f (p) – p

∥∥
≤ (

α – ααn + αnkn + αnβnkn + αnβnkn – αnβnkn – αnβnγnkn
)‖xn – p‖
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+ ( – αn)
∥∥f (p) – p

∥∥
≤ (

α + αn
(
kn – α

))‖xn – p‖ + ( – αn)
∥∥f (p) – p

∥∥
≤ (

α + αn
(
γ ′ – α

))‖xn – p‖ + ( – αn)
∥∥f (p) – p

∥∥
=

(α + αn(γ ′ – α))
γ ′ γ ′‖xn – p‖ + ( – αn)(γ ′ – α)

γ ′
γ ′∥∥f (p) – p

∥∥
γ ′ – α

.

Hence, it follows by induction that

‖xn – p‖ ≤ max

{
γ ′‖x – p‖, γ ′

γ ′ – α

∥∥f (p) – p
∥∥}

.

Therefore, {xn} is bounded. �

In order to prove our results, we also need the following lemma; see [].

Lemma . Let X be a real Banach space equipped with a uniformly Gâteaux differen-
tiable norm, C a bounded, closed and convex subset of X, T : C → C an asymptotically
nonexpansive mapping defined by () with F(T) �= ∅, f : C → C a contraction with the con-
traction constant α. For any {αn} ⊂ (, ) define the sequence of contractions Tf

n : C → C
by Tf

n(z̃) = ( – αn)f (z̃) + αnTnz̃, where αn < –α
kn–α

, limn→∞ αn =  and limn→∞ kn–
–αn

= . Let
z̃n ∈ C be the unique fixed points of Tf

n , that is,

z̃n = ( – αn)f (z̃n) + αnTnz̃n, ∀n ∈N . ()

Then the sequence {z̃n} converges strongly to the unique solution of the following variational
solution p:

p ∈ F(T) and
〈
(I – f )p, J

(
p – x∗)〉 ≤ , ∀x∗ ∈ F(T). ()

Lemma . Let C be a closed convex subset of a real Banach space X, T : C → C be an
asymptotically nonexpansivemapping and f : C → C be a contraction with the contraction
constant α. Let us assume that there are given three sequences {αn}, {βn} and {γn} in [, ]
satisfying the following conditions:

(i) αn < –α
kn–α

, limn→∞ αn = ,
∑∞

n=( – αn) = ∞ and limn→∞ kn–
–αn

= ;
(ii)

∑∞
n=(|αn – αn–| + |βn – βn–| + |γn – γn–|) < ∞

and that {xn}∞n= is the composite process defined by the iterative scheme (). Then we have
the following assertions:
(a) limn→∞ ‖xn+ – xn‖ = ;
(b) if lim supn βn( + γn) < , then limn→∞ ‖xn – Txn‖ = .

Proof (a) By Lemma ., we know that the sequence {xn} is bounded. Hence, it follows
that the sequences {f (xn)}, {yn}, {Tnxn} and {Tnzn} are also bounded. Therefore, we have
from () that

‖zn – zn–‖ =
∥∥( – γn)(xn – xn–) + γn

(
Tnxn – Tnxn–

)
+ γn

(
Tnxn– – Tn–xn–

)
+ (γn– – γn)

(
xn– – Tn–xn–

)∥∥
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≤ ( – γn)‖xn – xn–‖ + γnkn‖xn – xn–‖
+ γn

∥∥Tnxn– – Tn–xn–
∥∥ + |γn – γn–|

∥∥xn– – Tn–xn–
∥∥

=
(
 + γn(kn – )

)‖xn – xn–‖ + γn
∥∥Tnxn– – Tn–xn–

∥∥
+ |γn – γn–|

∥∥xn– – Tn–xn–
∥∥

and

‖yn – yn–‖ =
∥∥( – βn)xn + βnTnzn – ( – βn–)xn– – βn–Tn–zn–

∥∥
=

∥∥( – βn)(xn – xn–) + βn
(
Tnzn – Tnzn–

)
+ βn

(
Tnzn– – Tn–zn–

)
+ (βn– – βn)

(
xn– – Tn–zn–

)∥∥
≤ ( – βn)‖xn – xn–‖ + βnkn‖zn – zn–‖

+ βn
∥∥Tnzn– – Tn–zn–

∥∥ + |βn – βn–|
∥∥xn– – Tn–zn–

∥∥
≤ ( – βn)‖xn – xn–‖ + βnkn

(
 + γn(kn – )

)‖xn – xn–‖
+ knβnγn

∥∥Tnxn– – Tn–xn–
∥∥ + βn

∥∥Tnzn– – Tn–zn–
∥∥

+ knβn|γn – γn–|
∥∥xn– – Tn–xn–

∥∥
+ |βn – βn–|

∥∥xn– – Tn–zn–
∥∥,

where it follows that

‖xn+ – xn‖ =
∥∥( – αn)

(
f (xn) – f (xn–)

)
+ αn

(
Tnyn– – Tn–yn–

)
+ (αn– – αn)

(
f (xn–) – Tn–yn–

)
+ αn

(
Tnyn – Tnyn–

)∥∥
≤ α( – αn)‖xn – xn–‖ + αn

∥∥Tnyn– – Tn–yn–
∥∥

+ |αn – αn–|
∥∥f (xn–) – Tn–yn–

∥∥ + αnkn‖yn – yn–‖
≤ (

α + αn( – α)
)‖xn – xn–‖

+ αn(kn – )
(
 + βnkn( + γnkn)

)‖xn – xn–‖
+αn

∥∥Tnyn– – Tn–yn–
∥∥ + αnβnkn

∥∥Tnzn– – Tn–zn–
∥∥

+ αnβnγnkn
∥∥Tnxn– – Tn–xn–

∥∥
+ |αn – αn–|

∥∥f (xn–) – Tn–yn–
∥∥

+ αnkn|βn – βn–|
∥∥xn– – Tn–zn–

∥∥
+ αnβnkn|γn – γn–|

∥∥xn– – Tn–xn–
∥∥

≤ (
 – ( – α)( – αn)

)‖xn – xn–‖
+ αn(kn – )

(
 + βnkn( + γnkn)

)‖xn – xn–‖
+ αn

∥∥Tnyn– – Tn–yn–
∥∥ + αnkn

∥∥Tnzn– – Tn–zn–
∥∥

+ αnkn
∥∥Tnxn– – Tn–xn–

∥∥ + |αn – αn–|
∥∥f (xn–) – Tn–yn–

∥∥
+ αnkn|βn – βn–|

∥∥xn– – Tn–zn–
∥∥
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+ αnβnkn|γn – γn–|
∥∥xn– – Tn–xn–

∥∥
≤ (

 – ( – α)( – αn)
)‖xn – xn–‖

+ αn(kn – )
(
 + βnkn( + γnkn)

)‖xn – xn–‖
+ αn

(
kn – 

)
M +M

(|αn – αn–| + |βn – βn–| + |γn – γn–|
)

≤ (
 – ( – α)( – αn)

)‖xn – xn–‖ + ( – α)( – αn)
αn(kn – )

( – α)( – αn)

× [(
 + βnkn( + γnkn)

)
+

(
kn + 

)(
kn + 

)(
kn + kn + 

)]
M

+M
(|αn – αn–| + |βn – βn–| + |γn – γn–|

)
,

where

M = max
{‖xn – xn–‖,

∥∥Tnyn– – Tn–yn–
∥∥,∥∥f (xn–) – Tn–yn–

∥∥,
kn

(∥∥xn– – Tn–zn–
∥∥,∥∥Tnzn– – Tn–zn–

∥∥)
,

kn
(∥∥xn– – Tn–xn–

∥∥,∥∥Tnxn– – Tn–xn–
∥∥)}

.

Obviously, by condition (i), we have tn = ( – α)( – αn)→  and

bn
tn

=
αn(kn – )

( – α)( – αn)
[(
 + βnkn( + γnkn)

)
+

(
kn + 

)(
kn + 

)(
kn + kn + 

)]
M

→  (n→ ∞).

It follows from Lemma . and condition (ii) that limn→∞ ‖xn+ – xn‖ = .
(b) By (a), limn→∞ ‖xn+ – xn‖ = , so it follows from () and (i) that ‖xn+ – Tnyn‖ =

( – αn)‖f (xn) – Tnyn‖ →  and

∥∥xn – Tnyn
∥∥ ≤ ‖xn+ – xn‖ +

∥∥xn+ – Tnyn
∥∥ → . ()

Now, we will prove that limn→∞ ‖xn – Tnxn‖ = . We have from () that

∥∥xn – Tnxn
∥∥ ≤ ∥∥xn – Tnyn

∥∥ +
∥∥Tnyn – Tnxn

∥∥
≤ ∥∥xn – Tnyn

∥∥ + kn‖xn – yn‖
=

∥∥xn – Tnyn
∥∥ + βnkn

∥∥xn – Tnzn
∥∥

≤ ∥∥xn – Tnyn
∥∥ + βnkn

∥∥xn – Tnxn
∥∥ + βnkn

∥∥Tnxn – Tnzn
∥∥

≤ ∥∥xn – Tnyn
∥∥ + βnkn

∥∥xn – Tnxn
∥∥ + βnkn‖xn – zn‖

=
∥∥xn – Tnyn

∥∥ + βnkn( + γnkn)
∥∥xn – Tnxn

∥∥.

It follows from () that limn→∞ ‖xn – Tnxn‖ ≤ βn( + γn) limn→∞ ‖xn – Tnxn‖, where, by
the condition lim supn βn( + γn) < , we have that

lim
n→∞

∥∥xn – Tnxn
∥∥ = . ()
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Finally, we will show that limn→∞ ‖xn – Txn‖ = . In fact, according to (), we have

∥∥xn+ – Tnxn+
∥∥ ≤ ‖xn+ – xn‖ +

∥∥xn – Tnxn
∥∥ +

∥∥Tnxn – Tnxn+
∥∥

≤ ( + kn)‖xn+ – xn‖ +
∥∥xn – Tnxn

∥∥ → .

Hence,

∥∥xn+ – Txn+
∥∥ ≤ ∥∥xn+ – Tn+xn+

∥∥ +
∥∥Tn+xn+ – Txn+

∥∥
≤ ∥∥xn+ – Tn+xn+

∥∥ + k
∥∥Tnxn+ – xn+

∥∥ → ,

which implies that limn→∞ ‖xn – Txn‖ = . �

3 Main results
Theorem . Let X be a real Banach space equipped with a uniformly Gâteaux differen-
tiable norm,C be a bounded, closed and convex subset of X,T : C → C be anasymptotically
nonexpansive mapping defined by () with F(T) �= ∅ and f : C → C be a contraction with
the contraction constant α. Let {xn} be the sequence defined by the iterative scheme ()with
{αn}, {βn} and {γn} satisfying the following conditions:
(C) αn < –α

kn–α
, limn→∞ αn = ,

∑∞
n=( – αn) = ∞ and limn→∞ kn–

–αn
= ;

(C) lim supn βn( + γn) < ;
(C)

∑∞
n=(|αn – αn–| + |βn – βn–| + |γn – γn–|) <∞.

Then the sequence {xn} converges strongly to the unique solution p of the variational in-
equality:

p ∈ F(T) and
〈
(I – f )p, J

(
p – x∗)〉 ≤ , ∀x∗ ∈ F(T). ()

Proof SinceC is closed, by Lemma ., {xn} is bounded, so {f (xn)}, {yn}, {Tnxn} and {Tnzn}
are also bounded. Let {z̃n} be the sequence defined by

z̃n = ( – αn)f (z̃n) + αnTnz̃n, ∀n ∈N . ()

It follows from Lemma . that the sequence {z̃n} converges strongly to a fixed point p of
T and p is also the unique solution of the variational inequality (). We will next prove
that

lim sup
n→∞

〈
f (p) – p, j(xn – p)

〉 ≤ . ()

By Lemma .(b), limn→∞ ‖xn – Txn‖ = . It is easy to show that

∥∥Tmxn – xn
∥∥ →  (n→ ∞),∀m ∈N ,

where if we put Pn(m) = ‖Tmxn – xn‖(km‖z̃m – xn‖ + ‖Tmz̃n – xn‖), then Pn(m) →  as
n→ ∞. On the other hand, we have from () that

z̃m – xn = ( – αm)
(
f (z̃m) – xn

)
+ αm

(
Tmz̃m – xn

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/150
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It follows by Lemma . that

‖z̃m – xn‖ ≤ α
m
∥∥Tmz̃m – xn

∥∥ + ( – αm)
〈
f (z̃m) – xn, j(z̃m – xn)

〉
≤ α

m
(∥∥Tmz̃m – Tmxn

∥∥ +
∥∥Tmxn – xn

∥∥)
+ ( – αm)

(〈
f (z̃m) – z̃m, j(z̃m – xn)

〉
+ ‖z̃m – xn‖

)
≤ α

m
(
km‖z̃m – xn‖ +

∥∥Tmxn – xn
∥∥)

+ ( – αm)
(〈
f (z̃m) – z̃m, j(z̃m – xn)

〉
+ km‖z̃m – xn‖

)
= α

mk

m‖z̃m – xn‖ + α

mPn(m) + ( – αm)km‖z̃m – xn‖

+ ( – αm)
〈
f (z̃m) – z̃m, j(z̃m – xn)

〉
= km

(
 + ( – αm)

)‖z̃m – xn‖ + α
mPn(m)

+ ( – αm)
〈
f (z̃m) – z̃m, j(z̃m – xn)

〉
.

Hence,

〈
z̃m – f (z̃m), j(z̃m – xn)

〉 ≤ km –  + km( – αm)

( – αm)
‖z̃m – xn‖ + α

mPn(m)
( – αm)

.

Since limn→∞ ‖xn – Txn‖ =  and the sequences {z̃n} and {xn} are bounded it follows that
for some constantM > supm,n ‖z̃m – xn‖, we have

lim sup
n→∞

〈
z̃m – f (z̃m), j(z̃m – xn)

〉 ≤ M


(
(km + )

km – 
 – αm

+ km( – αm)
)
.

Since z̃m → p ∈ F(T) as m → ∞ and the duality mapping is norm-to-weakly* uniformly
continuous, we obtain that

lim sup
n→∞

〈
f (p) – p, j(xn – p)

〉 ≤ . ()

Finally, we will show that xn → p. We have

‖zn – p‖ ≤ ( – γn)‖xn – p‖ + γn
∥∥Tnxn – p

∥∥ ≤ kn‖xn – p‖,
‖yn – p‖ ≤ ( – βn)‖xn – p‖ + βn

∥∥Tnzn – p
∥∥

≤ ( – βn)‖xn – p‖ + βnkn‖zn – p‖
≤ (

 – βn + βnkn
)‖xn – p‖ ≤ kn‖xn – p‖

and so

‖xn+ – p‖ =
∥∥( – αn)

(
f (xn) – p

)
+ αn

(
Tnyn – p

)∥∥

≤ α
nk


n‖yn – p‖ + ( – αn)

〈
f (xn) – p, J(xn+ – p)

〉
≤ α

nk

n‖xn – p‖ + α( – αn)

(‖xn – p‖ + ‖xn+ – p‖)
+ ( – αn)

〈
f (p) – p, J(xn+ – p)

〉
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≤ (
α( – αn) + α

n
)‖xn – p‖ + α( – αn)‖xn+ – p‖

α
n
(
kn – 

)‖xn – p‖ + ( – αn)
〈
f (p) – p, J(xn+ – p)

〉
≤ (

 – ( – α)( – αn)
)‖xn – p‖ + α( – αn)‖xn+ – p‖

+
(
( – αn) + (kn – )

)
M + ( – αn)γ̃n+,

where γ̃n+ =max{〈f (p) – p, J(xn+ – p)〉, }. By (), we have γ̃n+ → , and M > supn(kn +
kn + kn + kn + kn + )‖xn – p‖. Then it follows that

‖xn+ – p‖ ≤  – ( – α)( – αn)
 – α( – αn)

‖xn – p‖ + ( – αn)
 – α( – αn)

γ̃n+

+
(

( – αn)

 – α( – αn)
+

(kn – )
 – α( – αn)

)
M.

If we define an = ‖xn – p‖, tn = (–α)(–αn)
–α(–αn) and bn = (–αn)+(kn–)

–α(–αn) M, then applying
Lemma . we conclude that xn → p. Moreover, it follows from () that p satisfies condi-
tion (). In order to show that p is unique, let p∗ ∈ F be another solution of () in F . Then
adding the inequalities 〈f (p) – p, j(p∗ – p)〉 ≤  and 〈f (p∗) – p∗, j(p – p∗)〉 ≤ , we get that
( – α)‖p – p∗‖ ≤ , which implies the equality p = p∗. �

The following example gives a mapping T , which is not nonexpansive but satisfying all
the assumptions of Theorem ..

Example . Let B denote the unit ball in theHilbert space l and letT : B→ B be defined
as follows:

T : (x,x,x, . . .)→ (, x,Ax,Ax, . . .),

where An = ( – 
n )

( 
n+ –


n(n+) ), n = , , . . . . Then it is easy to verify that T is an asymp-

totically nonexpansive mapping with kn = 
∏n

i=Ai =  + 
n , but it is not nonexpansive. If

we set αn =  – 
n , f (x) =


x and βn = γn = 

 , then the real sequences {αn}, {βn} and {γn}
satisfy conditions (C), (C) and (C) from Theorem ., and it is easy to prove that  is
the unique fixed point of T in B.

If γn ≡  in Theorem ., then we have by () that zn = xn. In fact, we have the following
corollary.

Corollary . Let X be a real Banach space equipped with a uniformly Gâteaux differen-
tiable norm, C be a bounded closed convex subset of X, T : C → C be an asymptotically
nonexpansive mapping defined by () with F(T) �= ∅ and f : C → C be a contraction with
the contraction constant α. Let {xn} be the sequence defined by the iterative scheme ()with
{αn} and {βn} satisfying the following conditions:
(C) αn < –α

kn–α
, limn→∞ αn = ,

∑∞
n=( – αn) = ∞ and limn→∞ kn–

–αn
= ;

(C) lim supn βn < ;
(C)

∑∞
n=(|αn – αn–| + |βn – βn–|) < ∞.
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Then the sequence {xn} converges strongly to the unique solution p of the variational in-
equality ().

If βn = γn ≡  in Theorem ., then we have by () that zn = yn = xn. Hence, it follows
that the following result is satisfied.

Corollary . Let X be a real Banach space equipped with a uniformly Gâteaux differen-
tiable norm, C be a bounded closed convex subset of X, T : C → C be an asymptotically
nonexpansive mapping defined by () with F(T) �= ∅ and f : C → C be a contraction with
the contraction constant α. Let {xn} be the sequence defined by the iterative scheme ()with
{αn} satisfying the following conditions:
(C) αn < –α

kn–α
, limn→∞ αn =  and limn→∞ kn–

–αn
= ;

(C)
∑∞

n=( – αn) = ∞;
(C) either

∑∞
n= |αn – αn–| <∞ or limn→∞(αn+/αn) = .

Then the sequence {xn} converges strongly to the unique solution of the variational inequal-
ity ().

Remarks .
. If γn ≡  and f = u is a constant function in Theorem ., then the iterative scheme

() reduces to the following iterative scheme:

⎧⎨
⎩
yn = ( – βn)xn + βnTnxn,

xn+ = ( – αn)u + αnTnyn.

In consequence, Corollary . improves Theorem  of Chang et al. from [].
. Let in Theorem . γn ≡  and the iterative scheme () be replaced by the following

scheme:

⎧⎨
⎩
yn = ( – βn)xn + βnTnxn,

xn+ = ( – αn)f (xn) + αnyn.

Then by Theorem ., we have the more general result than the result of Lou et al.
from [] and Corollary . of Ceng et al. in []. If T and {αn} are as in Corollary .,
assume that {βn}, {γn} ∈ [, ], αn + βn + γn =  and  < lim infn βn ≤ lim supn βn < .
Then the sequence {xn} defined by xn+ = αnf (xn) + βnxn + γnTnxn converges
strongly to the unique solution of the variational inequality ().

. Theorem . and Corollary . extend Theorem . of Shahzad and Udomene in []
to a more wide class of spaces.
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