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1 Introduction and preliminaries
In ,Matthews [] introduced the notion of partial metric spaces and extended the Ba-
nach contraction principle from metric spaces to partial metric spaces. After that, many
fixed point theorems in partialmetric spaces have been given by several authors (for exam-
ple, see [–]). Very recently, Haghi et al. [, ] showed in their interesting paper that
some of fixed point theorems in partial metric spaces can be obtained frommetric spaces.
Following Matthews [], the notion of partial metric space is given as follows.

Definition . [] A partial metric on a nonempty setX is a function p : X×X →R
+ such

that for all x, y, z ∈ X:

(p) x = y⇐⇒ p(x,x) = p(x, y) = p(y, y),
(p) p(x,x)≤ p(x, y),
(p) p(x, y) = p(y,x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial
metric on X.

Karapinar et al. [] introduced the concept of quasi-partial metric spaces and studied
some fixed point theorems on quasi-partial metric spaces.

Definition . [] A quasi-partial metric on a nonempty set X is a function q : X×X →
R

+ which satisfies:

(QPM) If q(x,x) = q(x, y) = q(y, y), then x = y,
(QPM) q(x,x)≤ q(x, y),
(QPM) q(x,x)≤ q(y,x), and
(QPM) q(x, y) + q(z, z) ≤ q(x, z) + q(z, y)

for all x, y, z ∈ X.
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A quasi-partial metric space is a pair (X,q) such that X is a nonempty set and q is a
quasi-partial metric on X.

Let q be a quasi-partial metric space on the set X. Then

dq(x, y) = q(x, y) + q(y,x) – p(x,x) – p(y, y)

is a metric on X.

Definition . [] Let (X,q) be a quasi-partial metric space. Then:
() A sequence (xn) converges to a point x ∈ X if and only if

q(x,x) = lim
n→∞q(x,xn) = lim

n→∞q(xn,x).

() A sequence (xn) is called a Cauchy sequence if limn,m→∞ p(xn,xm) and
limn,m→∞ p(xn,xm) exist (and are finite).

() The quasi-partial metric space (X,q) is said to be complete if every Cauchy sequence
(xn) in X converges, with respect to τq, to a point x ∈ X such that

q(x,x) = lim
n,m→∞q(xn,xm) = lim

n,m→∞q(xm,xn).

The following lemma is crucial in our work.

Lemma . [] Let (X,q) be a quasi-partial metric space. Then the following statements
hold true:
(A) If q(x, y) = , then x = y.
(B) If x �= y, then q(x, y) >  and q(y,x) > .

Bhaskar and Lakshmikantham [] introduced the concept of coupled fixed point and
studied some nice coupled fixed point theorems. Later, Lakshmikantham and Ćirić []
introduced the notion of a coupled coincidence point of mappings. For some works on a
coupled fixed point, we refer the reader to [–].

Definition . [] Let X be a nonempty set. We call an element (x, y) ∈ X ×X a coupled
fixed point of the mapping F : X ×X → X if

F(x, y) = x and F(y,x) = y.

Definition . [] An element (x, y) ∈ X ×X is called a coupled coincidence point of the
mappings F : X ×X → X and g : X → X if

F(x, y) = gx and F(y,x) = gy.

Abbas et al. [] introduced the concept of w-compatible mappings as follows.

Definition . [] LetX be a nonempty set.We say that themappings F : X×X → X and
g : X → X are w-compatible if gF(x, y) = F(gx, gy) whenever gx = F(x, y) and gy = F(y,x).
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In this paper, we study some coupled fixed point theorems in the setting of quasi-partial
metric spaces. We introduce some examples to support our results.

2 Themain results
We start this section with the following coupled fixed point theorem.

Theorem . Let (X,q) be a quasi-partial metric space, g : X → X and F : X ×X → X be
two mappings. Suppose that there exist k, k and k in [, ) with k + k + k <  such that
the condition

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗))

≤ k
(
q
(
gx, gx∗) + q

(
gy, gy∗)) + k

(
q
(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

))
+ k

(
q
(
gx∗,F

(
x∗, y∗)) + q

(
gy∗,F

(
y∗,x∗))) (.)

holds for all x, y,x∗, y∗ ∈ X. Also, suppose the following hypotheses:
() F(X ×X) ⊆ gX .
() g(X) is a complete subspace of X with respect to the quasi-partial metric q.
Then the mappings F and g have a coupled coincidence point (u, v) satisfying gu =

F(u, v) = F(v,u) = gu.
Moreover, if F and g are w-compatible, then F and g have a unique common fixed point

of the form (u,u).

Proof Let x, y ∈ X. Since F(X×X) ⊆ gX, we put gx = F(x, y) and gy = F(y,x). Again,
since F(X×X) ⊆ gX, we put gx = F(x, y) and gy = F(y,x). Continuing this process, we
can construct two sequences (gxn) and (gyn) in X such that

gxn = F(xn–, yn–), ∀n ∈N,

and

gyn = F(yn–,xn–), ∀n ∈N.

• Let n ∈N. Then by inequality (.), we obtain

q(gxn, gxn+) + q(gyn, gyn+)

= q
(
F(xn–, yn–),F(xn, yn)

)
+ q

(
F(yn–,xn–),F(yn,xn)

)
≤ k

(
q(gxn–, gxn) + q(gyn–, gyn)

)
+ k

(
q
(
gxn–,F(xn–, yn–)

)
+ q

(
gyn–,F(yn–,xn–)

))
+ k

(
q
(
gxn,F(xn, yn)

)
+ q

(
gyn,F(yn,xn)

))
= k

(
q(gxn–, gxn) + q(gyn–, gyn)

)
+ k

(
q(gxn–, gxn) + q(gyn–, gyn)

)
+ k

(
q(gxn, gxn+) + q(gyn, gyn+)

)
. (.)

From (.), we have

q(gxn, gxn+) + q(gyn, gyn+) ≤ k + k
 – k

(
q(gxn–, gxn) + q(gyn–, gyn)

)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/153
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Put k = k+k
–k

. Then k < . Repeating (.) n-times, we get

q(gxn, gxn+) + q(gyn, gyn+) ≤ kn
(
q(gx, gx) + q(gy, gy)

)
.

Let m and n be natural numbers withm > n. Then

q(gxn, gxm) + q(gyn, gym) ≤
m–∑
i=n

q(gxi, gxi+) + q(gyi, gyi+)

≤
m–∑
i=n

ki
(
q(gx, gx) + q(gy, gy)

)

≤ kn

 – k
(
q(gx, gx) + q(gy, gy)

)
. (.)

Letting n,m → +∞, we get

lim
n,m→+∞q(gxn, gxm) = lim

n,m→+∞q(gyn, gym) = . (.)

• By similar arguments as above, we can show that

lim
n,m→+∞q(gxm, gxn) = lim

n,m→+∞q(gym, gyn) = . (.)

Thus the sequences (gxn) and (gyn) are Cauchy in (gX,q). Since (gX,q) is complete, there
are u and v in X such that gxn → gu and gyn → gy with respect to τq, that is,

q(gu, gu) = lim
n→+∞q(gu, gxn) = lim

n→+∞q(gxn, gu)

= lim
n,m→+∞q(gxm, gxn) = lim

n,m→+∞q(gxn, gxm)

and

q(gv, gv) = lim
n→+∞q(gv, gyn) = lim

n→+∞q(gyn, gv)

= lim
n,m→+∞q(gym, gyn) = lim

n,m→+∞q(gyn, gym).

From (.) and (.), we have

q(gu, gu) = lim
n→+∞q(gu, gxn) = lim

n→+∞q(gxn, gu)

= lim
n,m→+∞q(gxm, gxn) = lim

n,m→+∞q(gxn, gxm) =  (.)

and

q(gv, gv) = lim
n→+∞q(gv, gyn) = lim

n→+∞q(gyn, gv)

= lim
n,m→+∞q(gym, gyn) = lim

n,m→+∞q(gyn, gym) = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/153
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For n in N, we obtain

q
(
gxn+,F(u, v)

) ≤ q(gxn+, gu) + q
(
gu,F(u, v)

)
– q(gu, gu)

≤ q(gxn+, gu) + q
(
gu,F(u, v)

)
≤ q(gxn+, gu) + q(gu, gxn+) + q

(
gxn+,F(u, v)

)
– q(gxn+, gxn+)

≤ q(gxn+, gu) + q(gu, gxn+) + q
(
gxn+,F(u, v)

)
.

On letting n→ +∞ in the above inequalities and using (.) and (.), we have

lim
n→+∞q

(
gxn+,F(u, v)

)
= q

(
gu,F(u, v)

)
. (.)

Similarly, we have

lim
n→+∞q

(
gyn+,F(v,u)

)
= q

(
gv,F(v,u)

)
. (.)

• We show that gu = F(u, v) and gv = F(v,u).
For n ∈N, we have

q
(
gxn+,F(u, v)

)
+ q

(
gyn+,F(v,u)

)
= q

(
F(xn, yn),F(u, v)

)
+ q

(
F(yn,xn),F(v,u)

)
≤ k

(
q(gxn, gu) + q(gyn, gv)

)
+ k

(
q
(
gxn,F(xn, yn)

)
+ q

(
gyn,F(yn,xn)

)
+ k

(
q
(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

))
= k

(
q(gxn, gu) + q(gyn, gv)

)
+ k

(
q(gxn, gxn+)

)
+ q(gyn, gyn+)

)
+ k

(
q
(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

))
.

Letting n→ +∞ in above inequalities and using (.)-(.), we get

q
(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

) ≤ k
(
q
(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

))
.

Since k < , we get q(gu,F(u, v)) = q(gv,F(v,u)) = . By Lemma ., we get gu = F(u, v) and
gv = F(v,u). Next, we will show that gu = gv. Now, from (.) we have

q(gu, gv) + q(gv, gu)

= q
(
F(u, v),F(v,u)

)
+ q

(
F(v,u),F(u, v)

)
≤ k

(
q(gu, gv) + q(gv, gu)

)
+ k

(
q
(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

))
+ k

(
q
(
gv,F(v,u)

)
+ q

(
gu,F(u, v)

))
= k

(
q(gu, gv) + q(gv, gu)

)
+ k

(
q(gu, gu) + q(gv, gv)

)
+ k

(
q(gv, gv) + q(gu, gu)

)
.

Using (.) and (.), we obtain

q(gu, gv) + q(gv, gu) ≤ k
(
q(gu, gv) + q(gv, gu)

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/153
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Since k < , we have q(gu, gv) = q(gv, gu) =  By Lemma ., we get that gu = gv. Finally,
assume that g and F are w-compatible. Let u = gu and v = gv. Then

gu = ggu = g
(
F(u, v)

)
= F(gu, gv) = F(u, v) (.)

and

gv = ggv = g
(
F(v,u)

)
= F(gv, gu) = F(v,u). (.)

From (.) and (.), we can show that

q(gu, gu) = q(gv, gv).

• We claim that gu = gu and gv = gv.
From (.), we have

q(gu, gu) + q(gv, gv)

= q
(
F(u, v),F(u, v)

)
+ q

(
F(v,u),F(v,u)

)
≤ k

(
q(gu, gu) + q(gv, gv)

)
+ k

(
q
(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

))
+ k

(
q
(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

))
= k

(
q(gu, gu) + q(gv, gv)

)
+ k

(
q(gu, gu) + q(gv, gv)

)
+ k

(
q(gu, gu) + q(gv, gv)

)
= k

(
q(gu, gu) + q(gv, gv)

)
.

Since k < , we conclude that q(gu, gu) = q(gv, gv) = . By Lemma ., we get gu = gu
and gv = gv. Therefore u = gu and v = gv. Again, since gu = gv, we get u = v. Hence F
and g have a unique common coupled fixed point of the form (u,u). �

Corollary . Let (X,q) be a quasi-partial metric space, g : X → X and F : X ×X → X be
two mappings. Suppose that there exist a, b, c, d, e, f in [, ) with a + b + c + d + e + f < 
such that

q
(
F(x, y),F

(
x∗, y∗))

≤ aq
(
gx, gx∗) + bq

(
gy, gy∗) + cq

(
gx,F(x, y)

)
+ dq

(
gy,F(y,x)

)
+ eq

(
gx∗,F

(
x∗, y∗)) + fq

(
gy∗,F

(
y∗,x∗)) (.)

holds for all x, y,x∗, y∗ ∈ X. Also, suppose the following hypotheses:
() F(X ×X) ⊆ gX .
() g(X) is a complete subspace of X with respect to the quasi-partial metric q.
Then F and g have a coupled coincidence point (u, v) satisfying gu = F(u, v) = F(v,u) = gu.
Moreover, if F and g are w-compatible, then F and g have a unique common fixed point

of the form (u,u).
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Proof Given x, y,x∗, y∗ ∈ X. From (.), we have

q
(
F(x, y),F

(
x∗, y∗))

≤ aq
(
gx, gx∗) + bq

(
gy, gy∗) + cq

(
gx,F(x, y)

)
+ dq

(
gy,F(y,x)

)
+ eq

(
gx∗,F

(
x∗, y∗)) + fq

(
gy∗,F

(
y∗,x∗)) (.)

and

q
(
F(y,x),F

(
y∗,x∗))

≤ aq
(
gy, gy∗) + bq

(
gx, gx∗) + cq

(
gy,F(y,x)

)
+ dq

(
gx,F(x, y)

)
+ eq

(
gy∗,F

(
y∗,x∗)) + fq

(
gx∗,F

(
x∗, y∗)). (.)

Adding inequality (.) to inequality (.), we get

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗))

≤ (a + b)
(
q
(
gx, gx∗) + q

(
gy, gy∗)) + (c + d)

(
q
(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

))
+ (e + f )

(
q
(
gx∗,F

(
x∗, y∗)) + q

(
gy∗,F

(
y∗,x∗))).

Thus, the result follows from Theorem .. �

Corollary . Let (X,q) be a quasi-partial metric space, let g : X → X and F : X ×X → X
be two mappings. Suppose that there exists k ∈ [, ) with k + k + k <  such that

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗)) ≤ k

(
q
(
gx, gx∗) + q

(
gy, gy∗))

holds for all x, y,x∗, y∗ ∈ X. Also, suppose the following hypotheses:
() F(X ×X) ⊆ gX .
() g(X) is a complete subspace of X with respect to the quasi-partial metric q.
Then F and g have a coupled coincidence point (u, v) satisfying gu = F(u, v) = F(v,u) = gu.
Moreover, if F and g are w-compatible, then F and g have a unique common fixed point

of the form (u,u).

Corollary . Let (X,q) be a quasi-partial metric space, g : X ×X and F : X ×X → X be
two mappings. Suppose that there exists k ∈ [, ) with k <  such that

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗)) ≤ k

(
q
(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

))

holds for all x, y,x∗, y∗ ∈ X. Also, suppose the following hypotheses:
() F(X ×X) ⊆ X .
() g(X) is a complete subspace of X with respect to the quasi-partial metric q.
Then F and g have a coupled coincidence point (u, v) satisfying gu = F(u, v) = F(v,u) = gu.
Moreover, if F and g are w-compatible, then F and g have a unique common fixed point

of the form (u,u).
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Corollary . Let (X,q) be a quasi-partial metric space, g : X → X and F : X ×X → X be
two mappings. Suppose that there exists k ∈ [, ) with k <  such that

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗)) ≤ k

(
q
(
gx∗,F

(
x∗, y∗)) + q

(
gy∗,F

(
y∗,x∗)))

holds for all x, y,x∗, y∗ ∈ X. Also, suppose the following hypotheses:
() F(X ×X) ⊆ gX .
() g(X) is a complete subspace of X with respect to the quasi-partial metric q.
Then F and g have a coupled coincidence point (u, v) satisfying gu = F(u, v) = F(v,u) = gu.
Moreover, if F and g are w-compatible, then F and g have a unique common fixed point

of the form (u,u).

Let g = IX (the identity mapping) in Theorem . and Corollaries .-.. Then we have
the following results.

Corollary . Let (X,q) be a quasi-partial metric space and let F : X ×X → X be a map-
ping. Suppose that there exist k,k,k ∈ [, ) with k + k + k <  such that

q
(
F(x, y),F

(
x∗, y∗)) + g

(
F(y,x),F

(
y∗,x∗))

≤ k
(
q
(
x,x∗) + q

(
y, y∗)) + k

(
q
(
x,F(x, y)

)
+ q

(
y,F(y,x)

))
+ k

(
q
(
x∗,F

(
x∗, y∗)) + q

(
y∗,F

(
y∗,x∗)))

holds for all x, y,x∗, y∗ ∈ X.
Then F has a unique coupled fixed point of the form (u,u).

Corollary . Let (X,q) be a quasi-partial metric space and let F : X × X → X be a
mapping. Suppose that there exist a,b, c,d, e, f ∈ [, ) with a + b + c + d + e + f <  such
that

q
(
F(x, y),F

(
x∗, y∗))

≤ aq
(
x,x∗) + bq

(
y, y∗) + cq

(
x,F(x, y)

)
+ dq

(
y,F(y,x)

)
+ eq

(
x∗,F

(
x∗, y∗)) + fq

(
y∗,F

(
y∗,x∗))

holds for all x, y,x∗, y∗ ∈ X.
Then F has a unique coupled fixed point of the form (u,u).

Corollary . Let (X,q) be a complete quasi-partial metric space and let F : X × X → X
be a mapping. Suppose that there exists k ∈ [, ) such that

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗)) ≤ k

(
q
(
x,x∗) + q

(
y, y∗))

holds for all x, y,x∗, y∗ ∈ X.
Then F has a unique coupled fixed point of the form (u,u).
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Corollary . Let (X,q) be a complete quasi-partial metric space and let F : X × X → X
be a mapping. Suppose that there exists k ∈ [, ) with k <  such that

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗)) ≤ k

(
q
(
x,F(x, y)

)
+ q

(
y,F(y,x)

))

holds for all x, y,x∗, y∗ ∈ X.
Then F has a unique coupled fixed point of the form (u,u).

Corollary . Let (X,q) be a complete quasi-partial metric space and let F : X × X → X
be a mapping. Suppose that there exists k ∈ [, ) with k <  such that

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗)) ≤ k

(
q
(
x∗,F

(
x∗, y∗)) + q

(
y∗,F

(
y∗,x∗)))

holds for all x, y,x∗, y∗ ∈ X.
Then F has a unique coupled fixed point of the form (u,u).

Theorem . Let (X,q) be a complete quasi-partial metric space and let F : X × X → X,
g : X → X be two mappings. Suppose that there exists a function φ : gX →R+ such that

q
(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

) ≤ φ(gx) + φ(gy) – φ
(
F(x, y)

)
– φ

(
F(y,x)

)

holds for all (x, y) ∈ X ×X. Also, assume that the following hypotheses are satisfied:
(a) F(X ×X)⊂ gX ;
(b) if G : X ×X → R, G(x, y) = q(F(x, y), gx), then for each sequence (gxn, gyn) → (u, v),

we have G(u, v) ≤ k lim infn→∞ G(xn, yn) for some k > .
Then F and g have a coupled coincidence point (u, v). In addition, q(gu, gu) =  and

q(gv, gv) = .

Proof Consider (x, y) ∈ X × X. As F(X × X) ⊂ gX, there are x and y from X such that
gx = F(x, y) and gy = F(y,x). By repeating this process, we construct two sequences,
(xn) and (yn) with gxn+ = F(xn, yn) and gyn+ = F(yn,xn).
The fourth property of the quasi-partial metric space gives us

q(gxn, gxn+) + q(gyn, gyn+)

≤ q(gxn, gxn+) + q(gxn+, gxn+)

– q(gxn+, gxn+) + q(gyn, gyn+) + q(gyn+, gyn+) – q(gyn+, gyn+)

≤ q(gxn, gxn+) + q(gxn+, gxn+) + q(gyn, gyn+) + q(gyn+, gyn+).

Based on the above inequality, form > n, we obtain

q(gxn, gxm) + q(gyn, gym) ≤
m–∑
k=n

[
q(gxk , gxk+) + q(gyk , gyk+)

]
(.)

=
m–∑
k=n

[
q
(
gxk ,F(xk , yk)

)
+ q

(
gyk ,F(yk ,xk)

)]
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≤
m–∑
k=n

[
φ(gxk) + φ(gyk) – φ

(
F(xk , yk)

)
– φ

(
F(yk ,xk)

)]

=
m–∑
k=n

[
φ(gxk) + φ(gyk) – φ(gxk+) – φ(gyk+)

]

= φ(gxn) + φ(gyn) – φ(gxm) – φ(gym). (.)

Consider Sn(x) =
∑n

k=[q(gxk , gxk+) + q(gyk , gyk+)]. Inequality (.) implies that

Sn(x)≤ φ(gx) + φ(gy),

hence the nondecreasing sequence {Sn} is bounded, so it is convergent. Taking the limit
as n,m → +∞ in (.), we conclude that

lim
n,m→+∞q(gxn, gxm) = lim

n,m→+∞q(gyn, gym).

Using similar arguments, it can be proved that

lim
n,m→∞q(gxm, gxn) = lim

n,m→∞q(gym, gyn) = .

As (gxn) and (gyn) are Cauchy sequences in the complete quasi-partial metric space
(X,q), there are u, v in X such that u = limn→∞ gxn and v = limn→∞ gvn. Having in mind
hypothesis (b), the following relations hold true:

 ≤ q
(
F(u, v), gu

)
=G(u, v)≤ k lim inf

n→∞ G(xn, yn)

= k lim inf
n→∞ q

(
F(xn, yn), gxn

)
= k lim inf

n→∞ q(gxn+, gxn)

= .

We get q(F(u, v), gu) = , and by Lemma ., it follows that F(u, v) = g(u).
Analogously, it can be proved that F(v,u) = gv.
As a conclusion, we have obtained that (u, v) is a coupled coincidence point of the map-

pings F and g , and q(gu, gu) = , q(gv, gv) = . �

Corollary . Let (X,q) be a complete quasi-partial metric space and let F : X ×X → X
be a mapping. Suppose that there exists a function φ : X → R+ such that

q
(
x,F(x, y)

)
+ q

(
y,F(y,x)

) ≤ φ(x) + φ(y) – φ
(
F(x, y)

)
– φ

(
F(y,x)

)

holds for all (x, y) ∈ X ×X. Also, assume that the following hypotheses are satisfied:
(a) F(X ×X)⊂ X ;
(b) if G : X ×X → R, G(x, y) = q(F(x, y),x), then for each sequence (xn, yn) → (u, v), we

have G(u, v) ≤ k lim infn→∞ G(xn, yn) for some k > .
Then F has a coupled coincidence point (u, v). In addition, q(u,u) =  and q(v, v) = .

Proof Follows from Theorem . by taking g = IX (the identity mapping). �
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3 Examples
Now, we introduce some examples to support our results.

Example . On the set X = [, ], define

q : X ×X →R
+, q(x, y) = |x – y| + x.

Also, define

F : X ×X → X, F(x, y) =

⎧⎨
⎩


 (x – y), x≥ y;

, x < y,

and g : X → X by gx = 
x. Then

() (X,q) is a complete quasi-partial metric space.
() F(X ×X) ⊆ gX .
() For any x, y,x∗, y∗ ∈ X , we have

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗)) ≤ 


(
q
(
gx, gx∗) + q

(
gy, gy∗)).

Proof The proofs of () and () are clear. To prove (), we consider the following cases.
Case : x < y and x∗ < y∗. Here we have

F(x, y) = , F
(
x∗, y∗) = , F(y,x) =

y – x


, F
(
y∗,x∗) = y∗ – x∗


.

Therefore

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗))

= q(, ) + q
(
x – y


,
y∗ – x∗



)

=



∣∣(y – x) –
(
y∗ – x∗)∣∣ + 


(y – x)

≤ 


∣∣∣∣
(


y –



x
)
–

(


y∗ –



x∗

)∣∣∣∣ + 


(


y –



x
)

≤ 


∣∣∣∣
(


x∗ –



x
)
–

(


y∗ –



y
)∣∣∣∣ + 



(


y +



x
)

≤ 


(∣∣∣∣ x∗ –


x
∣∣∣∣ + 


x +

∣∣∣∣ y∗ –


y
∣∣∣∣ + 


y
)

=


(∣∣gx∗ – gx

∣∣ + gx +
∣∣gy – gy∗∣∣ + gy

)

=


(
q
(
gx, gx∗) + q

(
gy, gy∗)).

Case : x < y and x∗ ≥ y∗. Here we have

F(x, y) = , F
(
x∗, y∗) = x∗ – y∗


, F(y,x) =

y – x
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and F(y∗,x∗) = . Therefore

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗))

= q
(
,

x∗ – y∗



)
+ q

(
y – x


,
)

=



∣∣ – (
x∗ – y∗)∣∣ + 


|y – x| + 


(y – x)

=



(
x∗ – y∗) + 


(y – x) +



(y – x)

=



((


x∗ –



x
)
–


x +

(


y –



y∗

)
+


y
)

≤ 


((


x∗ –



x
)
+


x +

(


y –



y∗

)
+


y
)

≤ 


(∣∣∣∣ x∗ –


x
∣∣∣∣ + 


x +

∣∣∣∣ y∗ –


y
∣∣∣∣ + 


y
)

=


(∣∣gx∗ – gx

∣∣ + gx +
∣∣gy – gy∗∣∣ + gy

)

=


(
q
(
gx, gx∗) + q

(
gy, gy∗)).

Case : x > y and x∗ < y∗. Using similar arguments to those given in Case (), we can
show that

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗)) ≤ 


(
q
(
gx, gx∗) + q

(
gy, gy∗)).

Case : x ≥ y and x∗ ≥ y∗. Using similar arguments to those given in Case (), we can
show that

q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗)) ≤ 


(
q
(
gx, gx∗) + q

(
gy, gy∗)).

Thus F and g satisfy all the hypotheses of Corollary .. So, F and g have a unique com-
mon fixed point. Here (, ) is the unique common fixed point of F and g . �

We end with an example related to Theorem ..

Example . Let X = [,+∞). Define

q : X ×X →R
+, q(x, y) = |x – y| + x.

Also, define

F : X ×X → X, F(x, y) = x; g : X → X,

gx = x; φ : X →R
+, φ(x) = x.

Then:
() (X,q) is a complete quasi-partial metric space.

http://www.fixedpointtheoryandapplications.com/content/2013/1/153
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() F(X ×X) ⊆ gX .
() For any x, y ∈ X , we have

q
(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

) ≤ φ(gx) + φ(gy) – φ
(
F(x, y)

)
– φ

(
F(y,x)

)
.

() Let G : X ×X →R
+ be defined by G(x, y) = q(F(x, y), gx). If (gxn) and (gyn) are two

sequences in X with (gxn, gyn) → (u, v), then G(u, v) ≤  lim infn→+∞ G(xn, yn).

Proof The proofs of () and () are clear. To prove () given x, y ∈ X, gx = x, gy = y,
F(x, y) = x, F(y,x) = y, φ(x) = x and φ(y) = y. Thus

q
(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)
= q(x,x) + q(y, y)

= x + y

≤ x + y – x – y

= φ(x) + φ(y) – φ(x) – φ(y)

= φ(gx) + φ(gy) – φ
(
F(x, y)

)
– φ

(
F(y,x)

)
.

To prove (), let (gxn) and (gyn) be two sequences in X such that (gxn, gyn) → (u, v) for
some u, v ∈ X. Then gxn → u and gyn → v. Thus

q(gxn,u) = q(xn,u) → q(u,u)

and

q(u, gxn) = q(u, xn) → q(u,u).

Therefore

|xn – u| + xn → u

and

|u – xn| + u→ u.

Therefore

|u – xn| → .

Hence xn → 
u in R

+. Now

G(u, v) = q
(
F(u, v),u

)
= q(u,u)

= u

≤ 
(


u
)
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=  lim inf
n→+∞ xn

=  lim inf
n→+∞ G(xn,xn)

=  lim inf
n→+∞ G

(
F(xn, yn),xn

)
.

So, F and g satisfy all the hypotheses of Theorem .. Hence F and g have a coupled
coincidence point. Here (, ) is the coupled coincidence point of F and g . �
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