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1 Introduction
Variational inclusion has become rich of inspiration in pure and applied mathematics. In
recent years, classical variational inclusion problems have been extended and generalized
to study a large variety of problems arising in image recovery, economics, and signal pro-
cessing; for more details, see [–]. Based on the projection technique, it has been shown
that the variational inclusion problems are equivalent to the fixed point problems. This al-
ternative formulation has played a fundamental and significant part in developing several
numerical methods for solving variational inclusion problems and related optimization
problems.
The purposes of this paper is to study the zero point problem of the sum of a maximal

monotonemapping and an inverse-stronglymonotonemapping, and the fixed point prob-
lem of a nonexpansive mapping. The organization of this paper is as follows. In Section ,
we provide some necessary preliminaries. In Section , a Mann-type iterative algorithm
with mixed errors is investigated. A weak convergence theorem is established. Applica-
tions of the main results are also discussed in this section.

2 Preliminaries
Throughout this paper, we always assume that H is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖, respectively. Let C be a nonempty closed convex subset
of H and let PC be the metric projection from H onto C.
Let S : C → C be a mapping. F(S) stands for the fixed point set of S; that is, F(S) := {x ∈

C : x = Sx}.
© 2013 Hecai; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
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Recall that S is said to be nonexpansive iff

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.

If C is a bounded, closed, and convex subset of H , then F(S) is not empty, closed, and
convex; see [].
Let A : C →H be a mapping. Recall that A is said to be monotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

A is said to be strongly monotone iff there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.

For such a case, A is also said to be α-strongly monotone. A is said to be inverse-strongly
monotone iff there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse-strongly monotone. It is not hard to see that
inverse-strongly monotone mappings are monotone and Lipschitz continuous.
Recall that the classical variational inequality is to find an x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

In this paper, we use VI(C,A) to denote the solution set of (.). It is known that ω ∈ C is a
solution to (.) iff ω is a fixed point of the mapping PC(I – λA), where λ >  is a constant,
and I stands for the identity mapping. IfA is α-inverse-strongly monotone and λ ∈ (, α],
then the mapping PC(I – λA) is nonexpansive. Indeed, we have

∥∥(I – λA)x – (I – λA)y
∥∥

=
∥∥(x – y) – λ(Ax –Ay)

∥∥

= ‖x – y‖ – λ〈x – y,Ax –Ay〉 + λ‖Ax –Ay‖

≤ ‖x – y‖ – λ(α – λ)‖Ax –Ay‖.

This shows that PC(I – λA) is nonexpansive. It follows that VI(C,A) is closed and convex.
A multivalued operator T : H → H with the domain D(T) = {x ∈ H : Tx 
= ∅} and the

range R(T) = {Tx : x ∈ D(T)} is said to be monotone if for x ∈ D(T), x ∈ D(T), y ∈ Tx,
and y ∈ Tx, we have 〈x – x, y – y〉 ≥ . A monotone operator T is said to be maximal
if its graph G(T) = {(x, y) : y ∈ Tx} is not properly contained in the graph of any other
monotone operator. Let I denote the identity operator on H and let T : H → H be a
maximal monotone operator. Then we can define, for each λ > , a nonexpansive single-
valued mapping Jλ :H →H by Jλ = (I +λT)–. It is called the resolvent of T . We know that
T– = F(Jλ) for all λ >  and Jλ is firmly nonexpansive, that is,

‖Jλx – Jλy‖ ≤ 〈Jλx – Jλy,x – y〉, ∀x, y ∈H ;

for more details, see [–] and the references therein.
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In [], Kamimura and Takahashi investigated the problem of finding zero points of a
maximal monotone operator based on the following algorithm:

x ∈ H , xn+ = αnxn + ( – αn)Jλnxn, n = , , , . . . ,

where {αn} is a sequence in (, ), {λn} is a positive sequence, T : H → H is maximal
monotone and Jλn = (I + λnT)–. They showed that the sequence {xn} converges weakly to
some z ∈ T–() provided that the control sequence satisfies some restrictions. Further,
using this result, they also investigated the case that T = ∂f , where f : H → (–∞,∞] is a
proper lower semicontinuous convex function. Convergence theorems are established in
the framework of real Hilbert spaces.
In [], Takahashi an Toyoda investigated the problem of finding a common solutions of

the variational inequality problem (.) and a fixed point problem of nonexpansive map-
pings based on the following algorithm:

x ∈ C, xn+ = αnxn + ( – αn)SPC(xn – λnAxn), ∀n≥ ,

where {αn} is a sequence in (, ), {λn} is a positive sequence, S : C → C is a nonexpansive
mapping and A : C → H is an inverse-strongly monotone mapping. They showed that
the sequence {xn} converges weakly to some z ∈VI(C,A)∩ F(S) provided that the control
sequence satisfies some restrictions.
In [], Tada and Takahashi investigated the problem of finding common solutions of

an equilibrium problem and a fixed point problem of nonexpansive mappings based on
the following algorithm: x ∈H and

⎧⎨
⎩
un ∈ C such that F(un,u) + 

rn 〈u – un,un – xn〉 ≥ , ∀u ∈ C,

xn+ = αnxn + ( – αn)Sun, ∀n≥ ,

where {αn} is a sequence in (, ), {rn} is a positive sequence, S : C → C is a nonexpansive
mapping and F : C×C → R is a bifunction. They showed that the sequence {xn} converges
weakly to some z ∈ VI(C,A) ∩ F(S) provided that the control sequence satisfies some re-
strictions.
Recently, fixed point and zero point problems have been studied by many authors based

on iterative methods; see, for example, [–] and the references therein. In this paper,
motivated by the above results, we consider the problem of finding a common solution to
the zero point problem and the fixed point problem based on Mann-type iterative meth-
ods with errors. Weak convergence theorems are established in the framework of Hilbert
spaces.
To obtain our main results in this paper, we need the following lemmas.
Recall that a space is said to satisfy Opial’s condition [] if, for any sequence {xn} ⊂ H

with xn ⇀ x, where ⇀ denotes the weak convergence, the inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

holds for every y ∈H with y 
= x. Indeed, the above inequality is equivalent to the following:

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/155
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Lemma . [] Let C be a nonempty, closed, and convex subset of H , let A : C → H be
a mapping, and let B : H ⇒ H be a maximal monotone operator. Then F(Jλ(I – λA)) =
(A + B)–(), where Jλ(I – λA) is the resolvent of B for λ > .

Lemma . [] Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the fol-
lowing condition:

an+ ≤ ( + bn)an + cn, ∀n≥ n,

where n is some nonnegative integer,
∑∞

n= bn < ∞ and
∑∞

n= cn < ∞. Then the limit
limn→∞ an exists.

Lemma . [] Suppose that H is a real Hilbert space and  < p ≤ tn ≤ q <  for all n ≥ .
Suppose further that {xn} and {yn} are sequences of H such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r

and

lim
n→∞

∥∥tnxn + ( – tn)yn
∥∥ = r

hold for some r ≥ . Then limn→∞ ‖xn – yn‖ = .

Lemma . [] Let C be a nonempty, closed, and convex subset of H . Let S : C → C be a
nonexpansive mapping. Then the mapping I – S is demiclosed at zero, that is, if {xn} is a
sequence in C such that xn ⇀ x̄ and xn – Sxn → , then x̄ ∈ F(S).

3 Main results
Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , let
A : C → H be an α-inverse-strongly monotone mapping, let S : C → C be a nonexpan-
sive mapping and let B be a maximal monotone operator on H such that the domain of B
is included in C. Assume that F = F(S) ∩ (A + B)–() 
= ∅. Let {αn}, {βn}, and {γn} be real
number sequences in (, ) such that αn + βn + γn = . Let {λn} be a positive real number se-
quence and let {en} be a bounded error sequence in C. Let {xn} be a sequence in C generated
in the following iterative process:

x ∈ C, xn+ = αnSxn + βnJλn (xn – λnAxn) + γnen (.)

for all n ∈ N, where Jλn = (I + λnB)–. Assume that the sequences {αn}, {βn}, {γn}, and {λn}
satisfy the following restrictions:
(a)  < a≤ βn ≤ b < ,
(b)  < c≤ λn ≤ d < α,
(c)

∑∞
n= γn < ∞,

where a, b, c, and d are some real numbers. Then the sequence {xn} generated in (.) con-
verges weakly to some point in F .

http://www.fixedpointtheoryandapplications.com/content/2013/1/155
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Proof Notice that I – λnA is nonexpansive. Indeed, we have

∥∥(I – λnA)x – (I – λnA)y
∥∥

=
∥∥(x – y) – λn(Ax –Ay)

∥∥

= ‖x – y‖ – λn〈x – y,Ax –Ay〉 + λn
‖Ax –Ay‖

≤ ‖x – y‖ – λn(α – λn)‖Ax –Ay‖.

In view of the restriction (b), we find that I – λnA is nonexpansive. Fixing p ∈ F , we find
from Lemma . that

p = Sp = Jλn (p – λnAp).

Put yn = Jλn (xn – λnAxn). Since Jλn and I – λnA are nonexpansive, we have

‖yn – p‖ ≤ ∥∥(xn – λnAxn) – (p – λnAp)
∥∥

≤ ‖xn – p‖. (.)

On the other hand, we have

‖xn+ – p‖ ≤ αn‖xn – p‖ + βn‖yn – p‖ + γn‖en – p‖
≤ ‖xn – p‖ + γn‖en – p‖. (.)

We find that limn→∞ ‖xn – p‖ exists with the aid of Lemma .. This in turn implies that
{xn} and {yn} are bounded. Put limn→∞ ‖xn – p‖ = L > . Notice that

∥∥Sxn – p + γn(en – Sxn)
∥∥ ≤ ‖Sxn – p‖ + γn‖en – Sxn‖

≤ ‖xn – p‖ + γn‖en – Sxn‖.

This implies from the restriction (c) that

lim sup
n→∞

∥∥Sxn – p + γn(en – Sxn)
∥∥ ≤ L.

We also have

∥∥yn – p + γn(en – Sxn)
∥∥ ≤ ‖yn – p‖ + γn‖en – Sxn‖

≤ ‖xn – p‖ + γn‖en – Sxn‖.

This implies from the restriction (c) that

lim sup
n→∞

∥∥yn – p + γn(en – Sxn)
∥∥ ≤ L.

On the other hand, we have

‖xn+ – p‖ = ∥∥( – βn)
(
Sxn – p + γn(en – Sxn)

)
+ βn

(
yn – p + γn(en – Sxn)

)∥∥.
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It follows from Lemma . that

lim
n→∞‖Sxn – yn‖ = . (.)

Notice that

‖yn – p‖ ≤ ∥∥(xn – λnAxn) – (p – λnAp)
∥∥

≤ ‖x – p‖ – αλn‖Ax –Ap‖ + λn
‖Ax –Ap‖

= ‖x – p‖ – λn(α – λn)‖Ax –Ap‖. (.)

This implies that

‖xn+ – p‖ ≤ αn‖xn – p‖ + βn‖yn – p‖ + γn‖en – p‖

≤ αn‖xn – p‖ + βn‖xn – p‖ – βnλn(α – λn)‖Axn –Ap‖ + γn‖en – p‖

≤ ‖xn – p‖ – βnλn(α – λn)‖Axn –Ap‖ + γn‖en – p‖. (.)

It follows that

βnλn(α – λn)‖Axn –Ap‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖en – p‖.

In view of the restrictions (a), (b), and (c), we obtain that

lim
n→∞‖Axn –Ap‖ = . (.)

Notice that

‖yn – p‖ = ∥∥Jλn (xn – λnAxn) – Jλn (p – λnAp)
∥∥

≤ 〈
(xn – λnAxn) – (p – λnAp), yn – p

〉

=


(∥∥(xn – λnAxn) – (p – λnAp)

∥∥ + ‖yn – p‖

–
∥∥(xn – λnAxn) – (p – λnAp) – (yn – p)

∥∥)

≤ 

(‖xn – p‖ + ‖yn – p‖ – ∥∥xn – yn – λn(Axn –Ap)

∥∥)

≤ 

(‖xn – p‖ + ‖yn – p‖ – ‖xn – yn‖ – λ

n‖Axn –Ap‖

+ λn‖xn – yn‖‖Axn –Ap‖)

≤ 

(‖xn – p‖ + ‖yn – p‖ – ‖xn – yn‖ + λn‖xn – yn‖‖Axn –Ap‖).

It follows that

‖yn – p‖ ≤ ‖xn – p‖ – ‖xn – yn‖ + λn‖xn – yn‖‖Axn –Ap‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/155
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On the other hand, we have

‖xn+ – p‖ ≤ αn‖xn – p‖ + βn‖yn – p‖ + γn‖en – p‖. (.)

Substituting (.) into (.), we arrive at

‖xn+ – p‖ ≤ αn‖xn – p‖ + βn‖xn – p‖ – βn‖xn – yn‖

+ βnλn‖xn – yn‖‖Axn –Ap‖ + γn‖en – p‖

≤ ‖xn – p‖ – βn‖xn – yn‖ + βnλn‖xn – yn‖‖Axn –Ap‖ + γn‖en – p‖.

It derives that

βn‖xn – yn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + βnλn‖xn – yn‖‖Axn –Ap‖ + γn‖en – p‖.

In view of the restrictions (a) and (c), we find from (.) that

lim
n→∞‖xn – yn‖ = . (.)

Notice that

‖Sxn – xn‖ ≤ ‖Sxn – yn‖ + ‖yn – xn‖.

It follows from (.) and (.) that

lim
n→∞‖Sxn – xn‖ = . (.)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ ω ∈ C,
where ⇀ denotes the weak convergence. From Lemma ., we find that ω ∈ F(S). In view
of (.), we can choose a subsequence {yni} of {yn} such that yni ⇀ ω. Notice that

yn = Jλn (xn – λnAxn).

This implies that

xn – λnAxn ∈ (I + λnB)yn.

That is,

xn – yn
λn

–Axn ∈ Byn.

Since B is monotone, we get for any (u, v) ∈ B that

〈
yn – u,

xn – yn
λn

–Axn – v
〉
≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/155
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Replacing n by ni and letting i→ ∞, we obtain from (.) that

〈ω – u, –Aω – v〉 ≥ .

This means –Aω ∈ Bω, that is,  ∈ (A + B)(ω). Hence, we get ω ∈ (A + B)–(). This com-
pletes the proof that ω ∈F .
Suppose that there is another subsequence {xnj} of {xn} such that xnj ⇀ ω∗. Then we can

show that ω∗ ∈F in exactly the same way. Assume that ω 
= ω∗ since limn→∞ ‖xn –p‖ exits
for any p ∈ F . Put limn→∞ ‖xn – ω‖ = d. Since the space satisfies Opial’s condition, we see
that

d = lim inf
i→∞ ‖xni –ω‖

< lim inf
i→∞

∥∥xni –ω∗∥∥
= lim

n→∞
∥∥xn –ω∗∥∥

= lim inf
j→∞

∥∥xnj –ω∗∥∥
< lim inf

j→∞ ‖xnj –ω‖ = d.

This is a contradiction. This shows that ω = ω∗. This proves that the sequence {xn} con-
verges weakly to ω ∈ F . This completes the proof. �

We obtain from Theorem . the following inclusion problem.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H , let
A : C →H be an α-inverse-strongly monotone mapping, and let B be a maximal monotone
operator on H such that the domain of B is included in C.Assume that (A+B)–() 
= ∅. Let
{αn}, {βn}, and {γn} be real number sequences in (, ) such that αn + βn + γn = . Let {λn}
be a positive real number sequence and let {en} be a bounded error sequence in C. Let {xn}
be a sequence in C generated in the following iterative process:

x ∈ C, xn+ = αnxn + βnJλn (xn – λnAxn) + γnen

for all n ∈ N, where Jλn = (I + λnB)–. Assume that the sequences {αn}, {βn}, {γn}, and {λn}
satisfy the following restrictions:
(a)  < a≤ βn ≤ b < ,
(b)  < c≤ λn ≤ d < α,
(c)

∑∞
n= γn < ∞,

where a, b, c, and d are some real numbers. Then the sequence {xn} converges weakly to
some point in (A + B)–().

Let f : H → (–∞,∞] be a proper lower semicontinuous convex function. Define the
subdifferential

∂f (x) =
{
z ∈ H : f (x) + 〈y – x, z〉 ≤ f (y),∀y ∈H

}

http://www.fixedpointtheoryandapplications.com/content/2013/1/155


Hecai Fixed Point Theory and Applications 2013, 2013:155 Page 9 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/155

for all x ∈H . Then ∂f is amaximalmonotone operator ofH into itself; formore details, see
[]. Let C be a nonempty closed convex subset of H and let iC be the indicator function
of C, that is,

iCx =

⎧⎨
⎩
, x ∈ C,

∞, x /∈ C.

Furthermore, we define the normal cone NC(v) of C at v as follows:

NCv =
{
z ∈ H : 〈z, y – v〉 ≤ ,∀y ∈H

}

for any v ∈ C. Then iC :H → (–∞,∞] is a proper lower semicontinuous convex function
on H and ∂iC is a maximal monotone operator. Let Jλx = (I + λ∂iC)–x for any λ >  and
x ∈H . From ∂iCx =NCx and x ∈ C, we get

v = Jλx ⇔ x ∈ v + λNCv

⇔ 〈x – v, y – v〉 ≤ , ∀y ∈ C,

⇔ v = PCx,

where PC is the metric projection from H into C. Similarly, we can get that x ∈ (A +
∂iC)–() ⇔ x ∈ VI(A,C). Putting B = ∂iC in Theorem ., we find that Jλn = PC . The fol-
lowing results are not hard to derive.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , let A :
C → H be an α-inverse-strongly monotone mapping and let S : C → C be a nonexpansive
mapping. Assume that F = F(S) ∩ VI(C,A) 
= ∅. Let {αn}, {βn}, and {γn} be real number
sequences in (, ) such that αn + βn + γn = . Let {λn} be a positive real number sequence
and let {en} be a bounded error sequence in C. Let {xn} be a sequence in C generated in the
following iterative process:

x ∈ C, xn+ = αnSxn + βnPC(xn – λnAxn) + γnen

for all n ∈ N. Assume that the sequences {αn}, {βn}, {γn}, and {λn} satisfy the following
restrictions:
(a)  < a≤ βn ≤ b < ,
(b)  < c≤ λn ≤ d < α,
(c)

∑∞
n= γn < ∞,

where a, b, c, and d are some real numbers. Then the sequence {xn} converges weakly to
some point in F .

In view of Theorem ., we have the following result.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and let
A : C → H be an α-inverse-strongly monotone mapping such that VI(C,A) 
= ∅. Let {αn},
{βn}, and {γn} be real number sequences in (, ) such that αn + βn + γn = . Let {λn} be a

http://www.fixedpointtheoryandapplications.com/content/2013/1/155
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positive real number sequence and let {en} be a bounded error sequence in C. Let {xn} be a
sequence in C generated in the following iterative process:

x ∈ C, xn+ = αnxn + βnPC(xn – λnAxn) + γnen

for all n ∈ N. Assume that the sequences {αn}, {βn}, {γn}, and {λn} satisfy the following
restrictions:
(a)  < a≤ βn ≤ b < ,
(b)  < c≤ λn ≤ d < α,
(c)

∑∞
n= γn < ∞,

where a, b, c, and d are some real numbers. Then the sequence {xn} converges weakly to
some point in VI(C,A).

Let F be a bifunction of C × C into R, where R denotes the set of real numbers. Recall
the following equilibrium problem.

Find x ∈ C such that F(x, y)≥ , ∀y ∈ C.

In this paper, we use EP(F) to denote the solution set of the equilibrium problem.
To study the equilibrium problems, we may assume that F satisfies the following condi-

tions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semi-continuous.
Putting F(x, y) = 〈Ax, y – x〉 for every x, y ∈ C, we see that the equilibrium problem is

reduced to the variational inequality (.).
The following lemma can be found in [].

Lemma . Let C be a nonempty closed convex subset of H and let F : C × C → R be a
bifunction satisfying (A)-(A). Then, for any r >  and x ∈H , there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, define

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
(.)

for all r >  and x ∈H . Then the following hold:
(a) Tr is single-valued,
(b) Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉,

http://www.fixedpointtheoryandapplications.com/content/2013/1/155
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(c) F(Tr) = EP(F),
(d) EP(F) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , let F a
bifunction from C×C to R which satisfies (A)-(A) and let AF be a multivalued mapping
of H into itself defined by

AFx =

⎧⎨
⎩

{z ∈H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.

Then AF is amaximalmonotone operator with the domain D(AF ) ⊂ C, EP(F) = A–
F () and

Trx = (I + rAF )–x, ∀x ∈H , r > ,

where Tr is defined as in (.).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , let S :
C → C be a nonexpansivemapping and let F be a bifunction fromC×C toRwhich satisfies
(A)-(A). Assume that F = F(S) ∩ EP(F) 
= ∅. Let {αn}, {βn}, and {γn} be real number
sequences in (, ) such that αn + βn + γn = . Let {λn} be a positive real number sequence
and let {en} be a bounded error sequence in C. Let {xn} be a sequence in C generated in the
following iterative process:

x ∈ C, xn+ = αnSxn + βnyn + γnen

for all n ∈N, where yn ∈ C such that

F(yn,u) +

λn

〈u – yn, yn – xn〉 ≥ , ∀u ∈ C.

Assume that the sequences {αn}, {βn}, {γn}, and {λn} satisfy the following restrictions:
(a)  < a≤ βn ≤ b < ,
(b)  < c≤ λn ≤ d <∞,
(c)

∑∞
n= γn < ∞,

where a, b, c, and d are some real numbers. Then the sequence {xn} converges weakly to
some point in F .
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