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1 Introduction

Throughout this paper, we use E and E* to denote a real Banach space and a dual space
of E, respectively. For any pair x € E and f € E*, (x,f) instead of f(x). The duality mapping
J: E — 2F is defined by J(x) = {x* € E* : (x,4*) = ||%|?, lx|| = |x*||} for all x € E. It is well
known that if E is a Hilbert space, then J = I, where I is the identity mapping. Recall the

following definitions.

Definition 1.1 A Banach space E is said to be uniformly convex iff for any €, 0 < € < 2, the
x+y

>l <

inequalities |lx|| <1, |yl <1 and ||x — y|| > € imply there exists a § > 0 such that ||
1-34.

Definition 1.2 A Banach space E is said to be smooth if foreachx € Sg = {x € E : ||x|| = 1},

there exists a unique functional j, € E* such that (x,j,) = ||%|| and ||j,|| = 1.

It is obvious that if E is smooth, then J is single-valued which is denoted by j.
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Definition 1.3 Let E be a Banach space. Then a function pg : R* — R* is said to be the
modulus of smoothness of E if

x+yl+[x—
pE(t):sup{u Yl + e =yl

-1: =1, =t.
5 llxll =1, [yl }

A Banach space E is said to be uniformly smooth if

i pE(t)
1m
t—0 t

=0.

It is well known that every uniformly smooth Banach space is smooth.

Let g > 1. A Banach space E is said to be g-uniformly smooth if there exists a fixed con-
stant ¢ > 0 such that pg(£) < c#9. It is easy to see that if E is g-uniformly smooth, then g < 2
and E is uniformly smooth.

A mapping T : C — C is called a nonexpansive mapping if
7% = Tyl < [l =yl

forallx,y € C.
T is called an n-strictly pseudo-contractive mapping if there exists a constant n € (0,1)
such that

(Tx = Ty,j(x - 9)) < llx =9I = 0| (I = T)x = (1 = T)y|* (L1)

for every x,y € C and for some j(x — y) € J(x — ). It is clear that (1.1) is equivalent to the
following:

(I - T — (I - T)y, jx - ) = 0| - T — (I - Ty (12)

for every x,y € C and for some j(x — y) € J(x — y). We give some examples for a strictly
pseudo-contractive mapping as follows.

Example 1.1 Let R be a real line endowed with the Euclidean norm and let C = (0, c0).
Define the mapping 7: C — C by

22
Tx:—x , VxeC.
3+ 2x

Then T is a %—strictly pseudo-contractive mapping.

Example 1.2 (See [1]) Let R be a real line endowed with the Euclidean norm. Let C =
[-1,1] and let T': C — C be defined by

x ifx € [-1,0];
Tx =

x—-x* ifxe(0,1].

1

Then T is a A-strictly pseudo-contractive mapping where A < min{i;, X5} and A; < 2

)\2<1.
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Let C and D be nonempty subsets of a Banach space E such that C is nonempty closed
convexand D C C, then amapping P: C — D issunny [2] provided P(x + t(x — P(x))) = P(x)
for all x € C and ¢ > 0, whenever x + t(x — P(x)) € C. A mapping P: C — D is called a
retraction if Px = x for all x € D. Furthermore, P is a sunny nonexpansive retraction from
C onto D if P is a retraction from C onto D which is also sunny and nonexpansive.

Subset D of C is called a sunny nonexpansive retraction of C if there exists a sunny
nonexpansive retraction from C onto D.

An operator A of C into E is said to be accretive if there exists j(x —y) € J(x —y) such that
(Ax — Ay, j(x —y)> >0, VxyeC.

A mapping A : C — E is said to be a-inverse strongly accretive if there exist j(x — y) €
J(x —y) and @ > 0 such that

(Ax—Ay,j(x—y)> > a|Ax - Ay|?, Vx,yeC.

Remark 1.3 From (1.1) and (1.2), if T is an n-strictly pseudo-contractive mapping, then
I - T is n-inverse strongly accretive.

The variational inequality problem in a Banach space is to find a point * € C such that

for some j(x — x*) € J(x — x*),
(Ax*,j(x—x")) =0, VxeC. (1.3)

This problem was considered by Aoyama et al. [3]. The set of solutions of the variational

inequality in a Banach space is denoted by S(C, A), that is,
S(C,A):{ueC:(Au,](v—u))zO, VVGC}. (1.4)

Several problems in pure and applied science, numerous problems in physics and eco-
nomics reduce to finding an element in (1.4); see, for instance, [4—6].
Recall that normal Mann’s iterative process was introduced by Mann [7] in 1953. The

normal Mann’s iterative process generates a sequence {x,} in the following manner:

X1 € C,
(1.5)

Xn+l = (1 - O5;/1)3‘:;1 +a,Tx,, VYn=>1,

where the sequence {o,} C (0,1). If T is a nonexpansive mapping with a fixed point and
the control sequence {e,} is chosen so that ) - a,(1 — @,) = 00, then the sequence {x,}
generated by normal Mann’s iterative process (1.5) converges weakly to a fixed point of T

In 1967, Halpern has introduced the iteration method guaranteeing the strong conver-

gence as follows:

X1 € C,
(1.6)

Xntl = (1 - Oln)xl + OlnTxn, Vn >1,
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where {«,} C (0,1). Such an iteration is called Halpern iteration if T is a nonexpansive
mapping with a fixed point. He also pointed out that the conditions lim,_. o, = 0 and
Y o2 @y = 00 are necessary for the strong convergence of {x,} to a fixed point of T..
Many authors have modified the iteration (1.6) for a strong convergence theorem; see,
for instance, [8—10].
In 2008, Zhou [11] proved a strong convergence theorem for the modification of normal
Mann’s iteration algorithm generated by a strict pseudo-contraction in a real 2-uniformly

smooth Banach space as follows.

Theorem 1.4 Let C be a closed convex subset of a real 2-uniformly smooth Banach space E
andlet T : C — C be a \-strict pseudo-contraction such that F(T) # (. Given u,xy € C and
sequences {ot,}, {Bu}> {vu} and {8,} in (0,1), the following control conditions are satisfied:

A
(i) a<a,< @ for some a >0 and for alln> 0,

(i) Bu+Yu+du=1 foralln>0,

[o¢]
(iii) lim B,=0 and Z By =0,

n=1
(iv) ap1—a,—>0, asn— oo,

(v) O<liminfy, <limsupy, <1.

n—00 11— 00

Let a sequence {x,} be generated by

Y =y Ty + (1 — ay)xy,

Xyl = PBulk + VX + 8,Yn, 1= 0.

Then {x,} converges strongly to x* € F(T), where x* = Qp(ry(u) and Qp(ry: C — F(T) is the

unique sunny nonexpansive retraction from C onto F(T).

In 2006, Aoyama et al. introduced a Halpern-type iterative sequence and proved that
such a sequence converges strongly to a common fixed point of nonexpansive mappings

as follows.

Theorem 1.5 Let E be a uniformly convex Banach space whose norm is uniformly Gateaux
differentiable and let C be a nonempty closed convex subset of E. Let {T},} be a sequence of
nonexpansive mappings of C into itself such that ﬂi\il F(T;) is nonempty and let {o,} be a
sequence of [0,1] such that lim,_, &, = 0 and 2221 a, = 00. Let {x,} be a sequence of C
defined as follows: x; = x € C and

Xn+l = OpX + (1 - an)Tnxn

foreveryn € N. Supposethaty -, sup{|| Tys1z2— T,z| : z € B} < 00 for any bounded subset B
of C. Let T be a mapping of C into itself defined by Tz = lim,_, T,z for all z € C and
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suppose that F(T) = (2, F(T,). If either

o0
@) Z lotns1 — | < 00 or

n=1

(i) o, €(0,1] foreveryne Nand lim il ,

n—00 an+l

then {x,} converges strongly to Qx, where Q is the sunny nonexpansive retraction of E onto
F(T) = N5 F(To).

In 2005, Aoyama et al. [3] proved a weak convergence theorem for finding a solution of
problem (1.3) as follows.

Theorem 1.6 Let E be a uniformly convex and 2-uniformly smooth Banach space and let
C be a nonempty closed convex subset of E. Let Q¢ be a sunny nonexpansive retraction from
E onto C, let o > 0 and let A be an a-inverse strongly accretive operator of C into E with
S(C,A) # 0. Suppose that x, = x € C and {x,} is given by

Xn+l = OpXy + (1 - an)QC(xn - )\nAxn)

foreveryn=1,2,..., where{A,} is a sequence of positive real numbers and {«,} is a sequence

in [0,1]. If {’,,} and {a,} are chosen so that A, € [a, %]for some a > 0 and o, € [b,c] for
some b, c with 0 < b < ¢ <1, then {x,} converges weakly to some element z of S(C,A), where
K is the 2-uniformly smoothness constant of E.

In 2009, Kangtunykarn and Suantai [12] introduced the S-mapping generated by a finite

family of mappings and real numbers as follows.

Definition 1.4 Let C be a nonempty convex subset of a real Banach space. Let {Ti}fi , be
a finite family of mappings of C into itself. For each j = 1,2,...,N, let o = (o], 00}, 03) €
IxIxI,wherel€[0,1] and &) + &, + &/} = 1. Define the mapping S: C — C as follows:

Uy = o TiUy + ayUy + o1,
UZ =0512T2U1 +Ol§U1 +Ol§1,

Us = &2 T3l + a3l + 31, 1.7)

N-1 N-1 N-1
uN—l =0 TN_1UN_2 t+ oy UN_2 + 03 1,

S= UN = (X{\[TNUN_l + Olé\[UN_l + Olévl
This mapping is called the S-mapping generated by T1, T5,..., Ty and oy, o, ..., oty

For every i = 1,2,...,N, put o} =0 in (1.7), then the S-mapping generated by Ti, T5,
..., Txy and o, 09,...,ay reduces to the K-mapping generated by T3,75,...,Ty and
af,a?,...,al, which is defined by Kangtunyakarn and Suantai [13].
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Recently, Kangtunyakarn [14] introduced an iterative scheme by the modification of
Mann’s iteration process for finding a common element of the set of solutions of a finite
family of variational inequality problems and the set of fixed points of an n-strictly pseudo-
contractive mapping and a nonexpansive mapping as follows.

Theorem 1.7 Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space E. Let Q¢ be the sunny nonexpansive retraction from E
onto C. Foreveryi=1,2,...,N, let A;: C — E be an «;-inverse strongly accretive mapping.
Define a mapping G;: C — C by Qc(I - A)x=Gux forallx € Cand i=1,2,...,N, where
2i € (0, ), K is the 2-uniformly smooth constant of E. Let B : C — C be the K-mapping
generated by Gi,Ga,...,Gn and pi,p2,...,pn, where p; € (0,1), Vi =1,2,...,N — 1 and
pn € (0,1]. Let T : C — C be a nonexpansive mapping and S : C — C be an n-strictly
pseudo-contractive mapping with F = F(S) N F(T) N ﬂf\il S(C,A;) # 9. Define a mapping
By:C—> Cby T(1 - a)l + aS)x = Bax, Vx € C and « € (0, I%). Let {x,} be a sequence
generated by x, € C and

Xpi1 = Af (%) + By + VuBxy + 8,Baxy, Vn>1, (1.8)

where f : C — C is a contractive mapping and {a,}, {84}, (V) {84} C[0,1], ot + By + Y +
8, = 1 and satisfy the following conditions:

o0
(i) n]Ln;Oan =0 and Zay, =00,
n=1

(i) {yu} {6n} S lc,d] € (0,1) forsomec,d>0andV¥n=>1,

o0 o0 )
(iif) legnﬂ = Bul, Z|7/n+l_yn|’ Z|5n+1 —8,] <00,
n=1 n=1

n=1

(iv) 0<liminfgB, <limsupg, <1.
n—00 n—00
Then the sequence {x,} converses strongly to g € F, which solves the following variational
inequality:

(a-f(@),jla-p)) <0, VpelF.

Question How can we prove a strong convergence theorem for the set of fixed points
of a finite family of nonexpansive mappings and the set of fixed points of a finite family
of strictly pseudo-contractive mappings and the set of solutions of variational inequality
problems in a uniformly convex and 2-uniformly smooth Banach space?

Motivated by the S-mapping, we define a new mapping in the next section to answer the
above question, and from Theorems 1.4, 1.5, 1.6 and 1.7 we modify the Halpern iteration
for finding a common element of two sets of solutions of (1.3) and the set of fixed points
of a finite family of nonexpansive mappings and the set of fixed points of a finite family
of strictly pseudo-contractive mappings in a uniformly convex and 2-uniformly smooth
Banach space. Moreover, by using our main result, we also obtain a strong convergence
theorem for a finite family of the set of solutions of (1.3) and the set of fixed points of a

finite family of strictly pseudo-contractive mappings.
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2 Preliminaries

In this section we collect and prove the following lemmas to use in our main result.

Lemma 2.1 (See [15]) Let E be a real 2-uniformly smooth Banach space with the best
smooth constant K. Then the following inequality holds:

lla + y11> < el + 2(y, () + 2| Ky||*
forany x,y € E.

Lemma 2.2 (See [16]) Let X be a uniformly convex Banach space and B, = {x € X : ||x|| <
r}, v > 0. Then there exists a continuous, strictly increasing and convex function g : [0,00] —
[0, 0], g(0) = 0 such that

lox + By + yzl* <ellxl* + Byl + vlIzl* - aBg(llx - yl)
forallx,y,z€ B, and alla, B,y € [0, 1] witha + B+y =1.

Lemma 2.3 (See [3]) Let C be a nonempty closed convex subset of a smooth Banach
space E. Let Q¢ be a sunny nonexpansive retraction from E onto C and let A be an ac-
cretive operator of C into E. Then, for all A > 0,

S(C,A) = F(Qc(I - 14)).

Lemma 2.4 (See [15]) Let r > 0. If E is uniformly convex, then there exists a continuous,
strictly increasing and convex function g : [0,00) — [0,00), g(0) = 0 such that for all x,y €
B,(0) = {x € E: ||x|| < r} and for any a € [0,1], we have |lax + (1 — a)y||? < a|lx||® + (1 -
a)[yl1? = a@ - a)g(llx - yl).

Lemma 2.5 (See [17]) Let C be a closed and convex subset of a real uniformly smooth
Banach space E and let T : C — C be a nonexpansive mapping with a nonempty fixed
point F(T). If {x,} C C is a bounded sequence such that lim,,_, » ||x,, — Tx, || = 0. Then there
exists a unique sunny nonexpansive retraction Q) : C — F(T) such that

lim sup(u — Qp(ryu,J (% — Qery)) < 0

n—00

forany givenu € C.

Lemma 2.6 (See [18]) Let {s,} be a sequence of nonnegative real numbers satisfying
Sue1 = (1 —an)s, +8,, VYn=0,

where {a,,} is a sequence in (0,1) and {8,} is a sequence such that

1) Y an=00,
n=1
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oo

Sn
(2) limsup— <0 or Z|8n|<oo.

n—oo Oy ol
Then lim,—, 0 S, = 0.

From the S-mapping, we define the mapping generated by two sets of finite families of

the mappings and real numbers as follows.

Definition 2.1 Let C be a nonempty convex subset of a Banach space. Let {Si}fi , and

{T:}¥, be two finite families of mappings of C into 1tself Foreachj=1,2,...,N, let o =

(o/l,az,aa) €I x I x 1, where I € [0,1] and 0‘1 + 0/2 + a3 = 1. We define the mapping S :

C — C as follows:
L[O = Tl :1;
U1 = Tl(aisll,[o + O[%UO + C\l:lal),
U, = Tz(otlelel +aslly + oz%]),

Us = T5(e5 S3Us + a3 Uy + o31), (2.1)

UN 1= TN 1(0(1 SN 1UN 2+Ol2 UN 2+OlN 11),

SA = UN = TN(Ol{vSNUN_l + OléVUN_l + Olév])

This mapping is called the SA-mapping generated by S1,S,,...,Sn, 11, Ts,..., Tn and

o1,0,...,0N.

Lemma 2.7 Let C be a nonempty closed convex subset of a 2-uniformly smooth and uni-
formly convex Banach space. Let {S;}, be a finite family of k;-strict pseudo-contractions
of C into itself and let {T;}N, be a finite family of nonexpansive mappings of C into it-
self with (Y, F(S) N (Y, F(T)) # % and « = min{x; : i =1,2,...,N} with K> < «, where K
is the 2- umformly smooth constant of E. Let @ = (ocl,otz,oeB) €l x I x I, where I =[0,1],
Ot1+052+053—1 ale(Ol] a2€[01](ll/ld013 (0,1) for all j = 1,2,...,N. Let S* be the
SA—mappmg generated by S1,S,...,Sxn, Ty, To,..., Ty and ay,aa,...,an. Then F(§4) =
NN, F(S) NN, F(Ty) and $* is a nonexpansive mapping.

Proof Let xo € F(S*) and x* € Y, F(S) N (Y, F(T;), we have

||xo —x* ||2 = || TN(af[SNUN,l + oeéVL[N,l + ozévl)xo —x* ||2

< [lor (Sn U0 = 57) + @ (U0 = ) + & (w0 =) |
otN (XN

= H(I—Olg\[)<1—(SNUN 1x0—x*) + 1- N(UN 1X0 — X ))
- a3

2

+ aé\[ (xo - x*)

N N 2

<(1-ab) 1“‘—N(sNuN_1x0 -x) 4 - % v (U120 - %)

3



http://www.fixedpointtheoryandapplications.com/content/2013/1/157

Kangtunyakarn Fixed Point Theory and Applications 2013, 2013:157 Page 9 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/157

+ o) oo [

2

N a{\[ * O[{\[ *
:(1—(13) l_aé\[(SNUN_lxo—x)+<1—1_a§v)(UN_1xo—x)
+a|xo -
a| e ? N 2
= (1 — oy ) W(SNUN—NCO — Un_1x0) + Un_1x9 — x| + o3 ||x0 —x* ”
Y3
] (e
o |
+2 o (SnUn-1%0 = Un1%0,j(Un-1%0 — %¥))
— Y3

N o N\2
+ 2KZ<1 alaN) HSNUN—NCO — Un_1x0 ”2) + aé\[”xo —x* ”2
— o3

N
= (1 — aé\[) (” UN_1X() —x* ”2 + 21 alaN <SNUN_1x0 —x*,j(LIN_lxo —x*))
-3

O({\[ * . *
+ 21 (x - LIN_lxo,](L[N_lxo - ))

N
_ag

N 2
+ 2K2<1 alaN) HSNUN—le — Un-1x0 H2> + af,,Von —x* H2
— o3

< (1-) (v -+

N

# 20 (U —2 | | (= Syt )
1-aj

o

-2
1-of

N 2
||x* — Un-1%0 ||2 +2K? (1 alaN) ||SNUN—1xo — Un-1x0 ||2)
— 03

+ o) oo [

N
= (1 - aé\[) (“ UN_IJC() —x* ”2 - 21 alaNK || ([_SN)L[N_le ”2
Y3

N 2
+ 2K2<1 alaN) HSNUN—le — Un-1x0 H2> + aé\Zon —x* H2
— o3

- (1-a) Jtv-rm -

Ol{\[ 2 O({\[ 2 N w2
—21 Q[N Kk —K l—olN ||(I—SN)LIN_1xo || + 03 ||xo—x ||

Y3 3

< (=) [ tnaawo —°* + e o —°|°
< (L= o) (1= ™) [temsmo —* "+ e flro =) + e o —°|°

= [T (0 -od)|thvamo -+ (1— I1 (1—0/5)) o [

j=N-1 j=N-1
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=[Ta-a)thmo -+ (I-Hu a3>) [ -]

j=3

N
= l—[(l —aé) || Tz(alezul + il + agl)xo —x* ||2

N
+<1 1 (x3>||x0—x ||
=3

N
< l_[(l — o) ||t (S2llizo — &%) + a3 (Lo — &*) + 023 (w0 — &*) ||2

~.

+
/-
>—~
':12
—_
;_n
Q
[P hat
Ny
S~———
=
(=)
|
R

j=3
= j 2 0‘12 Ol%
= l_[(l - 0‘3) ” (1 - 0‘3) <m (Szulxo —x*) + 1o a% (leo —x*))

vaoo- )" (11002 o=

j=3

<[J@a-eb) ((1 —a?) o? (Sallixo - #°)

1-a3

2 2 N )
| R e I (S N (e

3 j=3
- TT0-ed) (- |12 ot o (1 125 o) |
_j:3 — 03 — O3 1—0{% 2UIXg —X ) + _1—()[3 1X0 — X
N
vafa - T")« (1-TT0-ed)) oo
j=3
2

—— (Sallixo — Urxo) + Uyxo — x*
a3

+
1
w
By
S
|
R
_*
N——
+
S
—
|
=
—_
»—‘
Q
0~
v
v
By
S
|
R

2 ) (Sgulxo — ule,j(ule —x*))
1-a3

core 4
1_

2>||Sle1xo—U1xo|| >+a3 o0 — | )
o3

N .
(1 TT0-) -1

j=3
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IA

=

~.

N
<[10-ob) (o) (-]
j=3

052 052
-2 -lag (x —1<2(1 —lag)) | = $5) o ”2>

N
vafa - T")« (1-TT0-ed)) oo

j=3

[T0-e@) (=) (| thwo -2 + a3 o - 5°")

N
+<1 1 a3)|x0—x||
j=3

et =T (110 ) -

j=2

N
1 ) [
4 N
(1—0/3)”01%(51960—x0)+x0_x*||2+(1 1_[

Jj=2

(1=3) (Jeo ="+ 20 (S10 0, (0 — %))

N
+2K2(ot11)2||51x0 —x0|| + <1 H 1 043 )”xo —X ||
j=2

N
[T o) (o -+ 20fSiwe — 0 - )

=2

+ Za}(x* - xo,j(xo —x*))

N
+2K2(a11)2||51x0—x0|| )+ (1 (1- 0‘3 )”xo x ”
j=2

N
[T =) (o =" |* + 20} (g~ - 30— 017)
j=2

— 204 [|4* %0 ||

(1-a}) ! (Sithowo - ) + 0} (Unso ") + 0 (10 ~°) |
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N
+21<2(a§)2||51x0 —xol%) + (1 (1-d} >||x0 —x ||2
j=2

N
l—[l a3 (E || - 201 (k = K?af)[|S10 — %o |%)
j=2

¢ (1-T10-ch o1

j=2
N .
= [0 —* ||2 - l_[(l —a)20 (k — K?af ) [|S1x0 — o ||
j=2
< flxo . (2.2)

For everyj=1,2,...,N and (2.2), we have
[0 —*]* < o —*[* (23)

For every k =1,2,...,N —1 and (2.2) we have

o= 1" = T 1=+ (1= TT 0= ) o T

j=k+1 j=k+1
N .
= 1_[ (1-aj)| Tk(a{‘SkLIk_l +as Uy +akl)xg — x* ||2
j=k+1
N
(1 T o
j=k+1
N ; 2
< 1_[ (1 - aé) ||a{((SkLIk_1x0 —x*) + alz((l,[k_lxo —x*) + a’s‘(xo - x*) ”
j=k+1
N
(- TT0-h e
j=k+1
N ok ak
- TTa-]a- a3)< L (Selorxo - 2%) + —2 (Ui —x*))
j=k+1 1- l-a3

+ ok (w0 — &%)

2+<1—]ﬂ[(1 o )“xo—x ||

j=k+1
N . ak k 2
< l—o/(l—otk Sili_1xg —x%) + Ui_1%9 — x
T10-) (0= gttt e
) N
s =T") (1= T1 0= o=
j=k+1

N

- TTo-e(0-ab)] 2L

j=k+1 -3

(Sk Uk_lx() — x*)
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a{‘ . 2
+(1- 1_()[]3( (Uk_le - X )
N .
retfeo—v ")« (1 [Tt o=
Jj=k+1
X j (lk 2
= l_[ (1 - 0/3) ((1 - Olé() l_—lk(Skuk—le — Uixo) + Up_1x0 —x*
j=k+1 3
N .
vebfio—v ")« (1 [Tt o=
j=k+1
- ' 2
= H(l—aé)((l—aé)<||uk_1xo-x*||
Jj=k+1
ok ‘ )
* 2—/((5](”](71960 - Uk—lxo;](uk,lxo - X ))
1-aj

k 2
+ 2K2<1 - k> ISk Ug—1%0 — Uk1x0||2> " ozéf”xo - H2>

3
N ) ,
+ (1 - l_[ (1 —aé)) ||x0 —x* ||
j=k+1
N .
- [T0-e)(@- o) (oo -]
j=k+1
k
+ Zlf—lg(skuk—lxo —x*,j(Ug-1%0 — x*))
o *
*27 ak(x — Ug1x0, /(U120 — %))
3
(Xk 2 ,
21 (L) It s~ th ) s )
1-og
N .
! (1— I <1—a’)) -
j=k+1
- / 2
<10~ ((1 _ o) <|| T
j=k+1
ol 2
+2—1_ak(||uk—1x0—x I” = x| (7 = S Ui axo )
3
k
gl - thenl!
C¥k 2 5
+2K2<1 L k> 1Sk Uk-1%0 —Uk1x0||2> +ak|lxo — x| )
%3

(o= T -

j=k+1
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N

- TT0-a)(-a)(Ithrm -+

j=k+1
k ) (¥k
ag( K (q))”(l—&()uk_lxo ” ) TP )

+< ﬁ 1- a3>|xo—x k

-2
1-

< TT0-) (el

(lf ) CXf
—21—(X§ (K_K (l_alg))n(l—sk)uklx()” )+a3||x0_x || )
N
j=k+1

which implies that

)

Up_1xo = Sili-1x0 (2.4)

foreveryk=1,2,...,N-1.
From (2.2), it implies that xy = S1xo, that is, xo € F(S). From the definition of S4, we have

leO = T1 (a%SlLIOxo + (X%U()XQ + aéxo) = T1X() =Xq. (25)

From (2.2) and Uxo = x9, we have

N
fro - = [T0-ed) (0= o2) (et -1
j=3

2 2
P 2 %
21_a3< K ( ag))u (I - Sy) Uy || )

N
vaa - T")« (1-TT0-eb) ) oo

j=3

N
-Tla- a3(1 a3)<”xo |
j=3

2 2
9 % ) _ 2
27 (e (7257) - soml?)
N
+a§||x0—x*||2>+<1 (1- a3>|x0—x ||
-3

J

- TT0-a)-ad) (-

=3

2 2
e o)

~.
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N N
T - e o +(1 Hu-a@)nxo—x*nz
j=3 j=3

N 2 o?
[T ) (oo -2 (e 21255 )1 -l
j=2
N
¢ (1-TT-eb) o=
j=2

It implies that xy = Syxo.

From the definition of $* and xo = S,x,, we have

UZXO = T2 (0(12521,11 + o:%LIl + a%])xo = Tgx(). (26)
From the definition of U3 and (2.4), we have
Usxg = T3 (011353[,[2 + a%LIZ + agl)xo = Tg((l - ag)l,lgxo + a;fxo). (2.7)

From (2.2), (2.6), (2.7) and E is uniformly convex, we have

N

[T-e) b T

j=4

o "] <

(l—aé)”L@xo —x* ||2 + (1—

(1- aé) | 75((1 - o3) Unxo + 30 ) — &* ||2

= 1=

T
'S

N

+(1

—-

T
'S

=

+(1

—-

T
'S

+(1

_:]Z

T
'S

=

— o3 (1-03)g (Il T2xo — %oll))

O ) [

1
j=4

" )uxo—x P

k:lz

~.
1]
'S

k:lz

~.
1]
'S

4-ad) o T

1-ad) o T

(=) [ (1= 03) (1o —5°) + &3 (0 —2°) |

(=) [ (1= 03) (Tomo ) + 03 o0 —") |

(1) (1- o) | Tovo - [ + a3 x0 — |
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=

(1- ) (|0 —* [ = @3 (1 - &3)g (Il Toxo — %o 11))

N
+<1 1 a3)||x0—x ||
j=4

& (IIT2x0 — xoll) = 0. (2.8)

—-

~.
1
W

It implies that

Assume that Toxg # xo, then we have || Toxg —xo| > 0. From the properties of g;, we have
=g(0) < g(| Taxo — x0l) = 0. (2.9)

This is a contradiction. Then we have Trxy = x9. From (2.6), we have xo = Toxo = Usxg.
From the definition of /3, we have

Usxg = Tg((l - ag)uzxo + otgxo) = T3xo.
By using the same method as above, we have
x0 = Uzxg = T3x0.
Continuing on this way, we can conclude that
xo = Uxg = Tixo (2.10)

foreveryi=1,2,...,N — 1. From (2.2) and (2.10), we have
o 1" = (1) (v -
(XN aN 9
_21_10[?] (/c —1(2(1 _laév)> ||(1—5N)UN_1x0 ” ) + 0 ”xo —x ”

a{\[ 2 Of{\[ 2
= (=) [lxo " ” l—aé\’ k=K 1-al |t = Sn)ao|

T

It implies that
X0 = SNxo. (2.11)
From the definition of $* and (2.10), we have

X0 —S X0 = UNxo = TN(OZI SNUN 1+ Qy UN 1+ Q3 I)xo = TNxo
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Then we have

N N
xo€()E(T) and xe( F(U). (212)

i=1 i=1
Since SxUj_1%0 = Uy_1x0 for every k=1,2,...,N—1and xo € ﬂf\il F(U;), then we have
Sixo = %o

for every k =1,2,...,N — 1. From (2.11), it implies that

N
xo € () E(S). (2.13)

i=1

From (2.12) and (2.13), we have

N N
X0 € ﬂF(Ti) N ﬂP(S,-). (2.14)

i=1 i=1

Hence, F(S*) € NN, F(T) NNY, F(S). It is easy to see that (X, F(T;) N, F(S;) C F(S4).
Applying (2.2), we have that the mapping S is nonexpansive. g

Lemma 2.8 [19] Let C be a closed convex subset of a strictly convex Banach space E. Let
Ty and T, be two nonexpansive mappings from C into itself with F(T1) N F(T,) # 0. Define
a mapping S by

Sx=ATix+(1-A)Trx, VxeC,
where A is a constant in (0,1). Then S is nonexpansive and F(S) = F(Ty) N F(T3).
Applying Lemma 2.8, we have the following lemma.

Lemma 2.9 Let C be a closed convex subset of a strictly convex Banach space E. Let T, T
and T3 be three nonexpansive mappings from C into itself with F(T1) N F(T>) N F(T3) # 0.
Define a mapping S by

Sx=aTix+BTowx+yTsx, VxeC,

where o, B, y is a constant in (0,1) and o + 8+ y = 1. Then S is nonexpansive and F(S) =
F(T1) N F(T2) N F(T3).

Proof For every x € C and the definition of the mapping S, we have

Sx=aTix+ BTox+yTsx

=o¢T1x+(1—oz)( p Tox + Y Tgx)
l-«o l-«
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=aTix+ (l—a)(l'l_ga Tox + <1— %)Tgﬂ:)

=aTix+(1-a)Sx, (2.15)

where S; = % Ty +(1- %)Tg. From Lemma 2.8, we have F(S;) = F(T,) N F(T3) and S is
a nonexpansive mapping. From Lemma 2.8 and (2.15), we have F(S) = F(T1) N F(S1) and S
is a nonexpansive mapping. Hence we have F(S) = F(T1) N F(T3) N F(T5). O

3 Main results

Theorem 3.1 Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space E. Let Qc be a sunny nonexpansive retraction from E
onto C and let A, B be o- and B-inverse strongly accretive mappings of C into E, respec-
tively. Let {S;}, be a finite family of k;-strict pseudo-contractions of C into itself and let
(TN, be a finite family of nonexpansive mappings of C into itself with F = ﬂf\il F(S;) N
ﬂﬁlF(Ti) NS(C,A) N S(C,B) # @ and « = min{k; : i = 1,2,...,N} with K* < «, where K
is the 2-uniformly smooth constant of E. Let o = (o/l,ajz,o/s) el x I x1I,wherel =[0,1],
a{ + aé + ag =1, a{ € (0,1], aé € [0,1] and aé € (0,1) forall j = 1,2,...,N. Let S* be the
SA-mapping generated by S1,Ss,...,Sn, Ty, Ta, ..., Ty and ay, a0y, ..., an. Let {x,,} be the se-
quence generated by x,,u € C and

Kps1 = Ol + By + YuQc U — aA)x, + 8,Qc — bB)x,, + n,S%%,, Vn=>1, (3.1)

where {oty}, {Bu} {Vn} {8} {nn} € [0,1] and o, + By + Y + 8, + 1y = 1 and satisfy the following

conditions:

o0
(i) lim a, =0, Za,, =00,
n=1

n—00

(i) {yu} {8u} {ma} S [, d] C (0,1),  for somec,d >0, Vn =1,

o0 o0 o0
(iii) Zlﬁnﬂ _,Bnlr Z|Vn+1_yn|’ Z|5n+l _8n|’
n=1 n=1 n=1

o0 o0
Zlnml_’]nL Z|an+l_an| < 00,
n=1 n=1

(iv) 0<liminfgB, <limsupg, <1,
n—00 n—00

o B
€10,— d be(0,— ]
V) a ( 1(2) an ( 1<2>
Then {x,} converges strongly to zo = Qru, where Qr is the sunny nonexpansive retraction
of C onto F.

Proof First we show that Qc(I — aA) and Qc¢(I — bB) are nonexpansive mappings. Let
x,y € C, we have

| QeI - aA)x — Qc(l - ad)y||” < |x -y - alAx - Ay)|*

< llx = yII* - 2a{Ax — Ay, j(x - y)) + 2K*a*||Ax — Ay||*
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< llx = ylI* - 2ac||Ax - Ay|* + 2K*a’ | Ax - Ay||?

= llx = ylI* - 2a(a - K?a) | Ax - Ay||?

< lle = y11%. (3.2)
Then we have Qc¢(/ —aA) is a nonexpansive mapping. By using the same methods as (3.2),
we have Qc(I — bB) is a nonexpansive mapping.

Letx* € F. From Lemma 2.3, we have x* € F(Qc(I —aA)) and x* € F(Qc(I — bB)). By the
definition of x,,, we have
e =27 = @l =+ Bu|0n = 5[ + v | Qe - @), — 7]
+ (Sn || QC(I - bB)xn -x* || + Mn ||SAxn —x* ||
<o u-s] + (- -]

< max{”u —x*

e

’

By induction, we have ||x, —x*|| < max{|lu—x*|, [|x; —x* || }. We can imply that the sequence
{x,} is bounded and so are {$x,,}, {Qc(I — aA)x,} and {Qc(I — bB)x,,}.
Next, we show that lim,,_, o ||%,41 — %5 || = 0. From the definition of x,,, we have

%1 = Xall = [ttt + Butn + vuQcll — @A)y + 8,Qc (L — bB)x, + 1,5% %,

= 1t = Buan1 = Y1 Qe — aA)xy = 8,1Qcl — bB)xy
— 15181 |

< lan — ctprlllull + Bullxn — %l + 1Bn = Buoal 1%n-1 I
+ Vu| Qe = aA)x, — Qe = aA)xus || + [vu = Vuorl | Qe — aA)x, |
+ 84| Qcll = bB)xy — QeI = bB)yy-1 | + 18, = 8,11 || Qe = bB)xy |
+ 0 || S% % = S tr || + (1t — 1l [ S0 |

< (L= )60 = et | + et = 4] + 1B = Bt 1]
1Y = v | Qe = aA)cs | + 18, = 8411 QeI — bB), |

+ Mt = 1l [ S22 -
Applying Lemma 2.6, we have
lim o1~ = 0. (3.3)
Next, we show that
lim [|Qc( —aA)x, — x| = lim [Qc(l ~ bB)xy — x| = lim | $%x, x4 0. (3.4)
From the definition of x,,, we have

||xn+1 —x* ||2 = ||an (u - x*) + B (xy, —x*) + VY (QC(I —al)x, — x*)

#8,(Qell = BB, = 7) 155 )|
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an(u - x*)

B (%0 — %) + ¥ (Qc — aA)x, — x*) + (ot + 8, + 77n)<

2

8,(Qc( — bB)x, — x*) 7’/n(SAxn - x*))
+ +

ay + 8, + 1y Qy + 8, + Ny

2

)

= || Bu(%n = x*) + vu(QcU — aA)x, — &) + cuzu

an(u=x") | 8u(QcU-bB)xy—x*) | nu(SAuy—a*)
+ + .
Ay +8p+in An+8p+in Ay +8p+nn

where ¢, =, + 8, + 1, and z,, =
From Lemma 2.2, we have

|1 =% |* < Bulln =% |* + v Qe — ad)x, — x| + cullzall?
— Buvug (||%n — Qe — aA)x, )

= (ﬂn + Vn)”xn - x* ”2 - ﬁnyngl(Hxn - QC(I - aA)xn ”)

anllu—x*1>  8,llQcU = bB)xy —x* > null S, — ¥ |2
+ ¢y + +
A, + 68, + 1, Ay + 8, + 1y Oy + 8y + 1y

< (B + ) |20 = |* = Buvug (|20 — QeI — aA)x, )

+a,,Hu—x* ”2 +(8, + 77,,)Hxn —x*H2

< ”xn —x* ”2 _ ,Bnyngl(”xn - Qc - aA)x, ||) +a, ”M _x* 2

)

which implies that

B ([ = Qell —ady])) < an =" = s —° | + s Ju—*[

= (oo =]+ Jovuen =) a0 =

+an“u—x*||2. (3.5)

From (3.3) and condition (i), we obtain

nli)rgogl(”xn - Qc(l —aA)x, ||) =0. (3.6)

From the property of g1, we have

nILTo||x” - Qc(l —aA)x, || =0. (3.7)

By using the same method as (3.7), we can imply that

lim ||xn - Qc(l - bB)x, || = lim ||xn - S, || =0.
n—00 n—00

Define Gx = aS% + BQc( — aA)x + yQc( — bB)x for all x € C and & + 8 + y = 1. From
Lemma 2.9, we have F(G) = F(Qc(I — aA)) N F(Qc(I — bB)) N F(S4). From Lemmas 2.3
and 2.7, we have F = F(G) = Y, F(T;) N (Y, F(S;) N S(C,A) N S(C, B). By the definition

of G, we obtain

”Gxn _xn” = oz”SAx,, _xn” +ﬂHQC(1_aA)xn _xn” + V”QC(I_bB)xn _xn”'

a, + 8, + 1y
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From (3.4), we have
lim ||Gx, —x,]|| = 0. (3.8)
n— o0

From Lemma 2.5 and (3.8), we have

lim sup(u —20,j(%, — zo)) <0, (3.9)

n—0o0

where zg = Qru. Finally, we prove strong convergence of the sequence {x,} to zo = Qru.
From the definition of x,,, we have

%41 — ZO”2 = ”O{n(u —20) + Bu(xn — 20) + Vn (QC(I —aA)x, - ZO)
+8,(QcU = bB)xy — 20) + 0 (S — 20)

Bu(xn — 20) s Yu(Qc — aA)x, — zo)
1-a, 1-«w,

I

an(u —zo) + (1 - an)<

2

, 3n(Qcll - bB)x, ~z0) M(S4%, — 20)
1-o, 1-o,

=

1 (ﬂn(xn -20)  Yu(QcU —aA)x, — zo)
—ay) +
1-o, 1-q,
2
+ 20, (1 — %0, j(%n11 — 20))

, Qe ~bB)x, —z0) Mu(S4%, — 20)
l-o, l-«a,

< (1= o) ll%n — zol1* + 200t — %0, j(%ms1 — 20))-

Applying Lemma 2.6 and condition (i), we have lim,,, » ||x, — 2zo| = 0. This completes the
proof. d

4 Applications

From our main results, we obtain strong convergence theorems in a Banach space. Before
proving these theorem, we need the following lemma which is the result from Lemma 2.7
and Definition 1.4. Therefore, we omit the proof.

Lemma 4.1 Let C be a nonempty closed convex subset of a 2-uniformly smooth and uni-
formly convex Banach space. Let {S;}, be a finite family of k;-strict pseudo-contractions
of C into itself with ﬂﬁl F(S;) # 9 and « = min{k; : i =1,2,...,N} with K? < «, where K
is the 2-uniformly smooth constant of E. Let o = (a{,aé,aé) €l x I x1I, whereI=[0,1],
o+ +al=1,0] €(0,1], &, € [0,1] and o, € (0,1) for all j=1,2,...,N. Let S be the S-
mapping generated by $1,S,...,Sn and ay,aa,...,on. Then F(S) = ﬂf\il F(S;) and S is a
nonexpansive mapping.

Theorem 4.2 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space E. Let Q¢ be a sunny nonexpansive retraction from E
onto C and let A, B be a- and B-inverse strongly accretive mappings of C into E, respec-
tively. Let {S;}Y, be a finite family of k;-strict pseudo-contractions of C into itself with
F = ﬂﬁlF(S,-) NS(C,A)NS(C,B) #¥ and k = min{x; : i = 1,2,...,N} with K> < k, where
K is the 2-uniformly smooth constant of E. Let oj = (0/1,0/2,0/3) el xIxI,wherel=10,1],
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a{ +a£ +oté =1, ozi € (0,1], 0/2 € [0,1] and 0/3; €(0,1) forallj=1,2,...,N. Let S be the S-
mapping generated by S1,S,,...,Sn and ay, o, ..., an. Let {x,} be the sequence generated
by x1,u € Cand

X1 = Qpth + By + YuQcl — aA)x, + 8,Qc — bB)x, + n,Sx,, Yn>1,

where {a,}, {Bu}s {vu}, {8u), {nn) € [0,1] and a,, + By + Vi + 8, + 1y = 1 and satisfy the following
conditions:

n—00

oo
(i) lim @, =0, Zan =00,
n=1

(i)  {yub{8n} {nu} S [c,d] C(0,1) forsomec,d>0, Vn>1,

e} [ 0
(111) Zlﬁ;ﬁl _,Bnlr Z|Vn+1—3/n|, Z|8n+l _5n|;
n=1 n=1

n=1

e} 0
Zlnn+1_nn|: Z|an+l_an| <00,
n=1 n=1

(iv) 0<liminfgB, <limsupg, <1,
n—00

n—00

v) “6(0’1?—2) and be(O,%).

Then {x,} converges strongly to zo = Qru, where Qr is the sunny nonexpansive retraction

of C onto F.
Proof Put 1 =T, =Ty =--- =Ty in Theorem 3.1. From Lemma 4.1 and Theorem 3.1 we
can conclude the desired result. O

Theorem 4.3 Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space E. Let Q¢ be a sunny nonexpansive retraction from E
onto C. Foreveryi=1,2,...,N,let A;, A, B be v;-, a- and B-inverse strongly accretive map-
pings of C into E, respectively. Define a mapping G;: C — C by Qc(I — MA;)x = Gix, where
A; € (0, ;—;), K is the 2-uniformly smooth constant of E, for all x € C and i = 1,2,...,N.
Let {Si}Y, be a finite family of k;-strict pseudo-contractions of C into itself and with
F = ﬂfil F(S) N ﬂf\il S(C,A)NS(C,A)NS(C,B) #¥ and k = minf{x; : i =1,2,...,N} with
K? <k.Leta; = (o, 0, 0) € I x I x I, where I = [0,1], 04 + oty + oty = 1,04 € (0,1], &) € [0,1]
and oy € (0,1) for all j = 1,2,...,N. Let S* be the S*-mapping generated by S1,S,,...,Sn,
G1, Gy, ...,Gn and a1, 9, ..., an. Let {x,} be the sequence generated by x,,u € C and

Xpsl = Qplh + By, + VVIQC(I —aA)x, +8,Qc(I — bB)x, + nnSAxm Vn>1,

where {o,}, { B}, (v} {8u}, {inn} € [0,1] and o,y + By + Vi + 8, + 1y = 1 and satisfy the following
conditions:

o0

(i) lim «, =0, E oy, = 00,
n— 00 1
n=
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(i) {yuh {8u}s ()} S [e,d] € (0,1) forsomec,d>0,Yn>1,

[} [ oo
(iii) Zlﬂnﬂ _,Bnl’ Z|)/n+1_)/n|r Z|5n+1 —8n|;
n=1 n=1

n=1

o0 )
Zlnn+l—nn|: Z|an+l_an| <00,
n=1 n=1

(iv) 0<liminfgB, <limsuppg, <1,
n—>00 n—00

o B
(v) ae (O, K_Z) and be (O,K—z).
Then {x,} converges strongly to zo = Qru, where Qr is the sunny nonexpansive retraction
of C onto F.

Proof By using the same method as (3.2), we can conclude that {Gi}ﬁ | is a nonexpansive
mapping. From Lemma 2.3, we have F(G;) = S(C,A;) for all i = 1,2,...,N. From Theo-
rem 3.1 we can conclude the desired conclusion. O
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