RESEARCH

Open Access

A new mapping for finding a common element of the sets of fixed points of two finite families of nonexpansive and strictly pseudo-contractive mappings and two sets of variational inequalities in uniformly convex and 2-smooth Banach spaces

Atid Kangtunyakarn*

*Correspondence: beawrock@hotmail.com Department of Mathematics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

In this paper we introduce a new mapping in a uniformly convex and 2-smooth Banach space to prove a strong convergence theorem for finding a common element of the set of fixed points of a finite family of nonexpansive mappings and the set of fixed points of a finite family of strictly pseudo-contractive mappings and two sets of solutions of variational inequality problems. Moreover, we also obtain a strong convergence theorem for a finite family of the set of solutions of variational inequality problems and the set of fixed points of a finite family of strictly pseudo-contractive mappings by using our main result.

Keywords: nonexpansive mapping; strictly pseudo-contractive mapping; variational inequality problem

1 Introduction

Throughout this paper, we use *E* and *E*^{*} to denote a real Banach space and a dual space of *E*, respectively. For any pair $x \in E$ and $f \in E^*$, $\langle x, f \rangle$ instead of f(x). The duality mapping $J : E \to 2^{E^*}$ is defined by $J(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2, \|x\| = \|x^*\|\}$ for all $x \in E$. It is well known that if *E* is a Hilbert space, then J = I, where *I* is the identity mapping. Recall the following definitions.

Definition 1.1 A Banach space *E* is said to be uniformly convex iff for any ϵ , $0 < \epsilon \le 2$, the inequalities $||x|| \le 1$, $||y|| \le 1$ and $||x - y|| \ge \epsilon$ imply there exists a $\delta > 0$ such that $||\frac{x+y}{2}|| \le 1 - \delta$.

Definition 1.2 A Banach space *E* is said to be smooth if for each $x \in S_E = \{x \in E : ||x|| = 1\}$, there exists a unique functional $j_x \in E^*$ such that $\langle x, j_x \rangle = ||x||$ and $||j_x|| = 1$.

It is obvious that if *E* is smooth, then *J* is single-valued which is denoted by *j*.

© 2013 Kangtunyakarn; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Definition 1.3 Let *E* be a Banach space. Then a function $\rho_E : \mathbb{R}^+ \to \mathbb{R}^+$ is said to be the modulus of smoothness of *E* if

$$\rho_E(t) = \sup\left\{\frac{\|x+y\| + \|x-y\|}{2} - 1 : \|x\| = 1, \|y\| = t\right\}.$$

A Banach space *E* is said to be uniformly smooth if

$$\lim_{t\to 0}\frac{\rho_E(t)}{t}=0.$$

It is well known that every uniformly smooth Banach space is smooth.

Let q > 1. A Banach space E is said to be q-uniformly smooth if there exists a fixed constant c > 0 such that $\rho_E(t) \le ct^q$. It is easy to see that if E is q-uniformly smooth, then $q \le 2$ and E is uniformly smooth.

A mapping $T: C \rightarrow C$ is called a nonexpansive mapping if

$$\|Tx - Ty\| \le \|x - y\|$$

for all $x, y \in C$.

T is called an η -strictly pseudo-contractive mapping if there exists a constant $\eta \in (0,1)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2 - \eta ||(I - T)x - (I - T)y||^2$$
 (1.1)

for every $x, y \in C$ and for some $j(x - y) \in J(x - y)$. It is clear that (1.1) is equivalent to the following:

$$\langle (I-T)x - (I-T)y, j(x-y) \rangle \ge \eta \| (I-T)x - (I-T)y \|^2$$
 (1.2)

for every $x, y \in C$ and for some $j(x - y) \in J(x - y)$. We give some examples for a strictly pseudo-contractive mapping as follows.

Example 1.1 Let \mathbb{R} be a real line endowed with the Euclidean norm and let $C = (0, \infty)$. Define the mapping $T : C \to C$ by

$$Tx = \frac{2x^2}{3+2x}, \quad \forall x \in C.$$

Then *T* is a $\frac{1}{9}$ -strictly pseudo-contractive mapping.

Example 1.2 (See [1]) Let \mathbb{R} be a real line endowed with the Euclidean norm. Let C = [-1, 1] and let $T : C \to C$ be defined by

$$Tx = \begin{cases} x & \text{if } x \in [-1, 0]; \\ x - x^2 & \text{if } x \in (0, 1]. \end{cases}$$

Then *T* is a λ -strictly pseudo-contractive mapping where $\lambda \leq \min\{\lambda_1, \lambda_2\}$ and $\lambda_1 \leq \frac{1}{2}$, $\lambda_2 < 1$.

Let *C* and *D* be nonempty subsets of a Banach space *E* such that *C* is nonempty closed convex and $D \subset C$, then a mapping $P : C \to D$ is sunny [2] provided P(x + t(x - P(x))) = P(x) for all $x \in C$ and $t \ge 0$, whenever $x + t(x - P(x)) \in C$. A mapping $P : C \to D$ is called a retraction if Px = x for all $x \in D$. Furthermore, *P* is a sunny nonexpansive retraction from *C* onto *D* if *P* is a retraction from *C* onto *D* which is also sunny and nonexpansive.

Subset D of C is called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive retraction from C onto D.

An operator *A* of *C* into *E* is said to be *accretive* if there exists $j(x - y) \in J(x - y)$ such that

$$\langle Ax - Ay, j(x - y) \rangle \ge 0, \quad \forall x, y \in C.$$

A mapping $A : C \to E$ is said to be α -inverse strongly accretive if there exist $j(x - y) \in J(x - y)$ and $\alpha > 0$ such that

$$\langle Ax - Ay, j(x - y) \rangle \ge \alpha ||Ax - Ay||^2, \quad \forall x, y \in C.$$

Remark 1.3 From (1.1) and (1.2), if *T* is an η -strictly pseudo-contractive mapping, then I - T is η -inverse strongly accretive.

The variational inequality problem in a Banach space is to find a point $x^* \in C$ such that for some $j(x - x^*) \in J(x - x^*)$,

$$\langle Ax^*, j(x-x^*) \rangle \ge 0, \quad \forall x \in C.$$
 (1.3)

This problem was considered by Aoyama *et al.* [3]. The set of solutions of the variational inequality in a Banach space is denoted by S(C, A), that is,

$$S(C,A) = \left\{ u \in C : \left\langle Au, J(v-u) \right\rangle \ge 0, \ \forall v \in C \right\}.$$

$$(1.4)$$

Several problems in pure and applied science, numerous problems in physics and economics reduce to finding an element in (1.4); see, for instance, [4-6].

Recall that normal Mann's iterative process was introduced by Mann [7] in 1953. The normal Mann's iterative process generates a sequence $\{x_n\}$ in the following manner:

$$\begin{cases} x_1 \in C, \\ x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T x_n, \quad \forall n \ge 1, \end{cases}$$

$$(1.5)$$

where the sequence $\{\alpha_n\} \subset (0,1)$. If *T* is a nonexpansive mapping with a fixed point and the control sequence $\{\alpha_n\}$ is chosen so that $\sum_{n=1}^{\infty} \alpha_n (1 - \alpha_n) = \infty$, then the sequence $\{x_n\}$ generated by normal Mann's iterative process (1.5) converges weakly to a fixed point of *T*.

In 1967, Halpern has introduced the iteration method guaranteeing the strong convergence as follows:

$$\begin{cases} x_1 \in C, \\ x_{n+1} = (1 - \alpha_n)x_1 + \alpha_n T x_n, \quad \forall n \ge 1, \end{cases}$$
(1.6)

where $\{\alpha_n\} \subset (0, 1)$. Such an iteration is called *Halpern iteration* if *T* is a nonexpansive mapping with a fixed point. He also pointed out that the conditions $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$ are necessary for the strong convergence of $\{x_n\}$ to a fixed point of *T*.

Many authors have modified the iteration (1.6) for a strong convergence theorem; see, for instance, [8–10].

In 2008, Zhou [11] proved a strong convergence theorem for the modification of normal Mann's iteration algorithm generated by a strict pseudo-contraction in a real 2-uniformly smooth Banach space as follows.

Theorem 1.4 Let C be a closed convex subset of a real 2-uniformly smooth Banach space E and let $T : C \to C$ be a λ -strict pseudo-contraction such that $F(T) \neq \emptyset$. Given $u, x_0 \in C$ and sequences $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ and $\{\delta_n\}$ in (0,1), the following control conditions are satisfied:

- (i) $a \le \alpha_n \le \frac{\lambda}{K^2}$ for some a > 0 and for all $n \ge 0$,
- (ii) $\beta_n + \gamma_n + \delta_n = 1$ for all $n \ge 0$,
- (iii) $\lim_{n\to\infty}\beta_n=0$ and $\sum_{n=1}^{\infty}\beta_n=\infty$,
- (iv) $\alpha_{n+1} \alpha_n \to 0$, as $n \to \infty$,
- (v) $0 < \liminf_{n \to \infty} \gamma_n \le \limsup_{n \to \infty} \gamma_n < 1.$

Let a sequence $\{x_n\}$ *be generated by*

$$\begin{cases} y_n = \alpha_n T x_n + (1 - \alpha_n) x_n, \\ x_{n+1} = \beta_n u + \gamma_n x_n + \delta_n y_n, \quad n \ge 0 \end{cases}$$

Then $\{x_n\}$ converges strongly to $x^* \in F(T)$, where $x^* = Q_{F(T)}(u)$ and $Q_{F(T)} : C \to F(T)$ is the unique sunny nonexpansive retraction from C onto F(T).

In 2006, Aoyama *et al.* introduced a Halpern-type iterative sequence and proved that such a sequence converges strongly to a common fixed point of nonexpansive mappings as follows.

Theorem 1.5 Let *E* be a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable and let *C* be a nonempty closed convex subset of *E*. Let $\{T_n\}$ be a sequence of nonexpansive mappings of *C* into itself such that $\bigcap_{n=1}^{N} F(T_i)$ is nonempty and let $\{\alpha_n\}$ be a sequence of [0,1] such that $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$. Let $\{x_n\}$ be a sequence of *C* defined as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) T_n x_n$$

for every $n \in \mathbb{N}$. Suppose that $\sum_{n=1}^{\infty} \sup\{\|T_{n+1}z - T_nz\| : z \in B\} < \infty$ for any bounded subset B of C. Let T be a mapping of C into itself defined by $Tz = \lim_{n\to\infty} T_nz$ for all $z \in C$ and

suppose that $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. If either

(i)
$$\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty \text{ or}$$

(ii) $\alpha_n \in (0,1]$ for every $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{\alpha_n}{\alpha_{n+1}}$

then $\{x_n\}$ converges strongly to Qx, where Q is the sunny nonexpansive retraction of E onto $F(T) = \bigcap_{i=1}^{\infty} F(T_n)$.

In 2005, Aoyama *et al.* [3] proved a weak convergence theorem for finding a solution of problem (1.3) as follows.

Theorem 1.6 Let *E* be a uniformly convex and 2-uniformly smooth Banach space and let *C* be a nonempty closed convex subset of *E*. Let Q_C be a sunny nonexpansive retraction from *E* onto *C*, let $\alpha > 0$ and let *A* be an α -inverse strongly accretive operator of *C* into *E* with $S(C, A) \neq \emptyset$. Suppose that $x_1 = x \in C$ and $\{x_n\}$ is given by

 $x_{n+1} = \alpha_n x_n + (1 - \alpha_n) Q_C (x_n - \lambda_n A x_n)$

for every $n = 1, 2, ..., where {\lambda_n}$ is a sequence of positive real numbers and ${\alpha_n}$ is a sequence in [0,1]. If ${\lambda_n}$ and ${\alpha_n}$ are chosen so that $\lambda_n \in [a, \frac{\alpha}{K^2}]$ for some a > 0 and $\alpha_n \in [b, c]$ for some b, c with 0 < b < c < 1, then ${x_n}$ converges weakly to some element z of S(C, A), where K is the 2-uniformly smoothness constant of E.

In 2009, Kangtunykarn and Suantai [12] introduced the *S*-mapping generated by a finite family of mappings and real numbers as follows.

Definition 1.4 Let *C* be a nonempty convex subset of a real Banach space. Let $\{T_i\}_{i=1}^N$ be a finite family of mappings of *C* into itself. For each j = 1, 2, ..., N, let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, where $I \in [0,1]$ and $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1$. Define the mapping $S : C \to C$ as follows:

$$\begin{aligned} \mathcal{U}_{0} &= I, \\ \mathcal{U}_{1} &= \alpha_{1}^{1} T_{1} \mathcal{U}_{0} + \alpha_{2}^{1} \mathcal{U}_{0} + \alpha_{3}^{1} I, \\ \mathcal{U}_{2} &= \alpha_{1}^{2} T_{2} \mathcal{U}_{1} + \alpha_{2}^{2} \mathcal{U}_{1} + \alpha_{3}^{2} I, \\ \mathcal{U}_{3} &= \alpha_{1}^{3} T_{3} \mathcal{U}_{2} + \alpha_{3}^{3} \mathcal{U}_{2} + \alpha_{3}^{3} I, \\ \vdots \\ \mathcal{U}_{N-1} &= \alpha_{1}^{N-1} T_{N-1} \mathcal{U}_{N-2} + \alpha_{2}^{N-1} \mathcal{U}_{N-2} + \alpha_{3}^{N-1} I, \\ S &= \mathcal{U}_{N} = \alpha_{1}^{N} T_{N} \mathcal{U}_{N-1} + \alpha_{2}^{N} \mathcal{U}_{N-1} + \alpha_{3}^{N} I. \end{aligned}$$
(1.7)

This mapping is called the *S*-mapping generated by T_1, T_2, \ldots, T_N and $\alpha_1, \alpha_2, \ldots, \alpha_N$.

For every i = 1, 2, ..., N, put $\alpha'_3 = 0$ in (1.7), then the *S*-mapping generated by $T_1, T_2, ..., T_N$ and $\alpha_1, \alpha_2, ..., \alpha_N$ reduces to the *K*-mapping generated by $T_1, T_2, ..., T_N$ and $\alpha_1^1, \alpha_1^2, ..., \alpha_1^N$, which is defined by Kangtunyakarn and Suantai [13].

Recently, Kangtunyakarn [14] introduced an iterative scheme by the modification of Mann's iteration process for finding a common element of the set of solutions of a finite family of variational inequality problems and the set of fixed points of an η -strictly pseudo-contractive mapping and a nonexpansive mapping as follows.

Theorem 1.7 Let *C* be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach space *E*. Let Q_C be the sunny nonexpansive retraction from *E* onto *C*. For every i = 1, 2, ..., N, let $A_i : C \to E$ be an α_i -inverse strongly accretive mapping. Define a mapping $G_i : C \to C$ by $Q_C(I - \lambda_i A_i)x = G_ix$ for all $x \in C$ and i = 1, 2, ..., N, where $\lambda_i \in (0, \frac{\alpha_i}{K^2})$, *K* is the 2-uniformly smooth constant of *E*. Let $B : C \to C$ be the *K*-mapping generated by $G_1, G_2, ..., G_N$ and $\rho_1, \rho_2, ..., \rho_N$, where $\rho_i \in (0, 1)$, $\forall i = 1, 2, ..., N - 1$ and $\rho_N \in (0, 1]$. Let $T : C \to C$ be a nonexpansive mapping and $S : C \to C$ be an η -strictly pseudo-contractive mapping with $\mathcal{F} = F(S) \cap F(T) \cap \bigcap_{i=1}^N S(C, A_i) \neq \emptyset$. Define a mapping $B_A : C \to C$ by $T((1 - \alpha)I + \alpha S)x = B_Ax$, $\forall x \in C$ and $\alpha \in (0, \frac{\pi}{K^2})$. Let $\{x_n\}$ be a sequence generated by $x_1 \in C$ and

$$x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n B x_n + \delta_n B_A x_n, \quad \forall n \ge 1,$$
(1.8)

where $f : C \to C$ is a contractive mapping and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\} \subseteq [0,1], \alpha_n + \beta_n + \gamma_n + \delta_n = 1$ and satisfy the following conditions:

(i)
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=1}^{\infty} \alpha_n = \infty$,

(ii)
$$\{\gamma_n\}, \{\delta_n\} \subseteq [c,d] \subset (0,1)$$
 for some $c, d > 0$ and $\forall n \ge 1$,

(iii)
$$\sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n|, \qquad \sum_{n=1}^{\infty} |\gamma_{n+1} - \gamma_n|, \qquad \sum_{n=1}^{\infty} |\delta_{n+1} - \delta_n| < \infty,$$

(iv)
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1.$$

Then the sequence $\{x_n\}$ converses strongly to $q \in \mathcal{F}$, which solves the following variational inequality:

$$\langle q-f(q), j(q-p) \rangle \leq 0, \quad \forall p \in \mathcal{F}.$$

Question How can we prove a strong convergence theorem for the set of fixed points of a finite family of nonexpansive mappings and the set of fixed points of a finite family of strictly pseudo-contractive mappings and the set of solutions of variational inequality problems in a uniformly convex and 2-uniformly smooth Banach space?

Motivated by the *S*-mapping, we define a new mapping in the next section to answer the above question, and from Theorems 1.4, 1.5, 1.6 and 1.7 we modify the Halpern iteration for finding a common element of two sets of solutions of (1.3) and the set of fixed points of a finite family of nonexpansive mappings and the set of fixed points of a finite family of strictly pseudo-contractive mappings in a uniformly convex and 2-uniformly smooth Banach space. Moreover, by using our main result, we also obtain a strong convergence theorem for a finite family of the set of solutions of (1.3) and the set of fixed points of a finite family of strictly pseudo-contractive mappings.

2 Preliminaries

In this section we collect and prove the following lemmas to use in our main result.

Lemma 2.1 (See [15]) Let *E* be a real 2-uniformly smooth Banach space with the best smooth constant *K*. Then the following inequality holds:

$$||x + y||^2 \le ||x||^2 + 2\langle y, J(x) \rangle + 2||Ky||^2$$

for any $x, y \in E$.

Lemma 2.2 (See [16]) Let X be a uniformly convex Banach space and $B_r = \{x \in X : ||x|| \le r\}, r > 0$. Then there exists a continuous, strictly increasing and convex function $g : [0, \infty] \to [0, \infty], g(0) = 0$ such that

$$\|\alpha x + \beta y + \gamma z\|^2 \le \alpha \|x\|^2 + \beta \|y\|^2 + \gamma \|z\|^2 - \alpha \beta g(\|x - y\|)$$

for all $x, y, z \in B_r$ and all $\alpha, \beta, \gamma \in [0, 1]$ with $\alpha + \beta + \gamma = 1$.

Lemma 2.3 (See [3]) Let C be a nonempty closed convex subset of a smooth Banach space E. Let Q_C be a sunny nonexpansive retraction from E onto C and let A be an accretive operator of C into E. Then, for all $\lambda > 0$,

$$S(C,A) = F(Q_C(I - \lambda A)).$$

Lemma 2.4 (See [15]) Let r > 0. If E is uniformly convex, then there exists a continuous, strictly increasing and convex function $g : [0, \infty) \to [0, \infty)$, g(0) = 0 such that for all $x, y \in B_r(0) = \{x \in E : ||x|| \le r\}$ and for any $\alpha \in [0, 1]$, we have $||\alpha x + (1 - \alpha)y||^2 \le \alpha ||x||^2 + (1 - \alpha)||y||^2 - \alpha(1 - \alpha)g(||x - y||)$.

Lemma 2.5 (See [17]) Let C be a closed and convex subset of a real uniformly smooth Banach space E and let $T : C \to C$ be a nonexpansive mapping with a nonempty fixed point F(T). If $\{x_n\} \subset C$ is a bounded sequence such that $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$. Then there exists a unique sunny nonexpansive retraction $Q_{F(T)} : C \to F(T)$ such that

$$\limsup_{n\to\infty} \langle u - Q_{F(T)}u, J(x_n - Q_{F(T)}u) \rangle \leq 0$$

for any given $u \in C$.

Lemma 2.6 (See [18]) Let $\{s_n\}$ be a sequence of nonnegative real numbers satisfying

$$s_{n+1} = (1 - \alpha_n)s_n + \delta_n, \quad \forall n \ge 0,$$

where $\{\alpha_n\}$ is a sequence in (0,1) and $\{\delta_n\}$ is a sequence such that

(1)
$$\sum_{n=1}^{\infty} \alpha_n = \infty$$
,

(2)
$$\limsup_{n\to\infty}\frac{\delta_n}{\alpha_n}\leq 0 \quad or \quad \sum_{n=1}^{\infty}|\delta_n|<\infty.$$

Then $\lim_{n\to\infty} s_n = 0$.

From the *S*-mapping, we define the mapping generated by two sets of finite families of the mappings and real numbers as follows.

Definition 2.1 Let *C* be a nonempty convex subset of a Banach space. Let $\{S_i\}_{i=1}^N$ and $\{T_i\}_{i=1}^N$ be two finite families of mappings of *C* into itself. For each j = 1, 2, ..., N, let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, where $I \in [0, 1]$ and $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1$. We define the mapping $S^A : C \to C$ as follows:

$$\begin{aligned} \mathcal{U}_{0} &= T_{1} = I, \\ \mathcal{U}_{1} &= T_{1} \left(\alpha_{1}^{1} S_{1} \mathcal{U}_{0} + \alpha_{2}^{1} \mathcal{U}_{0} + \alpha_{3}^{1} I \right), \\ \mathcal{U}_{2} &= T_{2} \left(\alpha_{1}^{2} S_{2} \mathcal{U}_{1} + \alpha_{2}^{2} \mathcal{U}_{1} + \alpha_{3}^{2} I \right), \\ \mathcal{U}_{3} &= T_{3} \left(\alpha_{1}^{3} S_{3} \mathcal{U}_{2} + \alpha_{2}^{3} \mathcal{U}_{2} + \alpha_{3}^{3} I \right), \end{aligned}$$

$$\begin{aligned} &: \\ \mathcal{U}_{N-1} &= T_{N-1} \left(\alpha_{1}^{N-1} S_{N-1} \mathcal{U}_{N-2} + \alpha_{2}^{N-1} \mathcal{U}_{N-2} + \alpha_{3}^{N-1} I \right), \\ S^{A} &= \mathcal{U}_{N} = T_{N} \left(\alpha_{1}^{N} S_{N} \mathcal{U}_{N-1} + \alpha_{2}^{N} \mathcal{U}_{N-1} + \alpha_{3}^{N} I \right). \end{aligned}$$

$$(2.1)$$

This mapping is called the S^A -mapping generated by $S_1, S_2, \ldots, S_N, T_1, T_2, \ldots, T_N$ and $\alpha_1, \alpha_2, \ldots, \alpha_N$.

Lemma 2.7 Let *C* be a nonempty closed convex subset of a 2-uniformly smooth and uniformly convex Banach space. Let $\{S_i\}_{i=1}^N$ be a finite family of κ_i -strict pseudo-contractions of *C* into itself and let $\{T_i\}_{i=1}^N$ be a finite family of nonexpansive mappings of *C* into itself with $\bigcap_{i=1}^N F(S_i) \cap \bigcap_{i=1}^N F(T_i) \neq \emptyset$ and $\kappa = \min\{\kappa_i : i = 1, 2, ..., N\}$ with $K^2 \leq \kappa$, where *K* is the 2-uniformly smooth constant of *E*. Let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, where I = [0, 1], $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1$, $\alpha_1^j \in (0, 1]$, $\alpha_2^j \in [0, 1]$ and $\alpha_3^j \in (0, 1)$ for all j = 1, 2, ..., N. Let S^A be the S^A -mapping generated by $S_1, S_2, ..., S_N$, $T_1, T_2, ..., T_N$ and $\alpha_1, \alpha_2, ..., \alpha_N$. Then $F(S^A) = \bigcap_{i=1}^N F(S_i) \cap \bigcap_{i=1}^N F(T_i)$ and S^A is a nonexpansive mapping.

Proof Let $x_0 \in F(S^A)$ and $x^* \in \bigcap_{i=1}^N F(S_i) \cap \bigcap_{i=1}^N F(T_i)$, we have

$$\begin{split} \left\| x_{0} - x^{*} \right\|^{2} &= \left\| T_{N} \left(\alpha_{1}^{N} S_{N} U_{N-1} + \alpha_{2}^{N} U_{N-1} + \alpha_{3}^{N} I \right) x_{0} - x^{*} \right\|^{2} \\ &\leq \left\| \alpha_{1}^{N} \left(S_{N} U_{N-1} x_{0} - x^{*} \right) + \alpha_{2}^{N} \left(U_{N-1} x_{0} - x^{*} \right) + \alpha_{3}^{N} \left(x_{0} - x^{*} \right) \right\|^{2} \\ &= \left\| \left(1 - \alpha_{3}^{N} \right) \left(\frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \left(S_{N} U_{N-1} x_{0} - x^{*} \right) + \frac{\alpha_{2}^{N}}{1 - \alpha_{3}^{N}} \left(U_{N-1} x_{0} - x^{*} \right) \right) \\ &+ \alpha_{3}^{N} \left(x_{0} - x^{*} \right) \right\|^{2} \\ &\leq \left(1 - \alpha_{3}^{N} \right) \left\| \frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \left(S_{N} U_{N-1} x_{0} - x^{*} \right) + \frac{\alpha_{2}^{N}}{1 - \alpha_{3}^{N}} \left(U_{N-1} x_{0} - x^{*} \right) \right\|^{2} \end{split}$$

$$\begin{split} &+ \alpha_{3}^{N} \| x_{0} - x^{*} \|^{2} \\ &= (1 - \alpha_{3}^{N}) \left\| \frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} (S_{N} U_{N-1} x_{0} - x^{*}) + (1 - \frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}}) (U_{N-1} x_{0} - x^{*}) \right\|^{2} \\ &+ \alpha_{3}^{N} \| x_{0} - x^{*} \|^{2} \\ &= (1 - \alpha_{3}^{N}) \left\| \frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} (S_{N} U_{N-1} x_{0} - U_{N-1} x_{0}) + U_{N-1} x_{0} - x^{*} \right\|^{2} + \alpha_{3}^{N} \| x_{0} - x^{*} \|^{2} \\ &\leq (1 - \alpha_{3}^{N}) \left(\| U_{N-1} x_{0} - x^{*} \|^{2} \\ &+ 2 \frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} (S_{N} U_{N-1} x_{0} - U_{N-1} x_{0}) f (U_{N-1} x_{0} - x^{*}) \right) \\ &+ 2K^{2} \left(\frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \right)^{2} \| S_{N} U_{N-1} x_{0} - U_{N-1} x_{0} \|^{2} \right) + \alpha_{3}^{N} \| x_{0} - x^{*} \|^{2} \\ &= (1 - \alpha_{3}^{N}) \left(\| U_{N-1} x_{0} - x^{*} \|^{2} + 2 \frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} (S_{N} U_{N-1} x_{0} - x^{*}, j (U_{N-1} x_{0} - x^{*})) \right) \\ &+ 2K^{2} \left(\frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \right)^{2} \| S_{N} U_{N-1} x_{0} - U_{N-1} x_{0} \|^{2} \right) + \alpha_{3}^{N} \| x_{0} - x^{*} \|^{2} \\ &= (1 - \alpha_{3}^{N}) \left(\| U_{N-1} x_{0} - x^{*} \|^{2} + 2 \frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} (S_{N} U_{N-1} x_{0} - x^{*}) \right) \\ &+ 2K^{2} \left(\frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \right)^{2} \| S_{N} U_{N-1} x_{0} - U_{N-1} x_{0} \|^{2} \right) + \alpha_{3}^{N} \| x_{0} - x^{*} \|^{2} \\ &\leq (1 - \alpha_{3}^{N}) \left(\| U_{N-1} x_{0} - x^{*} \|^{2} - \kappa \| (I - S_{N}) U_{N-1} x_{0} \|^{2} \right) \\ &+ 2K^{2} \left(\frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \| x^{*} - U_{N-1} x_{0} \|^{2} + 2K^{2} \left(\frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \right)^{2} \| S_{N} U_{N-1} x_{0} - U_{N-1} x_{0} \|^{2} \right) \\ &+ 2K^{2} \left(\frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \right)^{2} \| S_{N} U_{N-1} x_{0} - U_{N-1} x_{0} \|^{2} \right) \\ &+ 2K^{2} \left(\frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \right)^{2} \| S_{N} U_{N-1} x_{0} - U_{N-1} x_{0} \|^{2} \right) + \alpha_{3}^{N} \| x_{0} - x^{*} \|^{2} \\ &= (1 - \alpha_{3}^{N}) \left(\| U_{N-1} x_{0} - x^{*} \|^{2} \\ &= (1 - \alpha_{3}^{N}) \left(\| U_{N-1} x_{0} - x^{*} \|^{2} + \alpha_{3}^{N} \| x_{0} - x^{*} \|^{2} \right) \\ &\leq (1 - \alpha_{3}^{N}) \left\| U_{N-1} x_{0} - x^{*} \|^{2} + \alpha_{3}^{N} \| x_{0} - x^{*} \|^{2} \\ &\leq (1 - \alpha_{3}^{N}) \left\| U_{N-1} x_{0} - x^{*} \|^{2} + \alpha_{3}^{N} \| x_{0} - x^{*} \|^{2} \\ &\leq (1 - \alpha_{3}^{N}) \left\| U_{N-1} x_{0} - x^{*}$$

$$\begin{split} &\leq \prod_{j=3}^{N} (1-\alpha_{j}^{j}) \left\| U_{2}x_{0} - x^{*} \right\|^{2} + \left(1 - \prod_{j=3}^{N} (1-\alpha_{j}^{j})\right) \left\| x_{0} - x^{*} \right\|^{2} \\ &= \prod_{j=3}^{N} (1-\alpha_{j}^{j}) \left\| T_{2} (\alpha_{1}^{2}S_{2}\mathcal{U}_{1} + \alpha_{2}^{2}\mathcal{U}_{1} + \alpha_{3}^{2}\mathcal{I}) x_{0} - x^{*} \right\|^{2} \\ &+ \left(1 - \prod_{j=3}^{N} (1-\alpha_{j}^{j})\right) \left\| x_{0} - x^{*} \right\|^{2} \\ &\leq \prod_{j=3}^{N} (1-\alpha_{j}^{j}) \left\| \alpha_{1}^{2} (S_{2}\mathcal{U}_{1}x_{0} - x^{*}) + \alpha_{2}^{2} (\mathcal{U}_{1}x_{0} - x^{*}) + \alpha_{3}^{2} (x_{0} - x^{*}) \right\|^{2} \\ &+ \left(1 - \prod_{j=3}^{N} (1-\alpha_{j}^{j})\right) \left\| x_{0} - x^{*} \right\|^{2} \\ &= \prod_{j=3}^{N} (1-\alpha_{j}^{j}) \left\| (1-\alpha_{3}^{2}) \left(\frac{\alpha_{1}^{2}}{1-\alpha_{3}^{2}} (S_{2}\mathcal{U}_{1}x_{0} - x^{*}) + \frac{\alpha_{2}^{2}}{1-\alpha_{3}^{2}} (\mathcal{U}_{1}x_{0} - x^{*}) \right) \\ &+ \alpha_{3}^{2} (x_{0} - x^{*}) \right\|^{2} + \left(1 - \prod_{j=3}^{N} (1-\alpha_{j}^{j})\right) \left\| x_{0} - x^{*} \right\|^{2} \\ &\leq \prod_{j=3}^{N} (1-\alpha_{j}^{j}) \left((1-\alpha_{3}^{2}) \right\| \frac{\alpha_{1}^{2}}{1-\alpha_{3}^{2}} (S_{2}\mathcal{U}_{1}x_{0} - x^{*}) \\ &+ \frac{\alpha_{2}^{2}}{1-\alpha_{3}^{2}} (\mathcal{U}_{1}x_{0} - x^{*}) \right\|^{2} + \alpha_{3}^{2} \| x_{0} - x^{*} \right\|^{2} \right) + \left(1 - \prod_{j=3}^{N} (1-\alpha_{j}^{j})\right) \left\| x_{0} - x^{*} \right\|^{2} \\ &= \prod_{j=3}^{N} (1-\alpha_{j}^{j}) \left((1-\alpha_{3}^{2}) \right\| \frac{\alpha_{1}^{2}}{1-\alpha_{3}^{2}} (S_{2}\mathcal{U}_{1}x_{0} - x^{*}) + \left(1 - \frac{\alpha_{1}^{2}}{1-\alpha_{3}^{2}} \right) (\mathcal{U}_{1}x_{0} - x^{*}) \right\|^{2} \\ &+ \alpha_{3}^{2} \| x_{0} - x^{*} \|^{2} \right) + \left(1 - \prod_{j=3}^{N} (1-\alpha_{j}^{j})\right) \| x_{0} - x^{*} \|^{2} \\ &= \prod_{j=3}^{N} (1-\alpha_{j}^{j}) \left((1-\alpha_{3}^{2}) \right\| \frac{\alpha_{1}^{2}}{1-\alpha_{3}^{2}} (S_{2}\mathcal{U}_{1}x_{0} - \mathcal{U}_{1}x_{0}) + \mathcal{U}_{1}x_{0} - x^{*} \right\|^{2} \\ &+ \alpha_{3}^{2} \| x_{0} - x^{*} \|^{2} \right) + \left(1 - \prod_{j=3}^{N} (1-\alpha_{j}^{j})\right) \| x_{0} - x^{*} \|^{2} \\ &= \prod_{j=3}^{N} (1-\alpha_{j}^{j}) \left((1-\alpha_{3}^{2}) \left\| \frac{\mathcal{U}_{1}x_{0} - x^{*} \right\|^{2} \\ &+ 2 \frac{\alpha_{1}^{2}}{1-\alpha_{3}^{2}} (S_{2}\mathcal{U}_{1}x_{0} - \mathcal{U}_{1}x_{0}) \right) \right\| x_{0} - x^{*} \|^{2} \\ &+ 2 \mathcal{K}^{2} \left(\frac{\alpha_{1}^{2}}{1-\alpha_{3}^{2}} \right) \| S_{2}\mathcal{U}_{1}x_{0} - \mathcal{U}_{1}x_{0} \right\|^{2} \right) \\ &+ \left(1 - \prod_{j=3}^{N} (1-\alpha_{j}^{j}) \right) \| x_{0} - x^{*} \|^{2} \\ &+ \left(1 - \prod_{j=3}^{N} (1-\alpha_{j}^{j}) \right) \left\| x_{0} - x^{*} \right\|^{2} \right\|$$

$$\begin{split} &\leq \prod_{j=3}^{N} (1 - \alpha_{j}^{j}) \left((1 - \alpha_{3}^{2}) \left(\| \mathcal{U}_{1}x_{0} - x^{*} \|^{2} \right. \\ &\quad - 2 \frac{\alpha_{1}^{2}}{1 - \alpha_{3}^{2}} \left(\kappa - K^{2} \left(\frac{\alpha_{1}^{2}}{1 - \alpha_{3}^{2}} \right) \right) \| (I - S_{2}) \mathcal{U}_{1}x_{0} \|^{2} \right) \\ &\quad + \alpha_{3}^{2} \| x_{0} - x^{*} \|^{2} \right) + \left(1 - \prod_{j=3}^{N} (1 - \alpha_{3}^{j}) \right) \| x_{0} - x^{*} \|^{2} \\ &\leq \prod_{j=3}^{N} (1 - \alpha_{3}^{j}) (1 - \alpha_{3}^{j}) (\| \mathcal{U}_{1}x_{0} - x^{*} \|^{2} + \alpha_{3}^{2} \| x_{0} - x^{*} \|^{2} \right) \\ &\quad + \left(1 - \prod_{j=3}^{N} (1 - \alpha_{3}^{j}) \right) \| x_{0} - x^{*} \|^{2} \\ &= \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \| \mathcal{U}_{1}x_{0} - x^{*} \|^{2} + \left(1 - \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \right) \| x_{0} - x^{*} \|^{2} \\ &= \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \| \alpha_{1}^{1} (S_{1}\mathcal{U}_{0}x_{0} - x^{*}) + \alpha_{2}^{1} (\mathcal{U}_{0}x_{0} - x^{*}) + \alpha_{3}^{1} (x_{0} - x^{*}) \|^{2} \\ &\quad + \left(1 - \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \right) \| x_{0} - x^{*} \|^{2} \\ &= \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \| \alpha_{1}^{1} (S_{1}x_{0} - x^{*}) + (1 - \alpha_{1}^{1}) (x_{0} - x^{*}) \|^{2} \\ &\quad + \left(1 - \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \right) \| x_{0} - x^{*} \|^{2} \\ &= \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \| \alpha_{1}^{1} (S_{1}x_{0} - x_{0}) + x_{0} - x^{*} \|^{2} + \left(1 - \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \right) \| x_{0} - x^{*} \|^{2} \\ &\leq \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) (\| x_{0} - x^{*} \|^{2} + 2\alpha_{1}^{1} (S_{1}x_{0} - x_{0}, j(x_{0} - x^{*})) \\ &\quad + 2K^{2} (\alpha_{1}^{1})^{2} \| S_{1}x_{0} - x_{0} \|^{2} + \left(1 - \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \right) \| x_{0} - x^{*} \|^{2} \\ &= \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) (\| x_{0} - x^{*} \|^{2} + 2\alpha_{1}^{1} (S_{1}x_{0} - x^{*}, j(x_{0} - x^{*})) \\ &\quad + 2K^{2} (\alpha_{1}^{1})^{2} \| S_{1}x_{0} - \alpha_{0} \|^{2}) + \left(1 - \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \right) \| x_{0} - x^{*} \|^{2} \\ &\leq \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) (\| x_{0} - x^{*} \|^{2} + 2\alpha_{1}^{1} (\| x_{0} - x^{*} \| - \kappa \| S_{1}x_{0} - x_{0} \|^{2}) \\ &\quad - 2\alpha_{1}^{1} \| x^{*} - x_{0} \|^{2} \end{aligned}$$

$$+ 2K^{2}(\alpha_{1}^{1})^{2} \|S_{1}x_{0} - x_{0}\|^{2}) + \left(1 - \prod_{j=2}^{N} (1 - \alpha_{3}^{j})\right) \|x_{0} - x^{*}\|^{2}$$

$$= \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) (\|x_{0} - x^{*}\|^{2} - 2\alpha_{1}^{1}(\kappa - K^{2}\alpha_{1}^{1})\|S_{1}x_{0} - x_{0}\|^{2})$$

$$+ \left(1 - \prod_{j=2}^{N} (1 - \alpha_{3}^{j})\right) \|x_{0} - x^{*}\|^{2}$$

$$= \|x_{0} - x^{*}\|^{2} - \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) 2\alpha_{1}^{1}(\kappa - K^{2}\alpha_{1}^{1})\|S_{1}x_{0} - x_{0}\|^{2}$$

$$\leq \|x_{0} - x^{*}\|^{2}. \qquad (2.2)$$

For every $j = 1, 2, \dots, N$ and (2.2), we have

$$\|U_{j}x_{0} - x^{*}\|^{2} \le \|x_{0} - x^{*}\|^{2}.$$
(2.3)

For every k = 1, 2, ..., N - 1 and (2.2) we have

$$\begin{split} \|x_{0} - x^{*}\|^{2} &\leq \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right) \|U_{k}x_{0} - x^{*}\|^{2} + \left(1 - \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right)\right) \|x_{0} - x^{*}\|^{2} \\ &= \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right) \|T_{k}(\alpha_{1}^{k}S_{k}U_{k-1} + \alpha_{2}^{k}U_{k-1} + \alpha_{3}^{k}I)x_{0} - x^{*}\|^{2} \\ &+ \left(1 - \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right)\right) \|x_{0} - x^{*}\|^{2} \\ &\leq \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right) \|\alpha_{1}^{k}(S_{k}U_{k-1}x_{0} - x^{*}) + \alpha_{2}^{k}(U_{k-1}x_{0} - x^{*}) + \alpha_{3}^{k}(x_{0} - x^{*})\|^{2} \\ &+ \left(1 - \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right)\right) \|x_{0} - x^{*}\|^{2} \\ &= \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right) \left\|\left(1 - \alpha_{3}^{k}\right) \left(\frac{\alpha_{1}^{k}}{1 - \alpha_{3}^{k}}(S_{k}U_{k-1}x_{0} - x^{*}) + \frac{\alpha_{2}^{k}}{1 - \alpha_{3}^{k}}(U_{k-1}x_{0} - x^{*})\right) \\ &+ \alpha_{3}^{k}(x_{0} - x^{*}) \right\|^{2} + \left(1 - \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right)\right) \|x_{0} - x^{*}\|^{2} \\ &\leq \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right) \left(\left(1 - \alpha_{3}^{k}\right)\right) \left\|\frac{\alpha_{1}^{k}}{1 - \alpha_{3}^{k}}(S_{k}U_{k-1}x_{0} - x^{*}) + \frac{\alpha_{2}^{k}}{1 - \alpha_{3}^{k}}(U_{k-1}x_{0} - x^{*})\right\|^{2} \\ &+ \alpha_{3}^{k} \|x_{0} - x^{*}\|^{2} \right) + \left(1 - \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right)\right) \|x_{0} - x^{*}\|^{2} \\ &= \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right) \left(\left(1 - \alpha_{3}^{k}\right)\right) \left\|\frac{\alpha_{1}^{k}}{1 - \alpha_{3}^{k}}(S_{k}U_{k-1}x_{0} - x^{*})\right\|^{2} \end{split}$$

$$\begin{split} &+ \left(1 - \frac{\alpha_1^k}{1 - \alpha_3^k}\right) (U_{k-1}x_0 - x^*) \Big\|^2 \\ &+ \alpha_3^k \|x_0 - x^*\|^2 \right) + \left(1 - \prod_{j=k+1}^N (1 - \alpha_3^j)\right) \|x_0 - x^*\|^2 \\ &= \prod_{j=k+1}^N (1 - \alpha_3^j) \left((1 - \alpha_3^k) \Big\| \frac{\alpha_1^k}{1 - \alpha_3^k} (S_k U_{k-1}x_0 - U_{k-1}x_0) + U_{k-1}x_0 - x^* \Big\|^2 \\ &+ \alpha_3^k \|x_0 - x^*\|^2 \right) + \left(1 - \prod_{j=k+1}^N (1 - \alpha_3^j)\right) \|x_0 - x^*\|^2 \\ &\leq \prod_{j=k+1}^N (1 - \alpha_j^j) \left((1 - \alpha_3^k) \left(\|U_{k-1}x_0 - x^*\|^2 + 2\frac{\alpha_1^k}{1 - \alpha_3^k} (S_k U_{k-1}x_0 - U_{k-1}x_0) |U_{k-1}x_0 - x^*\|^2 \right) \\ &+ 2K^2 \left(\frac{\alpha_1^k}{1 - \alpha_3^k}\right)^2 \|S_k U_{k-1}x_0 - U_{k-1}x_0\|^2 \right) + \alpha_3^k \|x_0 - x^*\|^2) \\ &+ \left(1 - \prod_{j=k+1}^N (1 - \alpha_j^j)\right) \|x_0 - x^*\|^2 \\ &= \prod_{j=k+1}^N (1 - \alpha_j^j) \left((1 - \alpha_3^k) \left(\|U_{k-1}x_0 - x^*\|^2 + 2\frac{\alpha_1^k}{1 - \alpha_3^k} (S_k U_{k-1}x_0 - x^*, j(U_{k-1}x_0 - x^*)) \right) \\ &+ 2K^2 \left(\frac{\alpha_1^k}{1 - \alpha_3^k} (S_k U_{k-1}x_0 - x^*, j(U_{k-1}x_0 - x^*)) \right) \\ &+ 2K^2 \left(\frac{\alpha_1^k}{1 - \alpha_3^k} (S_k U_{k-1}x_0 - x^*, j(U_{k-1}x_0 - x^*)) \right) \\ &+ 2K^2 \left(\frac{\alpha_1^k}{1 - \alpha_3^k} (S_k U_{k-1}x_0 - x^*, j(U_{k-1}x_0 - x^*)) \right) \\ &+ 2K^2 \left(\frac{\alpha_1^k}{1 - \alpha_3^k} \right)^2 \|S_k U_{k-1}x_0 - U_{k-1}x_0\|^2 \right) + \alpha_3^k \|x_0 - x^*\|^2) \\ &+ \left(1 - \prod_{j=k+1}^N (1 - \alpha_3^j) \right) \|x_0 - x^*\|^2 \\ &\leq \prod_{j=k+1}^N (1 - \alpha_3^j) \left((1 - \alpha_3^k) \left(\|U_{k-1}x_0 - x^*\|^2 + x\|(I - S_k)U_{k-1}x_0\|) \right) \\ &- 2\frac{\alpha_1^k}{1 - \alpha_3^k} \|x^* - U_{k-1}x_0\|^2 \\ &+ 2K^2 \left(\frac{\alpha_1^k}{1 - \alpha_3^k} \right)^2 \|S_k U_{k-1}x_0 - U_{k-1}x_0\|^2 \right) + \alpha_3^k \|x_0 - x^*\|^2) \\ &+ \left(1 - \prod_{j=k+1}^N (1 - \alpha_3^j) \left(\|U_{k-1}x_0 - x^*\|^2 - x\|(I - S_k)U_{k-1}x_0\| \right) \right) \\ &- 2\frac{\alpha_1^k}{1 - \alpha_3^k} \|x^* - U_{k-1}x_0\|^2 + x\|(I - S_k)U_{k-1}x_0\|^2 \right) + \alpha_3^k \|x_0 - x^*\|^2 \right) \\ &+ \left(1 - \prod_{j=k+1}^N (1 - \alpha_3^j) \right) \|x_0 - x^*\|^2$$

$$\begin{split} &= \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right) \left(\left(1 - \alpha_{3}^{k}\right) \left(\left\| U_{k-1}x_{0} - x^{*} \right\|^{2} \right. \\ &\left. - 2 \frac{\alpha_{1}^{k}}{1 - \alpha_{3}^{k}} \left(\kappa - K^{2} \left(\frac{\alpha_{1}^{k}}{1 - \alpha_{3}^{k}} \right) \right) \left\| (I - S_{k}) U_{k-1}x_{0} \right\|^{2} \right) + \alpha_{3}^{k} \left\| x_{0} - x^{*} \right\|^{2} \right) \\ &+ \left(1 - \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right) \right) \left\| x_{0} - x^{*} \right\|^{2} \\ &\leq \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right) \left(\left(1 - \alpha_{3}^{k}\right) \left(\left\| x_{0} - x^{*} \right\|^{2} \right) \right. \\ &\left. - 2 \frac{\alpha_{1}^{k}}{1 - \alpha_{3}^{k}} \left(\kappa - K^{2} \left(\frac{\alpha_{1}^{k}}{1 - \alpha_{3}^{k}} \right) \right) \left\| (I - S_{k}) U_{k-1}x_{0} \right\|^{2} \right) + \alpha_{3}^{k} \left\| x_{0} - x^{*} \right\|^{2} \right) \\ &+ \left(1 - \prod_{j=k+1}^{N} \left(1 - \alpha_{3}^{j}\right) \right) \left\| x_{0} - x^{*} \right\|^{2}, \end{split}$$

which implies that

$$U_{k-1}x_0 = S_k U_{k-1}x_0 \tag{2.4}$$

for every k = 1, 2, ..., N - 1.

From (2.2), it implies that $x_0 = S_1 x_0$, that is, $x_0 \in F(S)$. From the definition of S^A , we have

$$U_1 x_0 = T_1 \left(\alpha_1^1 S_1 U_0 x_0 + \alpha_2^1 U_0 x_0 + \alpha_3^1 x_0 \right) = T_1 x_0 = x_0.$$
(2.5)

From (2.2) and $U_1x_0 = x_0$, we have

$$\begin{split} \left\| x_{0} - x^{*} \right\|^{2} &\leq \prod_{j=3}^{N} \left(1 - \alpha_{3}^{j} \right) \left(\left(1 - \alpha_{3}^{2} \right) \left(\left\| U_{1}x_{0} - x^{*} \right\|^{2} \right) \\ &\quad - 2 \frac{\alpha_{1}^{2}}{1 - \alpha_{3}^{2}} \left(\kappa - K^{2} \left(\frac{\alpha_{1}^{2}}{1 - \alpha_{3}^{2}} \right) \right) \left\| (I - S_{2}) U_{1}x_{0} \right\|^{2} \right) \\ &\quad + \alpha_{3}^{2} \left\| x_{0} - x^{*} \right\|^{2} \right) + \left(1 - \prod_{j=3}^{N} \left(1 - \alpha_{3}^{j} \right) \right) \left\| x_{0} - x^{*} \right\|^{2} \\ &= \prod_{j=3}^{N} \left(1 - \alpha_{3}^{j} \right) \left(\left(1 - \alpha_{3}^{2} \right) \left(\left\| x_{0} - x^{*} \right\|^{2} \right) \right) \\ &\quad - 2 \frac{\alpha_{1}^{2}}{1 - \alpha_{3}^{2}} \left(\kappa - K^{2} \left(\frac{\alpha_{1}^{2}}{1 - \alpha_{3}^{2}} \right) \right) \left\| (I - S_{2})x_{0} \right\|^{2} \right) \\ &\quad + \alpha_{3}^{2} \left\| x_{0} - x^{*} \right\|^{2} \right) + \left(1 - \prod_{j=3}^{N} \left(1 - \alpha_{3}^{j} \right) \right) \left\| x_{0} - x^{*} \right\|^{2} \\ &= \prod_{j=3}^{N} \left(1 - \alpha_{3}^{j} \right) \left(1 - \alpha_{3}^{2} \right) \left(\left\| x_{0} - x^{*} \right\|^{2} \right) \\ &= \sum_{j=3}^{N} \left(1 - \alpha_{3}^{j} \right) \left(1 - \alpha_{3}^{2} \right) \left(\left\| x_{0} - x^{*} \right\|^{2} \right) \\ &\quad - 2 \frac{\alpha_{1}^{2}}{1 - \alpha_{3}^{2}} \left(\kappa - K^{2} \left(\frac{\alpha_{1}^{2}}{1 - \alpha_{3}^{2}} \right) \right) \left\| (I - S_{2})x_{0} \right\|^{2} \right) \end{split}$$

$$+ \prod_{j=3}^{N} (1 - \alpha_{3}^{j}) \alpha_{3}^{2} \|x_{0} - x^{*}\|^{2} + \left(1 - \prod_{j=3}^{N} (1 - \alpha_{3}^{j})\right) \|x_{0} - x^{*}\|^{2}$$

$$= \prod_{j=2}^{N} (1 - \alpha_{3}^{j}) \left(\|x_{0} - x^{*}\|^{2} - 2\frac{\alpha_{1}^{2}}{1 - \alpha_{3}^{2}} \left(\kappa - K^{2} \left(\frac{\alpha_{1}^{2}}{1 - \alpha_{3}^{2}}\right)\right) \|(I - S_{2})x_{0}\|^{2}\right)$$

$$+ \left(1 - \prod_{j=2}^{N} (1 - \alpha_{3}^{j})\right) \|x_{0} - x^{*}\|^{2}.$$

It implies that $x_0 = S_2 x_0$.

From the definition of S^A and $x_0 = S_2 x_0$, we have

$$U_2 x_0 = T_2 \left(\alpha_1^2 S_2 U_1 + \alpha_2^2 U_1 + \alpha_3^2 I \right) x_0 = T_2 x_0.$$
(2.6)

From the definition of U_3 and (2.4), we have

$$U_3 x_0 = T_3 \left(\alpha_1^3 S_3 U_2 + \alpha_2^3 U_2 + \alpha_3^3 I \right) x_0 = T_3 \left(\left(1 - \alpha_3^3 \right) U_2 x_0 + \alpha_3^3 x_0 \right).$$
(2.7)

From (2.2), (2.6), (2.7) and E is uniformly convex, we have

$$\begin{split} \|x_{0} - x^{*}\|^{2} &\leq \prod_{j=4}^{N} (1 - \alpha_{3}^{j}) \|U_{3}x_{0} - x^{*}\|^{2} + \left(1 - \prod_{j=4}^{N} (1 - \alpha_{3}^{j})\right) \|x_{0} - x^{*}\|^{2} \\ &= \prod_{j=4}^{N} (1 - \alpha_{3}^{j}) \|T_{3}((1 - \alpha_{3}^{3})U_{2}x_{0} + \alpha_{3}^{3}x_{0}) - x^{*}\|^{2} \\ &+ \left(1 - \prod_{j=4}^{N} (1 - \alpha_{3}^{j})\right) \|x_{0} - x^{*}\|^{2} \\ &\leq \prod_{j=4}^{N} (1 - \alpha_{3}^{j}) \|(1 - \alpha_{3}^{3})(U_{2}x_{0} - x^{*}) + \alpha_{3}^{3}(x_{0} - x^{*})\|^{2} \\ &+ \left(1 - \prod_{j=4}^{N} (1 - \alpha_{3}^{j})\right) \|x_{0} - x^{*}\|^{2} \\ &= \prod_{j=4}^{N} (1 - \alpha_{3}^{j}) \|(1 - \alpha_{3}^{3})(T_{2}x_{0} - x^{*}) + \alpha_{3}^{3}(x_{0} - x^{*})\|^{2} \\ &+ \left(1 - \prod_{j=4}^{N} (1 - \alpha_{3}^{j})\right) \|x_{0} - x^{*}\|^{2} \\ &\leq \prod_{j=4}^{N} (1 - \alpha_{3}^{j})((1 - \alpha_{3}^{3})) \|T_{2}x_{0} - x^{*}\|^{2} + \alpha_{3}^{3} \|x_{0} - x^{*}\|^{2} \\ &\leq \prod_{j=4}^{N} (1 - \alpha_{3}^{j})((1 - \alpha_{3}^{3})) \|T_{2}x_{0} - x^{*}\|^{2} + \alpha_{3}^{3} \|x_{0} - x^{*}\|^{2} \\ &- \alpha_{3}^{3}(1 - \alpha_{3}^{3})g_{2}(\|T_{2}x_{0} - x_{0}\|)) \\ &+ \left(1 - \prod_{j=4}^{N} (1 - \alpha_{j}^{j})\right) \|x_{0} - x^{*}\|^{2} \end{split}$$

$$\leq \prod_{j=4}^{N} (1 - \alpha_{3}^{j}) (\|x_{0} - x^{*}\|^{2} - \alpha_{3}^{3} (1 - \alpha_{3}^{3}) g_{2} (\|T_{2}x_{0} - x_{0}\|)) \\ + \left(1 - \prod_{j=4}^{N} (1 - \alpha_{3}^{j}) \right) \|x_{0} - x^{*}\|^{2}.$$

It implies that

$$g_2(||T_2x_0 - x_0||) = 0.$$
(2.8)

Assume that $T_2x_0 \neq x_0$, then we have $||T_2x_0 - x_0|| > 0$. From the properties of g_2 , we have

$$0 = g(0) < g(||T_2x_0 - x_0||) = 0.$$
(2.9)

This is a contradiction. Then we have $T_2x_0 = x_0$. From (2.6), we have $x_0 = T_2x_0 = U_2x_0$. From the definition of U_3 , we have

$$U_3 x_0 = T_3 ((1 - \alpha_3^3) U_2 x_0 + \alpha_3^3 x_0) = T_3 x_0.$$

By using the same method as above, we have

$$x_0 = U_3 x_0 = T_3 x_0.$$

Continuing on this way, we can conclude that

$$x_0 = U_i x_0 = T_i x_0 \tag{2.10}$$

for every i = 1, 2, ..., N - 1. From (2.2) and (2.10), we have

$$\begin{split} \left\| x_{0} - x^{*} \right\|^{2} &\leq \left(1 - \alpha_{3}^{N} \right) \left(\left\| U_{N-1} x_{0} - x^{*} \right\|^{2} \\ &- 2 \frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \left(\kappa - K^{2} \left(\frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \right) \right) \left\| (I - S_{N}) U_{N-1} x_{0} \right\|^{2} \right) + \alpha_{3}^{N} \left\| x_{0} - x^{*} \right\|^{2} \\ &= \left(1 - \alpha_{3}^{N} \right) \left(\left\| x_{0} - x^{*} \right\|^{2} - 2 \frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \left(\kappa - K^{2} \left(\frac{\alpha_{1}^{N}}{1 - \alpha_{3}^{N}} \right) \right) \left\| (I - S_{N}) x_{0} \right\|^{2} \right) \\ &+ \alpha_{3}^{N} \left\| x_{0} - x^{*} \right\|^{2}. \end{split}$$

It implies that

$$x_0 = S_N x_0.$$
 (2.11)

From the definition of S^A and (2.10), we have

$$x_0 = S^A x_0 = U_N x_0 = T_N (\alpha_1^N S_N U_{N-1} + \alpha_2^N U_{N-1} + \alpha_3^N I) x_0 = T_N x_0.$$

Then we have

$$x_0 \in \bigcap_{i=1}^N F(T_i)$$
 and $x_0 \in \bigcap_{i=1}^N F(U_i)$. (2.12)

Since $S_k U_{k-1} x_0 = U_{k-1} x_0$ for every k = 1, 2, ..., N - 1 and $x_0 \in \bigcap_{i=1}^N F(U_i)$, then we have

$$S_k x_0 = x_0$$

for every k = 1, 2, ..., N - 1. From (2.11), it implies that

$$x_0 \in \bigcap_{i=1}^N F(S_i). \tag{2.13}$$

From (2.12) and (2.13), we have

$$x_0 \in \bigcap_{i=1}^N F(T_i) \cap \bigcap_{i=1}^N F(S_i).$$
(2.14)

Hence, $F(S^A) \subseteq \bigcap_{i=1}^N F(T_i) \cap \bigcap_{i=1}^N F(S_i)$. It is easy to see that $\bigcap_{i=1}^N F(T_i) \cap \bigcap_{i=1}^N F(S_i) \subseteq F(S^A)$. Applying (2.2), we have that the mapping S^A is nonexpansive.

Lemma 2.8 [19] Let C be a closed convex subset of a strictly convex Banach space E. Let T_1 and T_2 be two nonexpansive mappings from C into itself with $F(T_1) \cap F(T_2) \neq \emptyset$. Define a mapping S by

$$Sx = \lambda T_1 x + (1 - \lambda) T_2 x, \quad \forall x \in C,$$

where λ is a constant in (0,1). Then S is nonexpansive and $F(S) = F(T_1) \cap F(T_2)$.

Applying Lemma 2.8, we have the following lemma.

Lemma 2.9 Let C be a closed convex subset of a strictly convex Banach space E. Let T_1 , T_2 and T_3 be three nonexpansive mappings from C into itself with $F(T_1) \cap F(T_2) \cap F(T_3) \neq \emptyset$. Define a mapping S by

$$Sx = \alpha T_1 x + \beta T_2 x + \gamma T_3 x, \quad \forall x \in C,$$

where α , β , γ is a constant in (0,1) and $\alpha + \beta + \gamma = 1$. Then S is nonexpansive and $F(S) = F(T_1) \cap F(T_2) \cap F(T_3)$.

Proof For every $x \in C$ and the definition of the mapping *S*, we have

$$\begin{split} Sx &= \alpha T_1 x + \beta T_2 x + \gamma T_3 x \\ &= \alpha T_1 x + (1-\alpha) \left(\frac{\beta}{1-\alpha} T_2 x + \frac{\gamma}{1-\alpha} T_3 x \right) \end{split}$$

$$= \alpha T_1 x + (1 - \alpha) \left(\frac{\beta}{1 - \alpha} T_2 x + \left(1 - \frac{\beta}{1 - \alpha} \right) T_3 x \right)$$
$$= \alpha T_1 x + (1 - \alpha) S_1 x, \qquad (2.15)$$

where $S_1 = \frac{\beta}{1-\alpha}T_2 + (1-\frac{\beta}{1-\alpha})T_3$. From Lemma 2.8, we have $F(S_1) = F(T_2) \cap F(T_3)$ and S_1 is a nonexpansive mapping. From Lemma 2.8 and (2.15), we have $F(S) = F(T_1) \cap F(S_1)$ and S is a nonexpansive mapping. Hence we have $F(S) = F(T_1) \cap F(T_2) \cap F(T_3)$.

3 Main results

Theorem 3.1 Let *C* be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach space *E*. Let Q_C be a sunny nonexpansive retraction from *E* onto *C* and let *A*, *B* be α - and β -inverse strongly accretive mappings of *C* into *E*, respectively. Let $\{S_i\}_{i=1}^N$ be a finite family of κ_i -strict pseudo-contractions of *C* into itself and let $\{T_i\}_{i=1}^N$ be a finite family of nonexpansive mappings of *C* into itself with $\mathcal{F} = \bigcap_{i=1}^N F(S_i) \cap \bigcap_{i=1}^N F(T_i) \cap S(C,A) \cap S(C,B) \neq \emptyset$ and $\kappa = \min\{\kappa_i : i = 1, 2, ..., N\}$ with $K^2 \leq \kappa$, where *K* is the 2-uniformly smooth constant of *E*. Let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, where I = [0,1], $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1$, $\alpha_1^j \in (0,1]$, $\alpha_2^j \in [0,1]$ and $\alpha_3^j \in (0,1)$ for all j = 1, 2, ..., N. Let $\{x_n\}$ be the sequence generated by $x_1, u \in C$ and

$$x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n Q_C (I - aA) x_n + \delta_n Q_C (I - bB) x_n + \eta_n S^A x_n, \quad \forall n \ge 1,$$
(3.1)

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}, \{\eta_n\} \in [0, 1]$ and $\alpha_n + \beta_n + \gamma_n + \delta_n + \eta_n = 1$ and satisfy the following conditions:

(i)
$$\lim_{n\to\infty}\alpha_n=0$$
, $\sum_{n=1}^{\infty}\alpha_n=\infty$,

- (ii) $\{\gamma_n\}, \{\delta_n\}, \{\eta_n\} \subseteq [c, d] \subset (0, 1), \text{ for some } c, d > 0, \forall n \ge 1,$
- (iii) $\sum_{n=1}^{\infty} |\beta_{n+1} \beta_n|, \qquad \sum_{n=1}^{\infty} |\gamma_{n+1} \gamma_n|, \qquad \sum_{n=1}^{\infty} |\delta_{n+1} \delta_n|,$ $\sum_{n=1}^{\infty} |\eta_{n+1} \eta_n|, \qquad \sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty,$

(iv)
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1,$$

(v)
$$a \in \left(0, \frac{\alpha}{K^2}\right)$$
 and $b \in \left(0, \frac{\beta}{K^2}\right)$

Then $\{x_n\}$ converges strongly to $z_0 = Q_F u$, where Q_F is the sunny nonexpansive retraction of *C* onto *F*.

Proof First we show that $Q_C(I - aA)$ and $Q_C(I - bB)$ are nonexpansive mappings. Let $x, y \in C$, we have

$$\|Q_C(I - aA)x - Q_C(I - aA)y\|^2 \le \|x - y - a(Ax - Ay)\|^2$$

$$\le \|x - y\|^2 - 2a\langle Ax - Ay, j(x - y) \rangle + 2K^2 a^2 \|Ax - Ay\|^2$$

$$\leq \|x - y\|^{2} - 2a\alpha \|Ax - Ay\|^{2} + 2K^{2}a^{2}\|Ax - Ay\|^{2}$$

= $\|x - y\|^{2} - 2a(\alpha - K^{2}a)\|Ax - Ay\|^{2}$
 $\leq \|x - y\|^{2}.$ (3.2)

Then we have $Q_C(I - aA)$ is a nonexpansive mapping. By using the same methods as (3.2), we have $Q_C(I - bB)$ is a nonexpansive mapping.

Let $x^* \in \mathcal{F}$. From Lemma 2.3, we have $x^* \in F(Q_C(I - aA))$ and $x^* \in F(Q_C(I - bB))$. By the definition of x_n , we have

$$\|x_{n+1} - x^*\| \le \alpha_n \|u - x^*\| + \beta_n \|x_n - x^*\| + \gamma_n \|Q_C(I - aA)x_n - x^*\| + \delta_n \|Q_C(I - bB)x_n - x^*\| + \eta_n \|S^A x_n - x^*\| \le \alpha_n \|u - x^*\| + (1 - \alpha_n) \|x_n - x^*\| \le \max\{\|u - x^*\|, \|x_1 - x^*\|\}.$$

By induction, we have $||x_n - x^*|| \le \max\{||u - x^*||, ||x_1 - x^*||\}$. We can imply that the sequence $\{x_n\}$ is bounded and so are $\{S^A x_n\}, \{Q_C(I - aA)x_n\}$ and $\{Q_C(I - bB)x_n\}$.

Next, we show that $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$. From the definition of x_n , we have

$$\begin{aligned} \|x_{n+1} - x_n\| &= \|\alpha_n u + \beta_n x_n + \gamma_n Q_C (I - aA) x_n + \delta_n Q_C (I - bB) x_n + \eta_n S^A x_n \\ &- \alpha_{n-1} u - \beta_{n-1} x_{n-1} - \gamma_{n-1} Q_C (I - aA) x_{n-1} - \delta_{n-1} Q_C (I - bB) x_{n-1} \\ &- \eta_{n-1} S^A x_{n-1} \| \\ &\leq |\alpha_n - \alpha_{n-1}| \|u\| + \beta_n \|x_n - x_{n-1}\| + |\beta_n - \beta_{n-1}| \|x_{n-1}\| \\ &+ \gamma_n \|Q_C (I - aA) x_n - Q_C (I - aA) x_{n-1}\| + |\gamma_n - \gamma_{n-1}| \|Q_C (I - aA) x_{n-1}\| \\ &+ \delta_n \|Q_C (I - bB) x_n - Q_C (I - bB) x_{n-1}\| + |\delta_n - \delta_{n-1}| \|Q_C (I - bB) x_{n-1}\| \\ &+ \eta_n \|S^A x_n - S^A x_{n-1}\| + |\eta_{n-1} - \eta_n| \|S^A x_n\| \\ &\leq (1 - \alpha_n) \|x_n - x_{n-1}\| + |\alpha_n - \alpha_{n-1}| \|u\| + |\beta_n - \beta_{n-1}| \|x_{n-1}\| \\ &+ |\gamma_n - \gamma_{n-1}| \|Q_C (I - aA) x_{n-1}\| + |\delta_n - \delta_{n-1}| \|Q_C (I - bB) x_{n-1}\| \\ &+ |\eta_{n-1} - \eta_n| \|S^A x_n\|. \end{aligned}$$

Applying Lemma 2.6, we have

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
(3.3)

Next, we show that

$$\lim_{n \to \infty} \|Q_C(I - aA)x_n - x_n\| = \lim_{n \to \infty} \|Q_C(I - bB)x_n - x_n\| = \lim_{n \to \infty} \|S^A x_n - x_n\| = 0.$$
(3.4)

From the definition of x_n , we have

$$\|x_{n+1} - x^*\|^2 = \|\alpha_n(u - x^*) + \beta_n(x_n - x^*) + \gamma_n(Q_C(I - aA)x_n - x^*) + \delta_n(Q_C(I - bB)x_n - x^*) + \eta_n(S^A x_n - x^*)\|^2$$

$$= \left\| \beta_n (x_n - x^*) + \gamma_n (Q_C (I - aA)x_n - x^*) + (\alpha_n + \delta_n + \eta_n) \left(\frac{\alpha_n (u - x^*)}{\alpha_n + \delta_n + \eta_n} + \frac{\delta_n (Q_C (I - bB)x_n - x^*)}{\alpha_n + \delta_n + \eta_n} + \frac{\eta_n (S^A x_n - x^*)}{\alpha_n + \delta_n + \eta_n} \right) \right\|^2$$

= $\left\| \beta_n (x_n - x^*) + \gamma_n (Q_C (I - aA)x_n - x^*) + c_n z_n \right\|^2$,

where $c_n = \alpha_n + \delta_n + \eta_n$ and $z_n = \frac{\alpha_n(u-x^*)}{\alpha_n + \delta_n + \eta_n} + \frac{\delta_n(Q_C(I-bB)x_n-x^*)}{\alpha_n + \delta_n + \eta_n} + \frac{\eta_n(S^Ax_n-x^*)}{\alpha_n + \delta_n + \eta_n}$. From Lemma 2.2, we have

$$\begin{aligned} \|x_{n+1} - x^*\|^2 &\leq \beta_n \|x_n - x^*\|^2 + \gamma_n \|Q_C(I - aA)x_n - x^*\| + c_n \|z_n\|^2 \\ &- \beta_n \gamma_n g_1(\|x_n - Q_C(I - aA)x_n\|) \\ &\leq (\beta_n + \gamma_n) \|x_n - x^*\|^2 - \beta_n \gamma_n g_1(\|x_n - Q_C(I - aA)x_n\|) \\ &+ c_n \left(\frac{\alpha_n \|u - x^*\|^2}{\alpha_n + \delta_n + \eta_n} + \frac{\delta_n \|Q_C(I - bB)x_n - x^*\|^2}{\alpha_n + \delta_n + \eta_n} + \frac{\eta_n \|S^A x_n - x^*\|^2}{\alpha_n + \delta_n + \delta_n + \eta_n}\right) \\ &\leq (\beta_n + \gamma_n) \|x_n - x^*\|^2 - \beta_n \gamma_n g_1(\|x_n - Q_C(I - aA)x_n\|) \\ &+ \alpha_n \|u - x^*\|^2 + (\delta_n + \eta_n) \|x_n - x^*\|^2 \\ &\leq \|x_n - x^*\|^2 - \beta_n \gamma_n g_1(\|x_n - Q_C(I - aA)x_n\|) + \alpha_n \|u - x^*\|^2, \end{aligned}$$

which implies that

$$\beta_{n}\gamma_{n}g_{1}(\|x_{n}-Q_{C}(I-aA)x_{n}\|) \leq \|x_{n}-x^{*}\|^{2} - \|x_{n+1}-x^{*}\|^{2} + \alpha_{n}\|u-x^{*}\|^{2}$$
$$\leq (\|x_{n}-x^{*}\| + \|x_{n+1}-x^{*}\|)\|x_{n+1}-x_{n}\|$$
$$+ \alpha_{n}\|u-x^{*}\|^{2}.$$
(3.5)

From (3.3) and condition (i), we obtain

$$\lim_{n \to \infty} g_1(\|x_n - Q_C(I - aA)x_n\|) = 0.$$
(3.6)

From the property of g_1 , we have

$$\lim_{n \to \infty} \|x_n - Q_C (I - aA) x_n\| = 0.$$
(3.7)

By using the same method as (3.7), we can imply that

$$\lim_{n\to\infty} \|x_n-Q_C(I-bB)x_n\| = \lim_{n\to\infty} \|x_n-S^Ax_n\| = 0.$$

Define $Gx = \alpha S^A x + \beta Q_C (I - aA)x + \gamma Q_C (I - bB)x$ for all $x \in C$ and $\alpha + \beta + \gamma = 1$. From Lemma 2.9, we have $F(G) = F(Q_C (I - aA)) \cap F(Q_C (I - bB)) \cap F(S^A)$. From Lemmas 2.3 and 2.7, we have $\mathcal{F} = F(G) = \bigcap_{i=1}^N F(T_i) \cap \bigcap_{i=1}^N F(S_i) \cap S(C, A) \cap S(C, B)$. By the definition of *G*, we obtain

$$\|Gx_n - x_n\| \le \alpha \|S^A x_n - x_n\| + \beta \|Q_C(I - aA)x_n - x_n\| + \gamma \|Q_C(I - bB)x_n - x_n\|.$$

From (3.4), we have

$$\lim_{n \to \infty} \|Gx_n - x_n\| = 0.$$
(3.8)

From Lemma 2.5 and (3.8), we have

$$\limsup_{n \to \infty} \langle u - z_0, j(x_n - z_0) \rangle \le 0, \tag{3.9}$$

where $z_0 = Q_F u$. Finally, we prove strong convergence of the sequence $\{x_n\}$ to $z_0 = Q_F u$. From the definition of x_n , we have

$$\begin{aligned} \|x_{n+1} - z_0\|^2 &= \left\| \alpha_n (u - z_0) + \beta_n (x_n - z_0) + \gamma_n (Q_C (I - aA)x_n - z_0) \right. \\ &+ \delta_n (Q_C (I - bB)x_n - z_0) + \eta_n (S^A x_n - z_0) \|^2 \\ &= \left\| \alpha_n (u - z_0) + (1 - \alpha_n) \left(\frac{\beta_n (x_n - z_0)}{1 - \alpha_n} + \frac{\gamma_n (Q_C (I - aA)x_n - z_0)}{1 - \alpha_n} \right) + \frac{\delta_n (Q_C (I - bB)x_n - z_0)}{1 - \alpha_n} + \frac{\eta_n (S^A x_n - z_0)}{1 - \alpha_n} \right) \right\|^2 \\ &\leq \left\| (1 - \alpha_n) \left(\frac{\beta_n (x_n - z_0)}{1 - \alpha_n} + \frac{\gamma_n (Q_C (I - aA)x_n - z_0)}{1 - \alpha_n} \right) + \frac{\delta_n (Q_C (I - bB)x_n - z_0)}{1 - \alpha_n} + \frac{\delta_n (Q_C (I - bB)x_n - z_0)}{1 - \alpha_n} + \frac{\eta_n (S^A x_n - z_0)}{1 - \alpha_n} \right) \right\|^2 + 2\alpha_n \langle u - x_0, j(x_{n+1} - z_0) \rangle \\ &\leq (1 - \alpha_n) \|x_n - z_0\|^2 + 2\alpha_n \langle u - x_0, j(x_{n+1} - z_0) \rangle. \end{aligned}$$

Applying Lemma 2.6 and condition (i), we have $\lim_{n\to\infty} ||x_n - z_0|| = 0$. This completes the proof.

4 Applications

From our main results, we obtain strong convergence theorems in a Banach space. Before proving these theorem, we need the following lemma which is the result from Lemma 2.7 and Definition 1.4. Therefore, we omit the proof.

Lemma 4.1 Let *C* be a nonempty closed convex subset of a 2-uniformly smooth and uniformly convex Banach space. Let $\{S_i\}_{i=1}^N$ be a finite family of κ_i -strict pseudo-contractions of *C* into itself with $\bigcap_{i=1}^N F(S_i) \neq \emptyset$ and $\kappa = \min\{\kappa_i : i = 1, 2, ..., N\}$ with $K^2 \leq \kappa$, where *K* is the 2-uniformly smooth constant of *E*. Let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, where I = [0, 1], $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1$, $\alpha_1^j \in (0, 1]$, $\alpha_2^j \in [0, 1]$ and $\alpha_3^j \in (0, 1)$ for all j = 1, 2, ..., N. Let *S* be the *S*-mapping generated by $S_1, S_2, ..., S_N$ and $\alpha_1, \alpha_2, ..., \alpha_N$. Then $F(S) = \bigcap_{i=1}^N F(S_i)$ and *S* is a nonexpansive mapping.

Theorem 4.2 Let *C* be a nonempty closed convex subset of a uniformly convex and 2uniformly smooth Banach space *E*. Let Q_C be a sunny nonexpansive retraction from *E* onto *C* and let *A*, *B* be α - and β -inverse strongly accretive mappings of *C* into *E*, respectively. Let $\{S_i\}_{i=1}^N$ be a finite family of κ_i -strict pseudo-contractions of *C* into itself with $\mathcal{F} = \bigcap_{i=1}^N F(S_i) \cap S(C,A) \cap S(C,B) \neq \emptyset$ and $\kappa = \min\{\kappa_i : i = 1, 2, ..., N\}$ with $K^2 \leq \kappa$, where *K* is the 2-uniformly smooth constant of *E*. Let $\alpha_j = (\alpha_1^i, \alpha_2^j, \alpha_3^i) \in I \times I \times I$, where I = [0, 1], $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1, \alpha_1^j \in (0,1], \alpha_2^j \in [0,1] \text{ and } \alpha_3^j \in (0,1) \text{ for all } j = 1,2,...,N. \text{ Let } S \text{ be the S-mapping generated by } S_1, S_2, ..., S_N \text{ and } \alpha_1, \alpha_2, ..., \alpha_N. \text{ Let } \{x_n\} \text{ be the sequence generated by } x_1, u \in C \text{ and }$

$$x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n Q_C (I - aA) x_n + \delta_n Q_C (I - bB) x_n + \eta_n S x_n, \quad \forall n \ge 1,$$

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}, \{\eta_n\} \in [0,1]$ and $\alpha_n + \beta_n + \gamma_n + \delta_n + \eta_n = 1$ and satisfy the following conditions:

- (i) $\lim_{n\to\infty}\alpha_n=0$, $\sum_{n=1}^{\infty}\alpha_n=\infty$,
- (ii) $\{\gamma_n\}, \{\delta_n\}, \{\eta_n\} \subseteq [c, d] \subset (0, 1)$ for some $c, d > 0, \forall n \ge 1$,
- (iii) $\sum_{n=1}^{\infty} |\beta_{n+1} \beta_n|, \qquad \sum_{n=1}^{\infty} |\gamma_{n+1} \gamma_n|, \qquad \sum_{n=1}^{\infty} |\delta_{n+1} \delta_n|,$ $\sum_{n=1}^{\infty} |\eta_{n+1} \eta_n|, \qquad \sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty,$
- (iv) $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$,

(v)
$$a \in \left(0, \frac{\alpha}{K^2}\right)$$
 and $b \in \left(0, \frac{\beta}{K^2}\right)$.

Then $\{x_n\}$ converges strongly to $z_0 = Q_F u$, where Q_F is the sunny nonexpansive retraction of *C* onto *F*.

Proof Put $I = T_1 = T_2 = \cdots = T_N$ in Theorem 3.1. From Lemma 4.1 and Theorem 3.1 we can conclude the desired result.

Theorem 4.3 Let *C* be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach space *E*. Let Q_C be a sunny nonexpansive retraction from *E* onto *C*. For every i = 1, 2, ..., N, let A_i , A, B be α_i -, α - and β -inverse strongly accretive mappings of *C* into *E*, respectively. Define a mapping $G_i : C \to C$ by $Q_C(I - \lambda_i A_i)x = G_i x$, where $\lambda_i \in (0, \frac{\alpha_i}{K^2})$, *K* is the 2-uniformly smooth constant of *E*, for all $x \in C$ and i = 1, 2, ..., N. Let $\{S_i\}_{i=1}^N$ be a finite family of κ_i -strict pseudo-contractions of *C* into itself and with $\mathcal{F} = \bigcap_{i=1}^N F(S_i) \cap \bigcap_{i=1}^N S(C, A_i) \cap S(C, A) \cap S(C, B) \neq \emptyset$ and $\kappa = \min\{\kappa_i : i = 1, 2, ..., N\}$ with $K^2 \leq \kappa$. Let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, where $I = [0, 1], \alpha_1^j + \alpha_2^j + \alpha_3^j = 1, \alpha_1^j \in (0, 1], \alpha_2^j \in [0, 1]$ and $\alpha_3^j \in (0, 1)$ for all j = 1, 2, ..., N. Let $\{x_n\}$ be the sequence generated by $x_1, u \in C$ and

$$x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n Q_C (I - aA) x_n + \delta_n Q_C (I - bB) x_n + \eta_n S^A x_n, \quad \forall n \ge 1,$$

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}, \{\eta_n\} \in [0,1]$ and $\alpha_n + \beta_n + \gamma_n + \delta_n + \eta_n = 1$ and satisfy the following conditions:

(i)
$$\lim_{n\to\infty}\alpha_n=0$$
, $\sum_{n=1}^{\infty}\alpha_n=\infty$,

(iii)
$$\sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n|, \qquad \sum_{n=1}^{\infty} |\gamma_{n+1} - \gamma_n|, \qquad \sum_{n=1}^{\infty} |\delta_{n+1} - \delta_n|,$$
$$\sum_{n=1}^{\infty} |\eta_{n+1} - \eta_n|, \qquad \sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty,$$

(iv)
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$$
,

(v)
$$a \in \left(0, \frac{\alpha}{K^2}\right)$$
 and $b \in \left(0, \frac{\beta}{K^2}\right)$.

Then $\{x_n\}$ converges strongly to $z_0 = Q_F u$, where Q_F is the sunny nonexpansive retraction of *C* onto *F*.

Proof By using the same method as (3.2), we can conclude that $\{G_i\}_{i=1}^N$ is a nonexpansive mapping. From Lemma 2.3, we have $F(G_i) = S(C, A_i)$ for all i = 1, 2, ..., N. From Theorem 3.1 we can conclude the desired conclusion.

Competing interests

The author declares that they have no competing interests.

Acknowledgements

This research was supported by the Research Administration Division of King Mongkut's Institute of Technology Ladkrabang.

Received: 26 January 2013 Accepted: 28 May 2013 Published: 18 June 2013

References

- 1. Sahua, DR, Petru'lel, A: Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces. Nonlinear Anal. **74**, 6012-6023 (2011)
- 2. Reich, S: Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl. 44, 57-70 (1973)
- 3. Aoyama, K, liduka, H, Takahashi, W: Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. **2006**, Article ID 35390 (2006). doi:10.1155/FPTA/2006/35390
- 4. Chang, SS, Joseph Lee, HW, Chan, CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. **70**, 3307-3319 (2009)
- 5. Cai, G, Bu, S: Strong convergence theorems for variational inequality problems and fixed point problems in uniformly smooth and uniformly convex Banach spaces. J. Glob. Optim. (2012). doi:10.1007/s10898-012-9923-2
- Jaillet, P, Lamberton, D, Lapeyre, B: Variational inequalities and the pricing of American options. Acta Appl. Math. 21, 263-289 (1990)
- 7. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4(3), 506-510 (1953)
- Buong, N, Lang, ND: Hybrid Mann-Halpern iteration methods for nonexpansive mappings and semigroups. Appl. Math. Comput. 218, 2459-2466 (2011)
- Song, Y: A new sufficient condition for strong convergence of Halpern type iterations. Appl. Math. Comput. 198(2), 721-728 (2007)
- Qin, X, Cho, YJ, Kang, SM, Zhou, H: Convergence of a modified Halpern-type iteration algorithm for quasi-*φ*-nonexpansive mappings. Appl. Math. Lett. 22, 1051-1055 (2009)
- Zhou, H: Convergence theorems for λ-strict pseudo-contractions in 2-uniformly smooth Banach spaces. Nonlinear Anal. 69, 3160-3173 (2008)
- 12. Kangtunyakarn, A, Suantai, S: Hybrid iterative scheme for generalized equilibrium problems and fixed point problems of finite family of nonexpansive mappings. Nonlinear Anal. Hybrid Syst. **3**, 296-309 (2009)
- 13. Kangtunyakarn, A, Suantai, S: A new mapping for finding common solutions of equilibrium problems and fixed point problems of finite family of nonexpansive mappings. Nonlinear Anal. **71**, 4448-4460 (2009)
- 14. Kangtunyakarn, A: Iterative scheme for a nonexpansive mapping, an η -strictly pseudo-contractive mapping and variational inequality problems in a uniformly convex and 2-uniformly smooth Banach space. Fixed Point Theory Appl. **2013**, Article ID 23 (2013)
- 15. Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138 (1991)
- Cho, YJ, Zhou, HY, Guo, G: Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings. Comput. Math. Appl. 47, 707-717 (2004)
- 17. Zhou, H: Convergence theorems for λ -strict pseudocontractions in 2-uniformly smooth Banach spaces. Nonlinear Anal. 69, 3160-3173 (2008)

- 18. Xu, HK: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659-678 (2003)
- 19. Bruck, RE: Properties of fixed point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math. Soc. 179, 251-262 (1973)

doi:10.1186/1687-1812-2013-157

Cite this article as: Kangtunyakarn: A new mapping for finding a common element of the sets of fixed points of two finite families of nonexpansive and strictly pseudo-contractive mappings and two sets of variational inequalities in uniformly convex and 2-smooth Banach spaces. *Fixed Point Theory and Applications* 2013 **2013**:157.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com