Some multidimensional fixed point theorems on partially preordered G^{*}-metric spaces under (ψ, φ)-contractivity conditions

Antonio Roldán* and Erdal Karapınar

Correspondence:
afroldan@ujaen.es
Campus las Lagunillas s/n, University of Jaén, Jaén, 23071, Spain

Abstract

In this paper we present some (unidimensional and) multidimensional fixed point results under (ψ, φ)-contractivity conditions in the framework of G^{*}-metric spaces, which are spaces that result from G-metric spaces (in the sense of Mustafa and Sims) omitting one of their axioms. We prove that these spaces let us consider easily the product of G^{*}-metrics. Our result clarifies and improves some recent results on this topic because, among other different reasons, we will not need a partial order on the underlying space. Furthermore, the way in which several contractivity conditions are proposed imply that our theorems cannot be reduced to metric spaces.

MSC: 46T99; 47H10; 47H09; 54H25

1 Introduction

In the sixties, inspired by the mapping that associated the area of a triangle to its three vertices, Gähler [1,2] introduced the concept of 2-metric spaces. Gähler believed that 2metric spaces can be interpreted as a generalization of usual metric spaces. However, some authors demonstrated that there is no clear relationship between these notions. For instance, Ha et al. [3] showed that a 2-metric does not have to be a continuous function of its three variables. Later, inspired by the perimeter of a triangle rather than the area, Dhage [4] changed the axioms and presented the concept of D-metric. Different topological structures (see [5-7]) were considered in such spaces and, subsequently, several fixed point results were established. Unfortunately, most of their properties turned out to be false (see [8-10]). These considerations led to the concept of G-metric space introduced by Mustafa and Sims [11]. Since then, this theory has been expansively developed, paying a special attention to fixed point theorems (see, for instance, [12-28] and references therein).

The main aim of the present paper is to prove new unidimensional and multidimensional fixed point results in the framework of the G-metric spaces provided with a partial preorder (not necessarily a partial order). However, we need to overcome the well-known fact that the usual product of G-metrics is not necessarily a G-metric unless it comes from classical metrics (see [11], Section 4). Hence, we will omit one of the axioms that define a G-metric and we consider a new class of metrics, called G^{*}-metrics. As a consequence, our main results are valid in the context of G-metric spaces.

2 Preliminaries

Let n be a positive integer. Henceforth, X will denote a non-empty set and X^{n} will denote the product space $X \times X \times{ }^{n} \times X$. Throughout this manuscript, m and k will denote non-negative integers and $i, j, s \in\{1,2, \ldots, n\}$. Unless otherwise stated, 'for all m ' will mean 'for all $m \geq 0$ ' and 'for all i ' will mean 'for all $i \in\{1,2, \ldots, n\}$ '. Let $\mathbb{R}_{0}^{+}=[0, \infty)$.

Definition 1 We will say that \preccurlyeq is a partial preorder on X (or (X, \preccurlyeq) is a preordered set or (X, \preccurlyeq) is a partially preordered space) if the following properties hold.

- Reflexivity: $x \preccurlyeq x$ for all $x \in X$.
- Transitivity: If $x, y, z \in X$ verify $x \preccurlyeq y$ and $y \preccurlyeq z$, then $x \preccurlyeq z$.

Henceforth, let $\{\mathrm{A}, \mathrm{B}\}$ be a partition of $\Lambda_{n}=\{1,2, \ldots, n\}$, that is, $\mathrm{A} \cup \mathrm{B}=\Lambda_{n}$ and $\mathrm{A} \cap \mathrm{B}=\varnothing$ such that A and B are non-empty sets. In the sequel, we will denote

$$
\begin{aligned}
& \Omega_{\mathrm{A}, \mathrm{~B}}=\left\{\sigma: \Lambda_{n} \rightarrow \Lambda_{n}: \sigma(\mathrm{A}) \subseteq \mathrm{A} \text { and } \sigma(\mathrm{B}) \subseteq \mathrm{B}\right\} \quad \text { and } \\
& \Omega_{\mathrm{A}, \mathrm{~B}}^{\prime}=\left\{\sigma: \Lambda_{n} \rightarrow \Lambda_{n}: \sigma(\mathrm{A}) \subseteq \mathrm{B} \text { and } \sigma(\mathrm{B}) \subseteq \mathrm{A}\right\} .
\end{aligned}
$$

From now on, let $\Upsilon=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ be an n-tuple of mappings from $\{1,2, \ldots, n\}$ into itself verifying $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}$ if $i \in \mathrm{~A}$ and $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}^{\prime}$ if $i \in \mathrm{~B}$.
If (X, \preccurlyeq) is a partially preordered space, $x, y \in X$ and $i \in \Lambda_{n}$, we will use the following notation:

$$
x \preccurlyeq{ }_{i} y \quad \Leftrightarrow \quad \begin{cases}x \preccurlyeq y, & \text { if } i \in \mathrm{~A}, \\ x \succcurlyeq y, & \text { if } i \in \mathrm{~B} .\end{cases}
$$

Consider on the product space X^{n} the following partial preorder: for $\mathrm{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathrm{Y}=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}$,

$$
\begin{equation*}
\mathrm{X} \sqsubseteq \mathrm{Y} \quad \Leftrightarrow \quad x_{i} \preccurlyeq{ }_{i} y_{i} \quad \text { for all } i . \tag{1}
\end{equation*}
$$

Notice that \sqsubseteq depends on A and B. We say that two points X and Y are \sqsubseteq-comparable if $\mathrm{X} \sqsubseteq \mathrm{Y}$ or $\mathrm{X} \sqsupseteq \mathrm{Y}$.

Proposition 2 If $\mathrm{X} \sqsubseteq \mathrm{Y}$ and $\sigma \in \Omega_{\mathrm{A}, \mathrm{B}} \cup \Omega_{\mathrm{A}, \mathrm{B}}^{\prime}$, then $\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$ and $\left(y_{\sigma(1)}, y_{\sigma(2)}, \ldots\right.$, $\left.y_{\sigma(n)}\right)$ are \sqsubseteq-comparable. In particular,

$$
\begin{array}{ll}
\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right) \sqsubseteq\left(y_{\sigma(1)}, y_{\sigma(2)}, \ldots, y_{\sigma(n)}\right) & \text { if } \sigma \in \Omega_{\mathrm{A}, \mathrm{~B}}, \\
\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right) \sqsupseteq\left(y_{\sigma(1)}, y_{\sigma(2)}, \ldots, y_{\sigma(n)}\right) & \text { if } \sigma \in \Omega_{\mathrm{A}, \mathrm{~B}}^{\prime} .
\end{array}
$$

Proof Suppose that $x_{i} \preccurlyeq_{i} y_{i}$ for all i. Hence $x_{\sigma(i)} \preccurlyeq_{\sigma(i)} y_{\sigma(i)}$ for all i. Fix $\sigma \in \Omega_{\mathrm{A}, \mathrm{B}}$. If $i \in \mathrm{~A}$, then $\sigma(i) \in \mathrm{A}$, so $x_{\sigma(i)} \preccurlyeq \sigma(i) y_{\sigma(i)}$ implies that $x_{\sigma(i)} \preccurlyeq y_{\sigma(i)}$, which means that $x_{\sigma(i)} \preccurlyeq i y_{\sigma(i)}$. If $i \in \mathrm{~B}$, then $\sigma(i) \in \mathrm{B}$, so $x_{\sigma(i)} \preccurlyeq_{\sigma(i)} y_{\sigma(i)}$ implies that $x_{\sigma(i)} \succcurlyeq y_{\sigma(i)}$, which means that $x_{\sigma(i)} \preccurlyeq_{i} y_{\sigma(i)}$. In any case, if $\sigma \in \Omega_{\mathrm{A}, \mathrm{B}}$, then $x_{\sigma(i)} \preccurlyeq_{i} y_{\sigma(i)}$ for all i. It follows that $\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right) \sqsubseteq$ $\left(y_{\sigma(1)}, y_{\sigma(2)}, \ldots, y_{\sigma(n)}\right)$.
Now fix $\sigma \in \Omega_{\mathrm{A}, \mathrm{B}}^{\prime}$. If $i \in \mathrm{~A}$, then $\sigma(i) \in \mathrm{B}$, so $x_{\sigma(i)} \preccurlyeq \sigma(i) y_{\sigma(i)}$ implies that $x_{\sigma(i)} \succcurlyeq y_{\sigma(i)}$, which means that $x_{\sigma(i)} \succcurlyeq_{i} y_{\sigma(i)}$. If $i \in \mathrm{~B}$, then $\sigma(i) \in \mathrm{A}$, so $x_{\sigma(i)} \preccurlyeq \sigma(i) y_{\sigma(i)}$ implies that $x_{\sigma(i)} \preccurlyeq y_{\sigma(i)}$, which means that $x_{\sigma(i)} \succcurlyeq_{i} y_{\sigma(i)}$.

Let $F: X^{n} \rightarrow X$ be a mapping.

Definition 3 (Roldán et al. [20]) A point $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$ is called an Υ-fixed point of the mapping F if

$$
\begin{equation*}
F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)=x_{i} \quad \text { for all } i . \tag{2}
\end{equation*}
$$

Definition 4 (Roldán et al. [20]) Let (X, \preccurlyeq) be a partially preordered space. We say that F has the mixed monotone property (w.r.t. $\{\mathrm{A}, \mathrm{B}\}$) if F is monotone non-decreasing in the arguments of A and monotone non-increasing in the arguments of B , i.e., for all $x_{1}, x_{2}, \ldots, x_{n}, y, z \in X$ and all i,

$$
y \preccurlyeq z \quad \Rightarrow \quad F\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right) \preccurlyeq_{i} F\left(x_{1}, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_{n}\right) .
$$

We will use the following results about real sequences in the proof of our main theorems.

Lemma 5 Let $\left\{a_{m}^{1}\right\}_{m \in \mathbb{N}}, \ldots,\left\{a_{m}^{n}\right\}_{m \in \mathbb{N}}$ be n real lower bounded sequences such that $\left\{\max \left(a_{m}^{1}\right.\right.$, $\left.\left.\ldots, a_{m}^{n}\right)\right\}_{m \in \mathbb{N}} \rightarrow \delta$. Then there exist $i_{0} \in\{1,2, \ldots, n\}$ and a subsequence $\left\{a_{m(k)}^{i_{0}}\right\}_{k \in \mathbb{N}}$ such that $\left\{a_{m(k)}^{i_{0}}\right\}_{k \in \mathbb{N}} \rightarrow \delta$.

Proof Let $b_{m}=\max \left(a_{m}^{1}, a_{m}^{2}, \ldots, a_{m}^{n}\right)$ for all m. As $\left\{b_{m}\right\}$ is convergent, it is bounded. As $a_{m}^{i} \leq b_{m}$ for all m and i, then every $\left\{a_{m}^{i}\right\}$ is bounded. As $\left\{a_{m}^{1}\right\}_{m \in \mathbb{N}}$ is a real bounded sequence, it has a convergent subsequence $\left\{a_{\sigma_{1}(m)}^{1}\right\}_{m \in \mathbb{N}} \rightarrow a_{1}$. Consider the subsequences $\left\{a_{\sigma_{1}(m)}^{2}\right\}_{m \in \mathbb{N}},\left\{a_{\sigma_{1}(m)}^{3}\right\}_{m \in \mathbb{N}}, \ldots,\left\{a_{\sigma_{1}(m)}^{n}\right\}_{m \in \mathbb{N}}$, that are $n-1$ real bounded sequences, and the sequence $\left\{b_{\sigma_{1}(m)}\right\}_{m \in \mathbb{N}}$ that also converges to δ. As $\left\{a_{\sigma_{1}(m)}^{2}\right\}_{m \in \mathbb{N}}$ is a real bounded sequence, it has a convergent subsequence $\left\{a_{\sigma_{2} \sigma_{1}(m)}^{2}\right\}_{m \in \mathbb{N}} \rightarrow a_{2}$. Then the sequences $\left\{a_{\sigma_{2} \sigma_{1}(m)}^{3}\right\}_{m \in \mathbb{N}}$, $\left\{a_{\sigma_{2} \sigma_{1}(m)}^{4}\right\}_{m \in \mathbb{N}}, \ldots,\left\{a_{\sigma_{2} \sigma_{1}(m)}^{n}\right\}_{m \in \mathbb{N}}$ also are $n-2$ real bounded sequences and $\left\{a_{\sigma_{2} \sigma_{1}(m)}^{1}\right\}_{m \in \mathbb{N}} \rightarrow$ a_{1} and $\left\{b_{\sigma_{2} \sigma_{1}(m)}\right\}_{m \in \mathbb{N}} \rightarrow \delta$. Repeating this process n times, we can find n subsequences $\left\{a_{\sigma(m)}^{1}\right\}_{m \in \mathbb{N}},\left\{a_{\sigma(m)}^{2}\right\}_{m \in \mathbb{N}}, \ldots,\left\{a_{\sigma(m)}^{n}\right\}_{m \in \mathbb{N}}$ (where $\left.\sigma=\sigma_{n} \cdots \sigma_{1}\right)$ such that $\left\{a_{\sigma(m)}^{i}\right\}_{m \in \mathbb{N}} \rightarrow a_{i}$ for all i. And $\left\{b_{\sigma(m)}\right\}_{m \in \mathbb{N}} \rightarrow \delta$. But

$$
\left\{b_{\sigma(m)}\right\}_{m \in \mathbb{N}}=\left\{\max \left(a_{\sigma(m)}^{n}, \ldots, a_{\sigma(m)}^{n}\right)\right\}_{m \in \mathbb{N}} \rightarrow \max \left(a_{1}, \ldots, a_{n}\right),
$$

so $\delta=\max \left(a_{1}, \ldots, a_{n}\right)$ and there exists $i_{0} \in\{1,2, \ldots, n\}$ such that $a_{i_{0}}=\delta$. Therefore, there exist $i_{0} \in\{1,2, \ldots, n\}$ and a subsequence $\left\{a_{\sigma(m)}^{i_{0}}\right\}_{m \in \mathbb{N}}$ such that $\left\{a_{\sigma(m)}^{i_{0}}\right\}_{m \in \mathbb{N}} \rightarrow a_{i_{0}}=\delta$.

Lemma 6 Let $\left\{a_{m}\right\}_{m \in \mathbb{N}}$ be a sequence of non-negative real numbers which has not any subsequence converging to zero. Then, for all $\varepsilon>0$, there exist $\delta \in] 0, \varepsilon\left[\right.$ and $m_{0} \in \mathbb{N}$ such that $a_{m} \geq \delta$ for all $m \geq m_{0}$.

Proof Suppose that the conclusion is not true. Then there exists $\varepsilon_{0}>0$ such that, for all $\delta \in] 0, \varepsilon_{0}\left[\right.$, there exists $m_{0} \in \mathbb{N}$ verifying $a_{m_{0}}<\delta$. Let $k_{0} \in \mathbb{N}$ be such that $1 / k_{0}<\varepsilon_{0}$. For all $k \in \mathbb{N}$, take $\left.\delta_{k}=1 /\left(k+k_{0}\right) \in\right] 0, \varepsilon_{0}\left[\right.$. Then there exists $m(k) \in \mathbb{N}$ verifying $0 \leq a_{m(k)}<\delta_{k}=$ $1 /\left(k+k_{0}\right)$. Taking limit when $k \rightarrow \infty$, we deduce that $\lim _{k \rightarrow \infty} a_{m(k)}=0$. Then $\left\{a_{m}\right\}$ has a subsequence converging to zero (maybe, reordering $\left\{a_{m(k)}\right\}$), but this is a contradiction.

Let

$$
\Psi=\left\{\phi:[0, \infty) \rightarrow[0, \infty): \phi \text { is continuous, non-decreasing and } \phi^{-1}(\{0\})=\{0\}\right\} .
$$

Lemma 7 If $\psi \in \Psi$ and $\left\{a_{m}\right\} \subset[0, \infty)$ verifies $\left\{\psi\left(a_{m}\right)\right\} \rightarrow 0$, then $\left\{a_{m}\right\} \rightarrow 0$.

Proof If the conclusion does not hold, there exists $\varepsilon_{0}>0$ such that, for all $m_{0} \in \mathbb{N}$, there exists $m \geq m_{0}$ verifying $a_{m} \geq \varepsilon_{0}$. This means that $\left\{a_{m}\right\}$ has a partial subsequence $\left\{a_{m(k)}\right\}_{k}$ such that $a_{m(k)} \geq \varepsilon_{0}$. As ψ is non-decreasing, $\psi\left(\varepsilon_{0}\right) \leq \psi\left(a_{m(k)}\right)$ for all $k \in \mathbb{N}$. Therefore, $\left\{\psi\left(a_{m}\right)\right\}_{m}$ has a subsequence $\left\{\psi\left(a_{m(k)}\right)\right\}_{k}$ lower bounded by $\psi\left(\varepsilon_{0}\right)>0$, but this is impossible since $\lim _{m \rightarrow \infty} \psi\left(a_{m}\right)=0$.

Lemma 8 Let $\left\{a_{m}^{1}\right\},\left\{a_{m}^{2}\right\}, \ldots,\left\{a_{m}^{n}\right\},\left\{b_{m}^{1}\right\},\left\{b_{m}^{2}\right\}, \ldots,\left\{b_{m}^{n}\right\} \subset[0, \infty)$ be $2 n$ sequences of nonnegative real numbers and suppose that there exist $\psi, \varphi \in \Psi$ such that

$$
\begin{aligned}
& \psi\left(a_{m+1}^{i}\right) \leq(\psi-\varphi)\left(b_{m}^{i}\right) \quad \text { for all } i \text { and all } m, \text { and } \\
& \psi\left(\max _{1 \leq i \leq n} b_{m}^{i}\right) \leq \psi\left(\max _{1 \leq i \leq n} a_{m}^{i}\right) \quad \text { for all } m .
\end{aligned}
$$

Then $\left\{a_{m}^{i}\right\} \rightarrow 0$ for all i.

Proof Let $c_{m}=\max _{1 \leq i \leq n} a_{m}^{i}$ for all m. Then, for all m,

$$
\begin{aligned}
\psi\left(c_{m+1}\right) & =\psi\left(\max _{1 \leq i \leq n} a_{m+1}^{i}\right)=\max _{1 \leq i \leq n} \psi\left(a_{m+1}^{i}\right) \leq \max _{1 \leq i \leq n}\left[(\psi-\varphi)\left(b_{m}^{i}\right)\right] \leq \max _{1 \leq i \leq n} \psi\left(b_{m}^{i}\right) \\
& =\psi\left(\max _{1 \leq i \leq n} b_{m}^{i}\right) \leq \psi\left(\max _{1 \leq i \leq n} a_{m}^{i}\right)=\psi\left(c_{m}\right) .
\end{aligned}
$$

Therefore, $\left\{\psi\left(c_{m}\right)\right\}$ is a non-increasing, bounded below sequence. Then it is convergent. Let $\Delta \geq 0$ be such that $\left\{\psi\left(c_{m}\right)\right\} \rightarrow \Delta$ and $\Delta \leq \psi\left(c_{m}\right)$. Let us show that $\Delta=0$. Since

$$
\left\{\max _{1 \leq i \leq n} \psi\left(a_{m}^{i}\right)\right\}=\left\{\psi\left(\max _{1 \leq i \leq n} a_{m}^{i}\right)\right\}=\left\{\psi\left(c_{m}\right)\right\} \rightarrow \Delta,
$$

Lemma 5 guarantees that there exist $i_{0} \in\{1,2, \ldots, n\}$ and a partial subsequence $\left\{a_{m(k)}^{i_{0}}\right\}_{k \in \mathbb{N}}$ such that $\left\{\psi\left(a_{m(k)}^{i_{0}}\right)\right\} \rightarrow \Delta$. Moreover,

$$
\begin{equation*}
0 \leq \psi\left(a_{m(k)}^{i_{0}}\right) \leq(\psi-\varphi)\left(b_{m(k)-1}^{i_{0}}\right) \quad \text { for all } k \tag{3}
\end{equation*}
$$

Consider the sequence $\left\{b_{m(k)-1}^{i_{0}}\right\}_{k \in \mathbb{N}}$. If this sequence has a partial subsequence converging to zero, then we can take limit in (3) when $k \rightarrow 0$ using that partial subsequence, and we deduce $\Delta=0$. On the contrary, if $\left\{b_{m(k)-1}^{i_{0}}\right\}_{k \in \mathbb{N}}$ has not any partial subsequence converging to zero, Lemma 6 assures us that there exist $\delta \in] 0,1\left[\right.$ and $k_{0} \in \mathbb{N}$ such that $b_{m(k)-1}^{i_{0}} \geq \delta$ for all $k \geq k_{0}$. Since φ is non-decreasing, $-\varphi\left(b_{m(k)-1}^{i_{0}}\right) \leq-\varphi(\delta)<0$. Then, by (3), for all $k \geq k_{0}$,

$$
\begin{aligned}
0 & \leq \psi\left(a_{m(k)}^{i_{0}}\right) \leq(\psi-\varphi)\left(b_{m(k)-1}^{i_{0}}\right)=\psi\left(b_{m(k)-1}^{i_{0}}\right)-\varphi\left(b_{m(k)-1}^{i_{0}}\right) \leq \psi\left(b_{m(k)-1}^{i_{0}}\right)-\varphi(\delta) \\
& \leq \psi\left(\max _{1 \leq i \leq n} b_{m(k)-1}^{i}\right)-\varphi(\delta) \leq \psi\left(\max _{1 \leq i \leq n} a_{m(k)-1}^{i}\right)-\varphi(\delta)=\psi\left(c_{m(k)-1}\right)-\varphi(\delta) .
\end{aligned}
$$

Taking limit as $k \rightarrow \infty$, we deduce $\Delta \leq \Delta-\varphi(\delta)$, which is impossible. This proves that $\Delta=0$. Since $\left\{\psi\left(c_{m}\right)\right\} \rightarrow \Delta=0$, Lemma 7 implies that $\left\{c_{m}\right\} \rightarrow 0$, which is equivalent to $\left\{a_{m}^{i}\right\} \rightarrow 0$ for all i.

Corollary 9 If $\psi, \varphi \in \Psi$ and $\left\{a_{m}\right\},\left\{b_{m}\right\} \subset[0, \infty)$ verify $\psi\left(a_{m+1}\right) \leq(\psi-\varphi)\left(b_{m}\right)$ and $\psi\left(b_{m}\right) \leq \psi\left(a_{m}\right)$ for all m, then $\left\{a_{m}\right\} \rightarrow 0$.

Corollary 10 If $\psi, \varphi \in \Psi$ and $\left\{a_{m}\right\} \subset[0, \infty)$ verifies $\psi\left(a_{m+1}\right) \leq \psi\left(a_{m}\right)-\varphi\left(a_{m}\right)$ for all m, then $\left\{a_{m}\right\} \rightarrow 0$.

Definition 11 (Mustafa and Sims [11]) A generalized metric (or a G-metric) on X is a mapping $G: X^{3} \rightarrow \mathbb{R}_{0}^{+}$verifying, for all $x, y, z \in X$:
$\left(G_{1}\right) G(x, x, x)=0$.
$\left(G_{2}\right) G(x, x, y)>0$ if $x \neq y$.
$\left(G_{3}\right) \quad G(x, x, y) \leq G(x, y, z)$ if $y \neq z$.
$\left(G_{4}\right) G(x, y, z)=G(x, z, y)=G(y, z, x)=\cdots$ (symmetry in all three variables).
$\left(G_{5}\right) G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ (rectangle inequality).

Let $\left\{\left(X_{i}, G_{i}\right)\right\}_{i=1}^{n}$ be a family of G-metric spaces, consider the product space $X=X_{1} \times X_{2} \times$ $\cdots \times X_{n}$ and define G^{m} and G^{s} on X^{3} by

$$
G^{m}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\max _{1 \leq i \leq n} G_{i}\left(x_{i}, y_{i}, z_{i}\right) \quad \text { and } \quad G^{s}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum_{i=1}^{n} G_{i}\left(x_{i}, y_{i}, z_{i}\right)
$$

for all $\mathrm{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathrm{Y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right), \mathrm{Z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in X$.
A classical example of G-metric comes from a metric space (X, d), where $G(x, y, z)=$ $d_{x y}+d_{y z}+d_{z x}$ measures the perimeter of a triangle. In this case, property $\left(G_{3}\right)$ has an obvious geometric interpretation: the length of an edge of a triangle is less than or equal to its semiperimeter, that is, $2 d_{x y} \leq d_{x y}+d_{y z}+d_{z x}$. However, property $\left(G_{3}\right)$ implies that, in general, the major structures G^{m} and G^{s} are not necessarily G-metrics on $X_{1} \times X_{2} \times \cdots \times$ X_{n}. Only when each G_{i} is symmetric (that is, $G(x, x, y)=G(y, y, x)$ for all $\left.x, y\right)$, the product is also a G-metric (see [11]). But in this case, symmetric G-metrics can be reduced to usual metrics, which limits the interest in this kind of spaces.
In order to prove our main results, that are also valid in G-metric spaces, we will not need property $\left(G_{3}\right)$. Omitting this property, we consider a class of spaces for which G^{m} and G^{s} have the same initial metric structure. Then we present the following spaces.

3 G*-metric spaces

Definition 12 A G^{*}-metric on X is a mapping $G: X^{3} \rightarrow \mathbb{R}_{0}^{+}$verifying $\left(G_{1}\right),\left(G_{2}\right),\left(G_{4}\right)$ and $\left(G_{5}\right)$.

The open ball $B(x, r)$ of center $x \in X$ and radius $r>0$ in a G^{*}-metric space (X, G) is

$$
B(x, r)=\{y \in X: G(x, x, y)<r\} .
$$

The following lemma is a characterization of the topology generated by a neighborhood system at each point.

Lemma 13 Let X be a set and, for all $x \in X$, let β_{x} be a non-empty family of subsets of X verifying:

1. $x \in N$ for all $N \in \beta_{x}$.
2. For all $N_{1}, N_{2} \in \beta_{x}$, there exists $N_{3} \in \beta_{x}$ such that $N_{3} \subseteq N_{1} \cap N_{2}$.
3. For all $N \in \beta_{x}$, there exists $N^{\prime} \in \beta_{x}$ such that for all $y \in N^{\prime}$, there exists $N^{\prime \prime} \in \beta_{y}$ verifying $N^{\prime \prime} \subseteq N$.
Then there exists a unique topology τ on X such that β_{x} is a neighborhood system at x.
Let (X, G) be a G^{*}-metric space and consider the family $\beta_{x}=\{B(x, r): r>0\}$. It is clear that $x \in B(x, r)$ (by $\left.\left(G_{1}\right), G(x, x, x)=0\right)$ and $N_{3}=B(x, \min (r, s)) \subseteq B(x, r) \cap B(x, s)$. Next, let $N=N^{\prime}=B(x, r) \in \beta_{x}$ and let $y \in N^{\prime}=B(x, r)$. We have to prove that there exists $s>0$ such that $N^{\prime \prime}=B(y, s) \subseteq B(x, r)=N$. Indeed, if $y=x$, then we can take $s=r>0$. On the contrary, if $y \neq x$, then $0<G(x, x, y)<r$ by $\left(G_{2}\right)$. Let $\left.r^{\prime} \in\right] G(x, x, y), r\left[\right.$ arbitrary and let $s=r-r^{\prime}>0$ (that is, $r^{\prime}+s=r$). Now we prove that $B(y, s) \subseteq B(x, r)$. Let $z \in B(y, s)$. Then, using $\left(G_{4}\right)$ and $\left(G_{5}\right)$,

$$
G(x, x, z)=G(z, x, x) \stackrel{a=y}{\leq} G(z, y, y)+G(y, x, x)=G(x, x, y)+G(y, y, z)<r^{\prime}+s=r .
$$

Then $z \in B(x, r)$ and, as a consequence, $B(y, s) \subseteq B(x, r)$. Lemma 13 guarantees that there exists a unique topology τ_{G} on X such that $\beta_{x}=\{B(x, r): r>0\}$ is a neighborhood system at each $x \in X$.

Next, let us show that τ_{G} is Hausdorff. Let $x, y \in X$ be two points such that $x \neq y$. By $\left(G_{2}\right), r=G(x, x, y)>0$. We claim that $B(x, r / 4) \cap B(y, r / 4)=\varnothing$. We reason by contradiction. Let $z \in B(x, r / 4) \cap B(y, r / 4)$, that is, $G(x, x, z)<r / 4$ and $G(y, y, z)<r / 4$. Using $\left(G_{4}\right)$ and $\left(G_{5}\right)$ twice

$$
\begin{aligned}
0 & <r=G(x, x, y)=G(y, x, x) \leq G(y, z, z)+G(z, x, x)=G(z, z, y)+G(x, x, z) \\
& \leq G(z, y, y)+G(y, z, y)+G(x, x, z)=G(y, y, z)+G(y, y, z)+G(x, x, z) \\
& <\frac{r}{4}+\frac{r}{4}+\frac{r}{4}=\frac{3 r}{4}<r,
\end{aligned}
$$

which is impossible. Then $B(x, r / 4) \cap B(y, r / 4)=\varnothing$ and τ_{G} is Hausdorff.
A subset $A \subseteq X$ is G-open if for all $x \in A$ there exists $r>0$ such that $B(x, r) \subseteq A$. Following classic techniques, it is possible to prove that there exists a unique topology τ_{G} on X such that $\beta_{x}=\{B(x, r): r>0\}$ is a neighborhood system at each $x \in X$. Furthermore, τ_{G} is a Hausdorff topology. In this topology, we characterize the notions of convergent sequence and Cauchy sequence in the following way. Let (X, G) be a G^{*}-metric space, let $\left\{x_{m}\right\} \subseteq X$ be a sequence and let $x \in X$.

- $\left\{x_{m}\right\}$ G-converges to x, and we will write $\left\{x_{m}\right\} \xrightarrow{G} x$ if $\lim _{m, m^{\prime} \rightarrow \infty} G\left(x_{m}, x_{m^{\prime}}, x\right)=0$, that is, for all $\varepsilon>0$, there exists $m_{0} \in \mathbb{N}$ verifying that $G\left(x_{m}, x_{m^{\prime}}, x\right)<\varepsilon$ for all $m, m^{\prime} \in \mathbb{N}$ such that $m, m^{\prime} \geq m_{0}$.
- $\left\{x_{m}\right\}$ is G-Cauchy if $\lim _{m, m^{\prime}, m^{\prime \prime} \rightarrow \infty} G\left(x_{m}, x_{m^{\prime}}, x_{m^{\prime \prime}}\right)=0$, that is, for all $\varepsilon>0$, there exists $m_{0} \in \mathbb{N}$ verifying that $G\left(x_{m}, x_{m^{\prime}}, x_{m^{\prime \prime}}\right)<\varepsilon$ for all $m, m^{\prime}, m^{\prime \prime} \in \mathbb{N}$ such that $m, m^{\prime}, m^{\prime \prime} \geq m_{0}$.

Lemma $14 \operatorname{Let}(X, G)$ be a G^{*}-metric space, let $\left\{x_{m}\right\} \subseteq X$ be a sequence and let $x \in X$. Then the following conditions are equivalent.
(a) $\left\{x_{m}\right\}$ G-converges to x.
(b) $\lim _{m \rightarrow \infty} G\left(x, x, x_{m}\right)=0$.
(c) $\lim _{m \rightarrow \infty} G\left(x_{m}, x_{m}, x\right)=0$.
(d) $\lim _{m \rightarrow \infty} G\left(x_{m}, x_{m}, x\right)=0$ and $\lim _{m \rightarrow \infty} G\left(x_{m}, x_{m+1}, x\right)=0$.
(e) $\lim _{m \rightarrow \infty} G\left(x, x, x_{m}\right)=0$ and $\lim _{m \rightarrow \infty} G\left(x_{m}, x_{m+1}, x\right)=0$.

Notice that the condition $\lim _{m \rightarrow \infty} G\left(x_{m}, x_{m+1}, x\right)=0$ is not strong enough to prove that $\left\{x_{m}\right\}$ G-converges to x.

Proposition 15 The limit of a G-convergent sequence in a G^{*}-metric space is unique.

Lemma 16 If (X, G) is a G^{*}-metric space and $\left\{x_{m}\right\} \subseteq X$ is a sequence, then the following conditions are equivalent.
(a) $\left\{x_{m}\right\}$ is G-Cauchy.
(b) $\lim _{m, m^{\prime} \rightarrow \infty} G\left(x_{m}, x_{m^{\prime}}, x_{m^{\prime}}\right)=0$.
(c) $\lim _{m, m^{\prime} \rightarrow \infty} G\left(x_{m}, x_{m+1}, x_{m^{\prime}}\right)=0$.

Remark 17 As a consequence, a sequence $\left\{x_{m}\right\} \subseteq X$ is not G-Cauchy if and only if there exist $\varepsilon_{0}>0$ and two partial subsequences $\left\{x_{n(k)}\right\}_{k \in \mathbb{N}}$ and $\left\{x_{m(k)}\right\}_{k \in \mathbb{N}}$ such that $k<n(k)<$ $m(k)<n(k+1), G\left(x_{n(k)}, x_{n(k)+1}, x_{m(k)}\right) \geq \varepsilon_{0}$ and $G\left(x_{n(k)}, x_{n(k)+1}, x_{m(k)-1}\right)<\varepsilon_{0}$ for all k.

Definition 18 Let (X, G) be a G^{*}-metric space and let \preccurlyeq be a preorder on X. We will say that (X, G, \preccurlyeq) is regular non-decreasing (respectively, regular non-increasing) if for all $\preccurlyeq-$ monotone non-decreasing (respectively, non-increasing) sequence $\left\{x_{m}\right\}$ such that $\left\{x_{m}\right\} \xrightarrow{G}$ z_{0}, we have that $x_{m} \preccurlyeq z_{0}$ (respectively, $x_{m} \succcurlyeq z_{0}$) for all m. We will say that (X, G, \preccurlyeq) is regular if it is both regular non-decreasing and regular non-increasing.

Some authors said that (X, G, \preccurlyeq) verifies the sequential monotone property if (X, G, \preccurlyeq) is regular (see [20]). The notion of G-continuous mapping $F: X^{n} \rightarrow X$ follows considering on X the topology τ_{G} and in X^{n} the product topology.

Definition 19 If (X, G) is a G^{*}-metric space, we will say that a mapping $F: X^{n} \rightarrow X$ is G-continuous if for all n sequences $\left\{a_{m}^{1}\right\},\left\{a_{m}^{2}\right\}, \ldots,\left\{a_{m}^{n}\right\} \subseteq X$ such that $\left\{a_{m}^{i}\right\} \xrightarrow{G} a_{i} \in X$ for all i, we have that $\left\{F\left(a_{m}^{1}, a_{m}^{2}, \ldots, a_{m}^{n}\right)\right\} \xrightarrow{G} F\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

In this topology, the notion of convergence is the following.

$$
\begin{aligned}
\left\{x_{m}\right\} \xrightarrow{G} x & \Leftrightarrow\left[\forall B(x, r), \exists m_{0} \in \mathbb{N}:\left(m \geq m_{0} \Rightarrow x_{m} \in B(x, r)\right)\right] \\
& \Leftrightarrow\left[\forall \varepsilon>0, \exists m_{0} \in \mathbb{N}:\left(m \geq m_{0} \Rightarrow G\left(x, x, x_{m}\right)<\varepsilon\right)\right] \\
& \Leftrightarrow\left[\lim _{m \rightarrow \infty} G\left(x, x, x_{m}\right)=0\right] .
\end{aligned}
$$

This property can be characterized as follows.

Lemma 20 Let (X, G) be a G^{*}-metric space, let $\left\{x_{m}\right\} \subseteq X$ be a sequence and let $x \in X$. Then the following conditions are equivalent.
(a) $\left\{x_{m}\right\}$ G-converges to x (that is, $\lim _{m, m^{\prime} \rightarrow \infty} G\left(x_{m}, x_{m^{\prime}}, x\right)=0$, which means that for all $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $G\left(x_{m}, x_{m^{\prime}}, x\right)$ for all $\left.m, m^{\prime} \geq m_{0}\right)$.
(b) $\lim _{m \rightarrow \infty} G\left(x, x, x_{m}\right)=0$.
(c) $\lim _{m \rightarrow \infty} G\left(x_{m}, x_{m}, x\right)=0$.
(d) $\lim _{m \rightarrow \infty} G\left(x_{m}, x_{m}, x\right)=0$ and $\lim _{m \rightarrow \infty} G\left(x_{m}, x_{m+1}, x\right)=0$.
(e) $\lim _{m \rightarrow \infty} G\left(x, x, x_{m}\right)=0$ and $\lim _{m \rightarrow \infty} G\left(x_{m}, x_{m+1}, x\right)=0$.

Proof $[(\mathrm{a}) \Rightarrow(\mathrm{c})]$ It is apparent using $m=m^{\prime}$.
$[(\mathrm{c}) \Rightarrow(\mathrm{b})] \operatorname{Using}\left(G_{5}\right), G\left(x, x, x_{m}\right) \leq G\left(x, x_{m}, x_{m}\right)+G\left(x_{m}, x, x_{m}\right)=2 G\left(x_{m}, x_{m}, x\right)$.
$[(\mathrm{b}) \Rightarrow(\mathrm{a})] \operatorname{Using}\left(G_{4}\right)$ and $\left(G_{5}\right)$,

$$
G\left(x_{m}, x_{m^{\prime}}, x\right) \leq G\left(x_{m}, x, x\right)+G\left(x, x_{m^{\prime}}, x\right) \leq 2 \max \left(G\left(x, x, x_{m}\right), G\left(x, x, x_{m^{\prime}}\right)\right)
$$

$[(\mathrm{a}) \Rightarrow(\mathrm{d}),(\mathrm{e})]$ It is apparent using $m^{\prime}=m$ and $m^{\prime}=m+1$.
$[(\mathrm{d}) \Rightarrow(\mathrm{c})]$ It is evident.
$[(\mathrm{e}) \Rightarrow(\mathrm{b})]$ It is evident.
Corollary 21 If (X, G) is a G-metric space, then $\left\{x_{m}\right\} \xrightarrow{G} x$ if and only if $\lim _{m \rightarrow \infty} G\left(x_{m}\right.$, $\left.x_{m+1}, x\right)=0$.

Proof We only need to prove that the condition is sufficient. Suppose that $\lim _{m \rightarrow \infty} G\left(x_{m}\right.$, $\left.x_{m+1}, x\right)=0$. In a G-metric space, the following property holds (see [11]):

$$
G(x, y, z) \leq G(x, a, z)+G(a, y, z) \quad \text { for all } x, y, z, a \in X .
$$

Then, using $a=x_{m+1}$,

$$
G\left(x, x, x_{m}\right)=G\left(x, x_{m+1}, x_{m}\right)+G\left(x_{m+1}, x, x_{m}\right)=2 G\left(x_{m}, x_{m+1}, x\right) .
$$

This proves (b) in the previous lemma.

Proposition 22 The limit of a G-convergent sequence in a G^{*}-metric space is unique.
Proof Suppose that $\left\{x_{m}\right\} \xrightarrow{G} x$ and $\left\{x_{m}\right\} \xrightarrow{G} y$. Then

$$
G(x, x, y)=G(y, x, x) \leq G\left(y, x_{m}, x_{m}\right)+G\left(x_{m}, x, x\right) .
$$

By items (a) and (c) of Lemma 20, we deduce that $G(x, x, y)=0$, which means that $x=y$ by $\left(G_{2}\right)$.

In the topology τ_{G}, the notion of Cauchy sequence is the following.

$$
\left\{x_{m}\right\} \text { is G-Cauchy } \Leftrightarrow\left[\forall \varepsilon>0, \exists m_{0} \in \mathbb{N}:\left(m, m^{\prime}, m^{\prime \prime} \geq m_{0} \Rightarrow G\left(x_{m}, x_{m^{\prime}}, x_{m^{\prime \prime}}\right)<\varepsilon\right)\right] .
$$

This definition can be characterized as follows.

Lemma 23 If (X, G) is a G^{*}-metric space and $\left\{x_{m}\right\} \subseteq X$ is a sequence, then the following conditions are equivalent.
(a) $\left\{x_{m}\right\}$ is G-Cauchy.
(b) $\lim _{m, m^{\prime} \rightarrow \infty} G\left(x_{m}, x_{m^{\prime}}, x_{m^{\prime}}\right)=0$.
(c) $\lim _{m, m^{\prime} \rightarrow \infty} G\left(x_{m}, x_{m+1}, x_{m^{\prime}}\right)=0$.

Proof $[(\mathrm{b}) \Rightarrow(\mathrm{a})] \operatorname{Using}\left(G_{5}\right), G\left(x_{m}, x_{m^{\prime}}, x_{m^{\prime \prime}}\right) \leq G\left(x_{m}, x_{m^{\prime}}, x_{m^{\prime}}\right)+G\left(x_{m^{\prime}}, x_{m^{\prime}}, x_{m^{\prime \prime}}\right)$.
$[(\mathrm{a}) \Rightarrow(\mathrm{c})]$ It is apparent using $m^{\prime \prime}=m+1$.
$[(\mathrm{c}) \Rightarrow(\mathrm{b})]$ Let $\varepsilon>0$ and let $m_{0} \in \mathbb{N}$ be such that $G\left(x_{m}, x_{m+1}, x_{m^{\prime}}\right)<\varepsilon / 2$ for all $m, m^{\prime} \geq m_{0}$.
Then

$$
\begin{aligned}
& m^{\prime}, m \geq m_{0} \Rightarrow G\left(x_{m^{\prime}}, x_{m^{\prime}+1}, x_{m}\right)<\varepsilon / 2, \\
& m^{\prime}, m^{\prime}+1 \geq m_{0} \Rightarrow G\left(x_{m^{\prime}}, x_{m^{\prime}+1}, x_{m^{\prime}+1}\right)<\varepsilon / 2 .
\end{aligned}
$$

Therefore, using $\left(G_{4}\right)$ and $\left(G_{5}\right)$,

$$
\begin{aligned}
G\left(x_{m}, x_{m^{\prime}}, x_{m^{\prime}}\right) & =G\left(x_{m^{\prime}}, x_{m^{\prime}}, x_{m}\right) \leq G\left(x_{m^{\prime}}, x_{m^{\prime}+1}, x_{m^{\prime}+1}\right)+G\left(x_{m^{\prime}+1}, x_{m^{\prime}}, x_{m}\right) \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Therefore, $\lim _{m, m^{\prime} \rightarrow \infty} G\left(x_{m}, x_{m^{\prime}}, x_{m^{\prime}}\right)=0$.

4 Product of G^{*}-metric spaces

Lemma 24 Let $\left\{\left(X_{i}, G_{i}\right)\right\}_{i=1}^{n}$ be a family of G^{*}-metric spaces, consider the product space $\mathbb{X}=X_{1} \times X_{2} \times \cdots \times X_{n}$ and define $G_{n}^{\max }$ and $G_{n}^{\text {sum }}$ on \mathbb{X}^{3} by

$$
G_{n}^{\max }(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\max _{1 \leq i \leq n} G_{i}\left(x_{i}, y_{i}, z_{i}\right) \quad \text { and } \quad G_{n}^{\mathrm{sum}}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum_{i=1}^{n} G_{i}\left(x_{i}, y_{i}, z_{i}\right)
$$

for all $\mathrm{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathrm{Y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right), \mathrm{Z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{X}$. Then the following statements hold.

1. $G_{n}^{\max }$ and $G_{n}^{\text {sum }}$ are G^{*}-metrics on \mathbb{X}.
2. If $A_{m}=\left(a_{m}^{1}, a_{m}^{2}, \ldots, a_{m}^{n}\right) \in \mathbb{X}$ for all m and $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{X}$, then $\left\{A_{m}\right\}$ $G_{n}^{\text {max }}$-converges (respectively, $G_{n}^{\text {sum }}$-converges) to A if and only if each $\left\{a_{m}^{i}\right\}$ G_{i}-converges to a_{i}.
3. $\left\{A_{m}\right\}$ is $G_{n}^{\max }$-Cauchy if and only if each $\left\{a_{m}^{i}\right\}$ is G_{i}-Cauchy.
4. $\left(\mathbb{X}, G_{n}^{\max }\right)\left(\right.$ respectively, $\left.\left(\mathbb{X}, G_{n}^{\text {sum }}\right)\right)$ is complete if and only if every $\left(X_{i}, G_{i}\right)$ is complete.
5. For all i, let \preceq_{i} be a preorder on X_{i} and define $\mathrm{X} \preceq \mathrm{Y}$ if and only if $x_{i} \preceq_{i} y_{i}$ for all i. Then $\left(X, G_{n}^{\max }, \preceq\right)$ is regular (respectively, regular non-decreasing, regular non-increasing) if and only if each factor $\left(X_{i}, G_{i}\right)$ is also regular (respectively, regular non-decreasing, regular non-increasing).

Proof Let us denote $G=G_{n}^{\max }$. Taking into account that $G_{n}^{\max } \leq G_{n}^{\text {sum }} \leq n G_{n}^{\max }$, we will only develop the proof using G.
(1) It is a straightforward exercise to prove the following statements.

- $G(\mathrm{X}, \mathrm{X}, \mathrm{X})=\max _{1 \leq i \leq n} G_{i}\left(x_{i}, x_{i}, x_{i}\right)=\max _{1 \leq i \leq n} 0=0$.
- If $\mathrm{Y} \neq \mathrm{Z}$, there exists $j \in\{1,2, \ldots, n\}$ such that $y_{j} \neq z_{j}$. Then $G(X, Y, Z)=\max _{1 \leq i \leq n} G_{i}\left(x_{i}, y_{i}, z_{i}\right) \geq G_{j}\left(x_{j}, y_{j}, z_{j}\right)>0$.
- Symmetry in all three variables of G follows from symmetry in all three variables of each G_{i}.
- We have that

$$
\begin{aligned}
G(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) & =\max _{1 \leq i \leq n} G_{i}\left(x_{i}, y_{i}, z_{i}\right) \leq \max _{1 \leq i \leq n}\left[G_{i}\left(x_{i}, a_{i}, a_{i}\right)+G_{i}\left(a_{i}, y_{i}, z_{i}\right)\right] \\
& \leq \max _{1 \leq i \leq n} G_{i}\left(x_{i}, a_{i}, a_{i}\right)+\max _{1 \leq i \leq n} G_{i}\left(a_{i}, y_{i}, z_{i}\right)=G(\mathrm{X}, \mathrm{~A}, \mathrm{~A})+G(\mathrm{~A}, \mathrm{Y}, \mathrm{Z}) .
\end{aligned}
$$

Then G is a G^{*}-metric on \mathbb{X}.
(2) We use Lemma 20. Suppose that $\left\{A_{m}\right\}$ G-converges to A and let $\varepsilon>0$. Then, for all $j \in\{1,2, \ldots, n\}$ and all m,

$$
G_{j}\left(a_{j}, a_{j}, a_{m}^{j}\right) \leq \max _{1 \leq i \leq n} G_{i}\left(a_{i}, a_{i}, a_{m}^{i}\right)=G\left(A, A, A_{m}\right) .
$$

Therefore, $\left\{a_{m}^{j}\right\} G_{j}$-converges to a_{j}. Conversely, assume that each $\left\{a_{m}^{i}\right\} G_{i}$-converges to a_{i}. Let $\varepsilon>0$ and let $m_{i} \in \mathbb{N}$ be such that if $m \geq m_{i}$, then $G_{i}\left(a_{i}, a_{i}, a_{m}^{i}\right)<\varepsilon$. If $m_{0}=$ $\max \left(m_{1}, m_{2}, \ldots, m_{n}\right)$ and $m, m^{\prime} \geq m_{0}$, then $G\left(A, A, A_{m}\right)=\max _{1 \leq i \leq n} G_{i}\left(a_{i}, a_{i}, a_{m}^{i}\right)<\varepsilon$, so $\left\{A_{m}\right\}$ G-converges to A.
(3) We use Lemma 23. Suppose that $\left\{A_{m}\right\}$ is G-Cauchy and let $\varepsilon>0$. Then, for all $j \in$ $\{1,2, \ldots, n\}$ and all m, m^{\prime},

$$
G_{j}\left(a_{m}^{j}, a_{m}^{j}, a_{m^{\prime}}^{j}\right) \leq \max _{1 \leq i \leq n} G_{i}\left(a_{m}^{i}, a_{m}^{i}, a_{m^{\prime}}^{i}\right)=G\left(A_{m}, A_{m}, A_{m^{\prime}}\right) .
$$

Therefore, $\left\{a_{m}^{j}\right\}$ is G_{j}-Cauchy. Conversely, assume that each $\left\{a_{m}^{i}\right\}$ is G_{i}-Cauchy. Let $\varepsilon>0$ and let $m_{i} \in \mathbb{N}$ be such that if $m, m^{\prime} \geq m_{i}$, then $G_{i}\left(a_{m}^{j}, a_{m}^{j}, a_{m^{\prime}}^{j}\right)<\varepsilon$. If $m_{0}=$ $\max \left(m_{1}, m_{2}, \ldots, m_{n}\right)$ and $m, m^{\prime} \geq m_{0}$, then $G\left(A_{m}, A_{m}, A_{m^{\prime}}\right)=\max _{1 \leq i \leq n} G_{i}\left(a_{m}^{i}, a_{m}^{i}, a_{m^{\prime}}^{i}\right)<\varepsilon$, so $\left\{A_{m}\right\}$ is G-Cauchy.
(4) It is an easy consequence of items 2 and 3 since

$$
\begin{aligned}
\left\{A_{m}\right\} G \text {-Cauchy } & \Leftrightarrow \text { each }\left\{a_{m}^{i}\right\} \text { G-Cauchy } \Leftrightarrow \text { each }\left\{a_{m}^{i}\right\} \text { G-convergent } \\
& \Leftrightarrow\left\{A_{m}\right\} G \text {-convergent. }
\end{aligned}
$$

(5) A sequence $\left\{A_{m}\right\}$ on \mathbb{X} is \preceq-monotone non-decreasing if and only if each sequence $\left\{a_{m}^{i}\right\}$ is \preceq-monotone non-decreasing. Moreover, $\left\{A_{m}\right\} G$-converges to $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in$ \mathbb{X} if and only if each $\left\{a_{m}^{i}\right\} G_{i}$-converges to a_{i}. Finally, $A_{m} \preceq A$ if and only if $a_{m}^{i} \preceq a_{i}$ for all i. Therefore, $\left(X, G_{n}^{\max }, \preceq\right)$ is regular non-decreasing if and only if each factor $\left(X_{i}, G_{i}\right)$ is also regular non-decreasing. Other statements may be proved similarly.

Taking $\left(X_{i}, G_{i}\right)=(X, G)$ for all i, we derive the following result.

Corollary 25 Let (X, G) be a G^{*}-metric space and consider on the product space X^{n} the mappings G_{n} and G_{n}^{\prime} defined by

$$
G_{n}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\max _{1 \leq i \leq n} G\left(x_{i}, y_{i}, z_{i}\right) \quad \text { and } \quad G_{n}^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum_{i=1}^{n} G\left(x_{i}, y_{i}, z_{i}\right)
$$

for all $\mathrm{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathrm{Y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right), \mathrm{Z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in X^{n}$.

1. G_{n} and G_{n}^{\prime} are G^{*}-metrics on X^{n}.
2. If $A_{m}=\left(a_{m}^{1}, a_{m}^{2}, \ldots, a_{m}^{n}\right) \in X^{n}$ for all m and $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in X^{n}$, then $\left\{A_{m}\right\}$ G_{n}-converges (respectively, G_{n}^{\prime}-converges) to A if and only if each $\left\{a_{m}^{i}\right\}$ G-converges to a_{i}.
3. $\left\{A_{m}\right\}$ is G_{n}-Cauchy (respectively, G_{n}^{\prime}-Cauchy) if and only if each $\left\{a_{m}^{i}\right\}$ is G-Cauchy.
4. $\left(X, G_{n}\right)$ (respectively, $\left.\left(X^{n}, G_{n}^{\prime}\right)\right)$ is complete if and only if (X, G) is complete.
5. If (X, G) is \preccurlyeq-regular, then $\left(X^{n}, G_{n}\right)$ is $\sqsubseteq-r e g u l a r . ~$

5 Unidimensional fixed point result in partially preordered G^{*}-metric spaces

Theorem 26 Let (X, \preccurlyeq) be a preordered set endowed with a G^{*}-metric G and let $T: X \rightarrow X$ be a given mapping. Suppose that the following conditions hold:
(a) (X, G) is complete.
(b) T is non-decreasing (w.r.t. $\preccurlyeq)$.
(c) Either T is G-continuous or (X, G, \preccurlyeq) is regular non-decreasing.
(d) There exists $x_{0} \in X$ such that $x_{0} \preccurlyeq T x_{0}$.
(e) There exist two mappings $\psi, \varphi \in \Psi$ such that, for all $x, y \in X$ with $x \preccurlyeq y$,

$$
\psi\left(G\left(T x, T y, T^{2} x\right)\right) \leq \psi(G(x, y, T x))-\varphi(G(x, y, T x)) .
$$

Then T has a fixed point. Furthermore, iffor all $z_{1}, z_{2} \in X$ fixed points of T there exists $z \in X$ such that $z_{1} \preccurlyeq z$ and $z_{2} \preccurlyeq z$, we obtain uniqueness of the fixed point.

Proof Define $x_{m}=T^{m} x_{0}$ for all $m \geq 1$. Since T is non-decreasing (w.r.t. \preccurlyeq), then $x_{m} \preccurlyeq x_{m+1}$ for all $m \geq 0$. Then

$$
\begin{aligned}
\psi\left(G\left(x_{m+1}, x_{m+2}, x_{m+2}\right)\right) & =\psi\left(G\left(T x_{m}, T x_{m+1}, T^{2} x_{m}\right)\right) \\
& \leq \psi\left(G\left(x_{m}, x_{m+1}, T x_{m}\right)\right)-\varphi\left(G\left(x_{m}, x_{m+1}, T x_{m}\right)\right) \\
& =\psi\left(G\left(x_{m}, x_{m+1}, x_{m+1}\right)\right)-\varphi\left(G\left(x_{m}, x_{m+1}, x_{m+1}\right)\right) .
\end{aligned}
$$

Applying Lemma 10 , $\left\{G\left(x_{m}, x_{m+1}, x_{m+1}\right)\right\} \rightarrow 0$. Let us show that $\left\{x_{m}\right\}$ is G-Cauchy. Reasoning by contradiction, if $\left\{x_{m}\right\}$ is not G-Cauchy, by Remark 17, there exist $\varepsilon_{0}>0$ and two partial subsequences $\left\{x_{n(k)}\right\}$ and $\left\{x_{m(k)}\right\}$ verifying $k<n(k)<m(k)<n(k+1)$,

$$
\begin{equation*}
G\left(x_{n(k)}, x_{m(k)}, x_{n(k)+1}\right)>\varepsilon_{0} \quad \text { and } \quad G\left(x_{n(k)}, x_{m(k)-1}, x_{n(k)+1}\right) \leq \varepsilon_{0} \quad \text { for all } k \geq 1 \tag{4}
\end{equation*}
$$

Therefore

$$
\begin{align*}
0 & <\psi\left(\varepsilon_{0}\right) \leq \psi\left(G\left(x_{n(k)}, x_{m(k)}, x_{n(k)+1}\right)\right)=\psi\left(G\left(T x_{n(k)-1}, T x_{m(k)-1}, T^{2} x_{n(k)-1}\right)\right) \\
& \leq \psi\left(G\left(x_{n(k)-1}, x_{m(k)-1}, T x_{n(k)-1}\right)\right)-\varphi\left(G\left(x_{n(k)-1}, x_{m(k)-1}, T x_{n(k)-1}\right)\right) \\
& =\psi\left(G\left(x_{n(k)-1}, x_{m(k)-1}, x_{n(k)}\right)\right)-\varphi\left(G\left(x_{n(k)-1}, x_{m(k)-1}, x_{n(k)}\right)\right) . \tag{5}
\end{align*}
$$

Consider the sequence of non-negative real numbers $\left\{G\left(x_{n(k)-1}, x_{m(k)-1}, x_{n(k)}\right)\right\}$. If this sequence has a partial subsequence converging to zero, then we can take the limit in (5) using this partial subsequence and we would deduce $0<\psi\left(\varepsilon_{0}\right) \leq 0$, which is impossible. Then $\left\{G\left(x_{n(k)-1}, x_{m(k)-1}, x_{n(k)}\right)\right\}$ cannot have a partial subsequence converging to zero. This
means that there exist $\delta>0$ and $k_{0} \in \mathbb{N}$ such that

$$
G\left(x_{n(k)-1}, x_{m(k)-1}, x_{n(k)}\right) \geq \delta \quad \text { for all } k \geq k_{0} .
$$

Since φ is non-decreasing, $-\varphi\left(G\left(x_{n(k)-1}, x_{m(k)-1}, x_{n(k)}\right) \leq-\varphi(\delta)<0\right.$. By $\left(\mathrm{G}_{5}\right)$ and (4),

$$
\begin{aligned}
& G\left(x_{n(k)-1}, x_{m(k)-1}, x_{n(k)}\right) \\
& \quad=G\left(x_{n(k)-1}, x_{n(k)}, x_{m(k)-1}\right) \quad\left[x=x_{n(k)-1}, y=x_{n(k)}, z=x_{m(k)-1}, a=x_{n(k)+1}\right] \\
& \quad \leq G\left(x_{n(k)-1}, x_{n(k)+1}, x_{n(k)+1}\right)+G\left(x_{n(k)+1}, x_{n(k)}, x_{m(k)-1}\right) \\
& =G\left(x_{n(k)-1}, x_{n(k)+1}, x_{n(k)+1}\right)+G\left(x_{n(k)}, x_{n(k)+1}, x_{m(k)-1}\right) \\
& \quad\left[x=x_{n(k)-1}, y=z=x_{n(k)+1}, a=x_{n(k)}\right] \\
& \quad \leq G\left(x_{n(k)-1}, x_{n(k),}, x_{n(k)}\right)+G\left(x_{n(k),}, x_{n(k)+1}, x_{n(k)+1}\right)+G\left(x_{n(k)}, x_{n(k)+1}, x_{m(k)-1}\right) \\
& \quad \leq G\left(x_{n(k)-1}, x_{n(k)}, x_{n(k)}\right)+G\left(x_{n(k),}, x_{n(k)+1}, x_{n(k)+1}\right)+\varepsilon_{0} .
\end{aligned}
$$

Since ψ is non-decreasing, it follows from (5) that

$$
\begin{aligned}
0 & <\psi\left(\varepsilon_{0}\right) \leq \psi\left(G\left(x_{n(k)-1}, x_{m(k)-1}, x_{n(k)}\right)\right)-\varphi\left(G\left(x_{n(k)-1}, x_{m(k)-1}, x_{n(k)}\right)\right) \\
& \leq \psi\left(G\left(x_{n(k)-1}, x_{m(k)-1}, x_{n(k)}\right)\right)-\varphi(\delta) \\
& \leq \psi\left(G\left(x_{n(k)-1}, x_{n(k)}, x_{n(k)}\right)+G\left(x_{n(k)}, x_{n(k)+1}, x_{n(k)+1}\right)+\varepsilon_{0}\right)-\varphi(\delta) .
\end{aligned}
$$

Taking limit when $k \rightarrow \infty$, we deduce that $0<\psi\left(\varepsilon_{0}\right) \leq \psi\left(\varepsilon_{0}\right)-\varphi(\delta)<\psi\left(\varepsilon_{0}\right)$, which is impossible. This contradiction finally proves that $\left\{x_{m}\right\}$ is G-Cauchy. Since (X, G) is complete, there exists $z_{0} \in X$ such that $\left\{x_{m}\right\} \xrightarrow{G} z_{0}$.
Now suppose that T is G-continuous. Then $\left\{x_{m+1}\right\}=\left\{T x_{m}\right\} \xrightarrow{G} T z_{0}$. By the unicity of the limit, $T z_{0}=z_{0}$ and z_{0} is a fixed point of T.
On the contrary, suppose that (X, G, \preccurlyeq) is regular non-decreasing. Since $\left\{x_{m}\right\} \xrightarrow{G} z_{0}$ and $\left\{x_{m}\right\}$ is monotone non-decreasing (w.r.t. \preccurlyeq), it follows that $x_{m} \preccurlyeq z_{0}$ for all m. Hence

$$
\begin{aligned}
\psi\left(G\left(x_{m+1}, T z_{0}, x_{m+2}\right)\right) & =\psi\left(G\left(T x_{m}, T z_{0}, T^{2} x_{m}\right)\right) \\
& \leq \psi\left(G\left(x_{m}, z_{0}, T x_{m}\right)\right)-\varphi\left(G\left(x_{m}, z_{0}, T x_{m}\right)\right) \\
& =\psi\left(G\left(x_{m}, x_{m+1}, z_{0}\right)\right)-\varphi\left(G\left(x_{m}, x_{m+1}, z_{0}\right)\right) .
\end{aligned}
$$

Since $\left\{x_{m}\right\} \xrightarrow{G} z_{0}$, then $\left\{G\left(x_{m}, x_{m+1}, z_{0}\right)\right\} \rightarrow 0$. Taking limit when $k \rightarrow \infty$, we deduce that $\left\{\psi\left(G\left(x_{m+1}, T z_{0}, x_{m+2}\right)\right)\right\} \rightarrow 0$. By Lemma $7,\left\{G\left(x_{m+1}, x_{m+2}, T z_{0}\right)\right\} \rightarrow 0$, so $\left\{x_{m}\right\} \xrightarrow{G} T z_{0}$ and we also conclude that z_{0} is a fixed point of T.

To prove the uniqueness, let $z_{1}, z_{2} \in X$ be two fixed points of T. By hypothesis, there exists $z \in X$ such that $z_{1} \preccurlyeq z$ and $z_{2} \preccurlyeq z$. Let us show that $\left\{T^{m} z\right\} \xrightarrow{G} z_{1}$. Indeed,

$$
\begin{aligned}
\psi\left(G\left(z_{1}, z_{1}, T^{m+1} z\right)\right) & =\psi\left(G\left(T z_{1}, T T^{m} z, T^{2} z_{1}\right)\right) \\
& \leq \psi\left(G\left(z_{1}, T^{m} z, T z_{1}\right)\right)-\varphi\left(G\left(z_{1}, T^{m} z, T z_{1}\right)\right) \\
& =\psi\left(G\left(z_{1}, z_{1}, T^{m} z\right)\right)-\varphi\left(G\left(z_{1}, z_{1}, T^{m} z\right)\right)
\end{aligned}
$$

By Lemma 10, we deduce $\left\{G\left(z_{1}, z_{1}, T^{m} z\right)\right\} \rightarrow 0$, that is, $\left\{T^{m} z\right\} \xrightarrow{G} z_{1}$. The same reasoning proves that $\left\{T^{m} z\right\} \xrightarrow{G} z_{2}$, so $z_{1}=z_{2}$.

We particularize the previous theorem in two cases. If take $\psi(t)=t$ in Theorem 26, then we get the following results.

Corollary 27 Let (X, \preccurlyeq) be a preordered set endowed with a G^{*}-metric G and let $T: X \rightarrow$ X be a given mapping. Suppose that the following conditions hold:
(a) (X, G) is complete.
(b) T is non-decreasing (w.r.t. $\preccurlyeq)$.
(c) Either T is G-continuous or (X, G, \preccurlyeq) is regular non-decreasing.
(d) There exists $x_{0} \in X$ such that $x_{0} \preccurlyeq T x_{0}$.
(e) There exists a mapping $\varphi \in \Psi$ such that, for all $x, y \in X$ with $x \preccurlyeq y$,

$$
G\left(T x, T y, T^{2} x\right) \leq G(x, y, T x)-\varphi(G(x, y, T x)) .
$$

Then T has a fixed point. Furthermore, iffor all $z_{1}, z_{2} \in X$ fixed points of T there exists $z \in X$ such that $z_{1} \preccurlyeq z$ and $z_{2} \preccurlyeq z$, we obtain uniqueness of the fixed point.

If take $\varphi(t)=(1-k) t$ with $k \in[0,1)$ in Corollary 27, then we derive the following result.
Corollary 28 Let (X, \preccurlyeq) be a preordered set endowed with $a G^{*}$-metric G and let $T: X \rightarrow$ X be a given mapping. Suppose that the following conditions hold:
(a) (X, G) is complete.
(b) T is non-decreasing (w.r.t. $\preccurlyeq)$.
(c) Either T is G-continuous or (X, G, \preccurlyeq) is regular non-decreasing.
(d) There exists $x_{0} \in X$ such that $x_{0} \preccurlyeq T x_{0}$.
(e) There exists a constant $k \in[0,1)$ such that, for all $x, y \in X$ with $x \preccurlyeq y$,

$$
G\left(T x, T y, T^{2} x\right) \leq k G(x, y, T x)
$$

Then T has a fixed point. Furthermore, iffor all $z_{1}, z_{2} \in X$ fixed points of T there exists $z \in X$ such that $z_{1} \preccurlyeq z$ and $z_{2} \preccurlyeq z$, we obtain uniqueness of the fixed point.

6 Multidimensional Υ-fixed point results in partially preordered G^{*}-metric spaces

In this section we extend Theorem 26 to an arbitrary number of variables. To do that, it is necessary to introduce the following notation. Given a mapping $F: X^{n} \rightarrow X$, we define $\mathbb{F}_{\Upsilon}: X^{n} \rightarrow X^{n}$ by

$$
\begin{aligned}
& \mathbb{F}_{\Upsilon}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \quad=\left(F\left(x_{\sigma_{1}(1)}, x_{\sigma_{1}(2)}, \ldots, x_{\sigma_{1}(n)}\right), F\left(x_{\sigma_{2}(1)}, x_{\sigma_{2}(2)}, \ldots, x_{\sigma_{2}(n)}\right), \ldots, F\left(x_{\sigma_{n}(1)}, x_{\sigma_{n}(2)}, \ldots, x_{\sigma_{n}(n)}\right)\right)
\end{aligned}
$$

and $F_{\Upsilon}^{2}=F \circ \mathbb{F}_{\Upsilon}: X^{n} \rightarrow X$ will be

$$
\begin{aligned}
& F_{\Upsilon}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \quad=F\left(F\left(x_{\sigma_{1}(1)}, x_{\sigma_{1}(2)}, \ldots, x_{\sigma_{1}(n)}\right), F\left(x_{\sigma_{2}(1)}, x_{\sigma_{2}(2)}, \ldots, x_{\sigma_{2}(n)}\right), \ldots, F\left(x_{\sigma_{n}(1)}, x_{\sigma_{n}(2)}, \ldots, x_{\sigma_{n}(n)}\right)\right)
\end{aligned}
$$

for all $\mathrm{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$.

Lemma 29

1. $Z \in X^{n}$ is a Υ-fixed point of F if and only if Z is a fixed point of $\mathbb{F}_{\Upsilon}\left(\right.$ that is, $\left.\mathbb{F}_{\Upsilon} Z=Z\right)$.
2. If F has the mixed monotone property, then \mathbb{F}_{Υ} is \sqsubseteq-monotone non-decreasing on X^{n}.
3. If (X, G) is a G^{*}-metric space and F is G-continuous, then $\mathbb{F}_{\Upsilon}: X^{n} \rightarrow X^{n}$ is G_{n}-continuous and $F_{\Upsilon}^{2}=F \circ \mathbb{F}_{\Upsilon}: X^{n} \rightarrow X$ is G-continuous.

6.1 A first multidimensional contractivity result

In this subsection we apply Theorem 26 considering $T=\mathbb{F}_{\Upsilon}$ defined on $\left(X^{n}, G_{n}, \sqsubseteq\right)$. In order to do that, we notice that joining some of the previous results, we obtain the following consequences.

- If (X, G) is complete, it follows from Corollary 25 that $\left(X^{n}, G_{n}\right)$ is also complete.
- By item 2 of Lemma 29 , if F has the mixed monotone property, then \mathbb{F}_{Υ} is \sqsubseteq-monotone non-decreasing on X^{n}.
- By item 3 of Lemma 29, if F is G-continuous, then $\mathbb{F}_{\Upsilon}: X^{n} \rightarrow X^{n}$ is G_{n}-continuous and $F_{\Upsilon}^{2}=F \circ \mathbb{F}_{\Upsilon}: X^{n} \rightarrow X$ is G-continuous.
- If (X, G, \preccurlyeq) is regular, it follows from Corollary 25 that ($\left.X^{n}, G_{n}, \sqsubseteq\right)$ is also regular.
- If $x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n} \in X$ are such that $x_{0}^{i} \not{ }_{i} F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}, \ldots, x_{0}^{\sigma_{i}(n)}\right)$ for all i, then $\mathrm{X}_{0}=\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n}\right) \in X^{n}$ verifies $\mathrm{X}_{0} \sqsubseteq \mathbb{F}_{\Upsilon}\left(\mathrm{X}_{0}\right)$.
We study how the contractivity condition

$$
\psi\left(G_{n}\left(\mathbb{F}_{\Upsilon} X, \mathbb{F}_{\Upsilon} Y, \mathbb{F}_{\Upsilon}^{2} X\right)\right) \leq(\psi-\varphi)\left(G_{n}\left(X, Y, \mathbb{F}_{\Upsilon} X\right)\right) \quad \text { for all } X, Y \in X^{n} \text { such that } X \sqsubseteq Y
$$

may be equivalently established. Let $\mathrm{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$ and let $z_{i}=F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots\right.$, $\left.x_{\sigma_{i}(n)}\right) \in X$ for all i. Then

$$
\begin{aligned}
& \mathbb{F}_{\Upsilon}^{2} \mathrm{X}= \mathbb{F}_{\Upsilon}\left(F\left(x_{\sigma_{1}(1)}, x_{\sigma_{1}(2)}, \ldots, x_{\sigma_{1}(n)}\right), F\left(x_{\sigma_{2}(1)}, x_{\sigma_{2}(2)}, \ldots, x_{\sigma_{2}(n)}\right), \ldots,\right. \\
&\left.F\left(x_{\sigma_{n}(1)}, x_{\sigma_{n}(2)}, \ldots, x_{\sigma_{n}(n)}\right)\right) \\
&= F_{\Upsilon}\left(z_{1}, z_{2}, \ldots, z_{n}\right) \\
&=\left(F\left(z_{\sigma_{1}(1)}, z_{\sigma_{1}(2)}, \ldots, z_{\sigma_{1}(n)}\right), F\left(z_{\sigma_{2}(1)}, z_{\sigma_{2}(2)}, \ldots, z_{\sigma_{2}(n)}\right), \ldots, F\left(z_{\sigma_{n}(1)}, z_{\sigma_{n}(2)}, \ldots, z_{\sigma_{n}(n)}\right)\right) \\
&=\left(F\left(F\left(x_{\sigma_{\sigma_{1}(1)}(1)}, \ldots, x_{\sigma_{\sigma_{1}(1)}(n)}\right), F\left(x_{\sigma_{\sigma_{1}(2)}(1)}, \ldots, x_{\sigma_{\sigma_{1}(2)}(n)}\right), \ldots, F\left(x_{\sigma_{\sigma_{1}(n)}(1)}, \ldots, x_{\sigma_{\sigma_{1}(n)}(n)}\right)\right),\right. \\
& F\left(F\left(x_{\sigma_{\sigma_{2}(1)}(1)}, \ldots, x_{\sigma_{\sigma_{2}(1)}(n)}\right), F\left(x_{\sigma_{\sigma_{2}(2)}(1)}, \ldots, x_{\sigma_{\sigma_{2}(2)}(n)}\right), \ldots, F\left(x_{\sigma_{\sigma_{2}(n)}(1)}, \ldots, x_{\sigma_{\sigma_{n}(n)}(n)}\right)\right), \ldots, \\
&\left.F\left(F\left(x_{\sigma_{\sigma_{n}(1)}(1)}, \ldots, x_{\sigma_{\sigma_{n}(1)}(n)}\right), F\left(x_{\sigma_{\sigma_{n}(2)}(1)}, \ldots, x_{\sigma_{\sigma_{n}(2)}(n)}\right), \ldots, F\left(x_{\sigma_{\sigma_{n}(n)}(1)}, \ldots, x_{\sigma_{\sigma_{n}(n)}(n)}\right)\right)\right) \\
&=\left(F_{\Upsilon}^{2}\left(x_{\sigma_{1}(1)}, x_{\sigma_{1}(2)}, \ldots, x_{\sigma_{1}(n)}\right), F_{\Upsilon}^{2}\left(x_{\sigma_{2}(1)}, x_{\sigma_{2}(2)}, \ldots, x_{\sigma_{2}(n)}\right), \ldots,\right. \\
&\left.F_{\Upsilon}^{2}\left(x_{\sigma_{n}(1)}, x_{\sigma_{n}(2)}, \ldots, x_{\sigma_{n}(n)}\right)\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& G_{n}\left(\mathrm{X}, \mathrm{Y}, \mathbb{F}_{\Upsilon} \mathrm{X}\right)=\max _{1 \leq i \leq n} G\left(x_{i}, y_{i}, F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)\right) \text { and } \\
& G_{n}\left(\mathbb{F}_{\Upsilon} \mathrm{X}, \mathbb{F}_{\Upsilon} \mathrm{Y}, \mathbb{F}_{\Upsilon}^{2} \mathrm{X}\right)=\max _{1 \leq i \leq n} G\left(F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right), F\left(y_{\sigma_{i}(1)}, y_{\sigma_{i}(2)}, \ldots, y_{\sigma_{i}(n)}\right),\right. \\
&\left.F_{\Upsilon}^{2}\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)\right) .
\end{aligned}
$$

Therefore, a possible version of Theorem 26 applied to ($\left.X^{n}, G_{n}, \sqsubseteq\right)$ taking $T=\mathbb{F}_{\Upsilon}$ is the following.

Theorem 30 Let (X, G) be a complete G^{*}-metric space and let \preccurlyeq be a partial preorder on X. Let $\Upsilon=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ be an n-tuple of mappings from $\{1,2, \ldots, n\}$ into itself verifying $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}$ if $i \in \mathrm{~A}$ and $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}^{\prime}$ if $i \in \mathrm{~B}$. Let $F: X^{n} \rightarrow X$ be a mapping verifying the mixed monotone property on X. Assume that there exist $\psi, \varphi \in \Psi$ such that

$$
\begin{align*}
& \max _{1 \leq i \leq n} \psi\left(G\left(F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right), F\left(y_{\sigma_{i}(1)}, y_{\sigma_{i}(2)}, \ldots, y_{\sigma_{i}(n)}\right), F_{\Upsilon}^{2}\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)\right)\right) \\
& \quad \leq(\psi-\varphi)\left(\max _{1 \leq i \leq n} G\left(x_{i}, y_{i}, F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)\right)\right) \tag{6}
\end{align*}
$$

for which $x_{i} \preccurlyeq{ }_{i} y_{i}$ for all i. Suppose either F is continuous or (X, G, \preccurlyeq) is regular. If there exist $x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n} \in X$ verifying $x_{0}^{i} \preccurlyeq{ }_{i} F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}, \ldots, x_{0}^{\sigma_{i}(n)}\right)$ for all i, then F has, at least, one Υ-fixed point.

6.2 A second multidimensional contractivity result

In this section we introduce a slightly different contractivity condition that cannot be directly deduced applying Theorem 26 to $\left(X, G_{n}, \sqsubseteq\right)$ taking $T=\mathbb{F}_{\Upsilon}$, because the contractivity condition is weaker. Then we need to show a classical proof.

Theorem 31 Let (X, G) be a complete G^{*}-metric space and let \preccurlyeq be a partial preorder on X. Let $\Upsilon=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ be an n-tuple of mappings from $\{1,2, \ldots, n\}$ into itself verifying $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}$ if $i \in \mathrm{~A}$ and $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}^{\prime}$ if $i \in \mathrm{~B}$. Let $F: X^{n} \rightarrow X$ be a mapping verifying the mixed monotone property on X. Assume that there exist $\psi, \varphi \in \Psi$ such that

$$
\begin{align*}
\psi & \left(G\left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right), F\left(y_{1}, y_{2}, \ldots, y_{n}\right), F_{\Upsilon}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)\right) \\
\leq & (\psi-\varphi)\left(\max _{1 \leq i \leq n} G\left(x_{i}, y_{i}, F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)\right)\right) \tag{7}
\end{align*}
$$

for which $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}$ are \sqsubseteq-comparable. Suppose either F is continuous or (X, G, \preccurlyeq) is regular. If there exist $x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n} \in X$ verifying $x_{0}^{i} \preccurlyeq_{i} F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}\right.$, $\left.\ldots, x_{0}^{\sigma_{i}(n)}\right)$ for all i, then F has, at least, one Υ-fixed point.

Notice that (6) and (7) are very different contractivity conditions. For instance, (6) would be simpler if the image of all σ_{i} are sets with a few points.

Proof Define $\mathrm{X}_{0}=\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n}\right)$ and let $x_{1}^{i}=F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}, \ldots, x_{0}^{\sigma_{i}(n)}\right)$ for all i. If $\mathrm{X}_{1}=$ $\left(x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{n}\right)$, then $x_{0}^{i} \preccurlyeq i x_{1}^{i}$ for all i is equivalent to $\mathrm{X}_{0} \sqsubseteq \mathrm{X}_{1}=\mathbb{F}_{\Upsilon}\left(\mathrm{X}_{0}\right)$. By recurrence, define $x_{m+1}^{i}=F\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right)$ for all i and all m, and we have that $\mathrm{X}_{m} \sqsubseteq \mathrm{X}_{m+1}=\mathbb{F}_{\Upsilon}\left(\mathrm{X}_{m}\right)$. This means that the sequence $\left\{\mathrm{X}_{m+1}=\mathbb{F}_{\Upsilon}\left(\mathrm{X}_{m}\right)\right\}$ is \sqsubseteq-monotone non-decreasing. Since $\left(X^{n}, G_{n}, \sqsubseteq\right)$ is complete, it is only necessary to prove that $\left\{X_{m}\right\}$ is G_{n}-Cauchy in order to deduce that it is G_{n}-convergent. By item 3 of Lemma 24, it will be sufficient to prove that each sequence $\left\{x_{m}^{i}\right\}$ is G-Cauchy. Firstly, notice that $\mathrm{X}_{m+1}=\mathbb{F}_{\Upsilon}\left(\mathrm{X}_{m}\right)$ means that

$$
x_{m+1}^{i}=F\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right) \quad \text { for all } i \text { and all } m
$$

Hence

$$
\begin{aligned}
x_{m+2}^{i}= & F\left(x_{m+1}^{\sigma_{i}(1)}, x_{m+1}^{\sigma_{i}(2)}, \ldots, x_{m+1}^{\sigma_{i}(n)}\right) \\
= & F\left(F\left(x_{m}^{\sigma_{\sigma_{i}(1)}(1)}, x_{m}^{\sigma_{\sigma_{i}(1)}(2)}, \ldots, x_{m}^{\sigma_{\sigma_{i}(1)}(n)}\right), F\left(x_{m}^{\sigma_{\sigma_{i}(2)}(1)}, x_{m}^{\sigma_{\sigma_{i}(2)}(2)}, \ldots, x_{m}^{\sigma_{\sigma_{i}(2)}(n)}\right), \ldots,\right. \\
& \left.F\left(x_{m}^{\sigma_{\sigma_{i}(n)}(1)}, x_{m}^{\sigma_{\sigma_{i}(n)}(2)}, \ldots, x_{m}^{\sigma_{\sigma_{i}(n)}^{(n)}}\right)\right)=F_{\Upsilon}^{2}\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right) .
\end{aligned}
$$

Furthermore, for all m,

$$
\begin{align*}
F_{\Upsilon}^{2}\left(\mathrm{X}_{m}\right)= & F_{\Upsilon}^{2}\left(x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n}\right) \\
= & F\left(F\left(x_{m}^{\sigma_{1}(1)}, x_{m}^{\sigma_{1}(2)}, \ldots, x_{m}^{\sigma_{1}(n)}\right), F\left(x_{m}^{\sigma_{2}(1)}, x_{m}^{\sigma_{2}(2)}, \ldots, x_{m}^{\sigma_{2}(n)}\right), \ldots,\right. \\
& \left.F\left(x_{m}^{\sigma_{n}(1)}, x_{m}^{\sigma_{n}(2)}, \ldots, x_{m}^{\sigma_{n}(n)}\right)\right) \\
= & F\left(x_{m+1}^{1}, x_{m+1}^{2}, \ldots, x_{m+1}^{n}\right)=F\left(\mathrm{X}_{m+1}\right) . \tag{8}
\end{align*}
$$

Therefore, for all i and all m,

$$
\begin{aligned}
\psi & \left(G\left(x_{m+1}^{i}, x_{m+2}^{i}, x_{m+2}^{i}\right)\right) \\
& =\psi\left(G\left(F\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right), F\left(x_{m+1}^{\sigma_{i}(1)}, x_{m+1}^{\sigma_{i}(2)}, \ldots, x_{m+1}^{\sigma_{i}(n)}\right), F_{\Upsilon}^{2}\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right)\right)\right. \\
& \leq(\psi-\varphi)\left(\max _{1 \leq j \leq n} G\left(x_{m}^{\sigma_{i}(j)}, x_{m+1}^{\sigma_{i}(j)}, F\left(x_{m}^{\sigma_{\sigma_{i}(j)}(1)}, x_{m}^{\sigma_{\sigma_{i}(j)}(2)}, \ldots, x_{m}^{\sigma_{\sigma_{i}(j)}(n)}\right)\right)\right) \\
& =(\psi-\varphi)\left(\max _{1 \leq j \leq n} G\left(x_{m}^{\sigma_{i}(j)}, x_{m+1}^{\sigma_{i}(j)}, x_{m+1}^{\sigma_{i}(j)}\right)\right) .
\end{aligned}
$$

Since ψ is non-decreasing, for all i and all m,

$$
\psi\left(\max _{1 \leq j \leq n} G\left(x_{m}^{\sigma_{i}(j)}, x_{m+1}^{\sigma_{i}(j)}, x_{m+1}^{\sigma_{i}(j)}\right)\right) \leq \psi\left(\max _{1 \leq j \leq n} G\left(x_{m}^{j}, x_{m+1}^{j}, x_{m+1}^{j}\right)\right) .
$$

Applying Lemma 8 using

$$
a_{m}^{i}=G\left(x_{m}^{i}, x_{m+1}^{i}, x_{m+1}^{i}\right) \quad \text { and } \quad b_{m}^{i}=\max _{1 \leq j \leq n} G\left(x_{m}^{\sigma_{i}(j)}, x_{m+1}^{\sigma_{i}(j)}, x_{m+1}^{\sigma_{i}(j)}\right)
$$

for all i and all m, we deduce that

$$
\begin{equation*}
\left\{G\left(x_{m}^{i}, x_{m+1}^{i}, x_{m+1}^{i}\right)\right\} \rightarrow 0 \quad \text { for all } i, \quad \text { that is, } \quad\left\{G_{n}\left(X_{m}, X_{m+1}, X_{m+1}\right)\right\} \rightarrow 0 \tag{9}
\end{equation*}
$$

Next, we prove that every sequence $\left\{x_{m}^{i}\right\}$ is G-Cauchy reasoning by contradiction. Suppose that $\left\{x_{m}^{i_{1}}\right\}_{m \geq 0}, \ldots,\left\{x_{m}^{i_{s}}\right\}_{m \geq 0}$ are not G-Cauchy $(s \geq 1)$ and $\left\{x_{m}^{i_{s+1}}\right\}_{m \geq 0}, \ldots,\left\{x_{m}^{i_{n}}\right\}_{m \geq 0}$ are G-Cauchy, being $\left\{i_{1}, \ldots, i_{n}\right\}=\{1, \ldots, n\}$. From Proposition 2 , for all $r \in\{1,2, \ldots, s\}$, there exist $\varepsilon_{r}>0$ and subsequences $\left\{x_{n_{r}(k)}^{i_{r}}\right\}_{k \in \mathbb{N}}$ and $\left\{x_{m_{r}(k)}^{i_{r}}\right\}_{k \in \mathbb{N}}$ such that, for all $k \in \mathbb{N}$,

$$
\begin{aligned}
& k<n_{r}(k)<m_{r}(k)<n_{r}(k+1), \quad G\left(x_{n_{r}(k)}^{i_{r}}, x_{n_{r}(k)+1}^{i_{r}}, x_{m_{r}(k)}^{i_{r}}\right) \geq \varepsilon_{r}, \\
& G\left(x_{n_{r}(k)}^{i_{r}}, x_{n_{r}(k)+1}^{i_{r}}, x_{m_{r}(k)-1}^{i_{r}}\right)<\varepsilon_{r} .
\end{aligned}
$$

Now, let $\varepsilon_{0}=\max \left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right)>0$ and $\varepsilon_{0}^{\prime}=\min \left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right)>0$. Since $\left\{x_{m}^{i_{s+1}}\right\}_{m \geq 0}, \ldots,\left\{x_{m}^{i_{n}}\right\}_{m \geq 0}$ are G-Cauchy, for all $j \in\left\{i_{s+1}, \ldots, i_{n}\right\}$, there exists $n^{j} \in \mathbb{N}$ such that if $m, m^{\prime} \geq n^{j}$, then $G\left(x_{m}^{j}, x_{m+1}^{j}, x_{m^{\prime}}^{j}\right)<\varepsilon_{0}^{\prime} / 8$. Define $n_{0}=\max _{j \in\left\{i_{s+1}, \ldots, i_{n}\right\}}\left(n^{j}\right)$. Therefore, we have proved that there exists $n_{0} \in \mathbb{N}$ such that if $m, m^{\prime} \geq n_{0}$ then

$$
\begin{equation*}
G\left(x_{m}^{j}, x_{m+1}^{j}, x_{m^{\prime}}^{j}\right)<\varepsilon_{0}^{\prime} / 4 \quad \text { for all } j \in\left\{i_{s+1}, \ldots, i_{n}\right\} . \tag{10}
\end{equation*}
$$

Next, let $q \in\{1,2, \ldots, s\}$ be such that $\varepsilon_{q}=\varepsilon_{0}=\max \left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right)$. Let $k_{1} \in \mathbb{N}$ be such that $n_{0}<n_{q}\left(k_{1}\right)$ and define $n(1)=n_{q}\left(k_{1}\right)$. Consider the numbers $n(1)+1, n(1)+2, \ldots, m_{q}\left(k_{1}\right)$ until finding the first positive integer $m(1)>n(1)$ verifying

$$
\max _{1 \leq r \leq s} G\left(x_{n(1)}^{i_{r}}, x_{n(1)+1}^{i_{r}}, x_{m(1)}^{i_{r}}\right) \geq \varepsilon_{0}, \quad G\left(x_{n(1)}^{i_{j}}, x_{n(1)+1}^{i_{j}}, x_{m(1)-1}^{i_{j}}\right)<\varepsilon_{0} \quad \text { for all } j \in\{1,2, \ldots, s\} .
$$

Now let $k_{2} \in \mathbb{N}$ be such that $m(1)<n_{q}\left(k_{2}\right)$ and define $n(2)=n_{q}\left(k_{2}\right)$. Consider the numbers $n(2)+1, n(2)+2, \ldots, m_{q}\left(k_{2}\right)$ until finding the first positive integer $m(2)>n(2)$ verifying

$$
\begin{aligned}
& \max _{1 \leq r \leq s} G\left(x_{n(2)}^{i_{r}}, x_{n(2)+1}^{i_{r}}, x_{m(2)}^{i_{r}}\right) \geq \varepsilon_{0}, \\
& G\left(x_{n(2)}^{i_{j}}, x_{n(2)+1}^{i_{j}}, x_{m(2)-1}^{i_{j}}\right)<\varepsilon_{0} \quad \text { for all } j \in\{1,2, \ldots, s\} .
\end{aligned}
$$

Repeating this process, we can find sequences such that, for all $k \geq 1$,

$$
\begin{aligned}
& n_{0}<n(k)<m(k)<n(k+1), \quad \max _{1 \leq r \leq s} G\left(x_{n(k)}^{i_{r}}, x_{n(k)+1}^{i_{r}}, x_{m(k)}^{i_{r}}\right) \geq \varepsilon_{0}, \\
& G\left(x_{n(k)}^{i_{j}}, x_{n(k)+1}^{i_{j}}, x_{m(k)-1}^{i_{j}}\right)<\varepsilon_{0} \quad \text { for all } j \in\{1,2, \ldots, s\} .
\end{aligned}
$$

Note that by (10), $G\left(x_{n(k)}^{i_{r}}, x_{n(k)+1}^{i_{r}}, x_{m(k)}^{i_{r}}\right), G\left(x_{n(k)}^{i_{r}}, x_{n(k)+1}^{i_{r}}, x_{m(k)-1}^{i_{r}}\right)<\varepsilon_{0}^{\prime} / 4<\varepsilon_{0} / 2$ for all $r \in\{s+$ $1, s+2, \ldots, n\}$, so

$$
\begin{align*}
& \max _{1 \leq j \leq n} G\left(x_{n(k)}^{j}, x_{n(k)+1}^{j}, x_{m(k)}^{j}\right)=\max _{1 \leq r \leq s} G\left(x_{n(k)}^{i_{r}}, x_{n(k)+1}^{i_{r}}, x_{m(k)}^{i_{r}}\right) \geq \varepsilon_{0} \quad \text { and } \tag{11}\\
& G\left(x_{n(k)}^{i}, x_{n(k)+1}^{i}, g x_{m(k)-1}^{i}\right)<\varepsilon_{0}
\end{align*}
$$

for all $i \in\{1,2, \ldots, n\}$ and all $k \geq 1$. Next, for all k, let $i(k) \in\{1,2, \ldots, s\}$ be an index such that

$$
G\left(x_{n(k)}^{i(k)}, x_{n(k)+1}^{i(k)}, x_{m(k)}^{i(k)}\right)=\max _{1 \leq r \leq s} G\left(x_{n(k)}^{i_{r}}, x_{n(k)+1}^{i_{r}}, x_{m(k)}^{i_{r}}\right)=\max _{1 \leq j \leq n} G\left(x_{n(k)}^{j}, x_{n(k)+1}^{j}, x_{m(k)}^{j}\right) \geq \varepsilon_{0} .
$$

Notice that, applying $\left(\mathrm{G}_{5}\right)$ twice and (11), for all k and all j,

$$
\begin{align*}
G\left(x_{n(k)-1}^{j}, x_{n(k)}^{j}, x_{m(k)-1}^{j}\right) \leq & G\left(x_{n(k)-1}^{j}, x_{n(k)}^{j}, x_{n(k)}^{j}\right)+G\left(x_{n(k)}^{j}, x_{n(k)}^{j}, x_{m(k)-1}^{j}\right) \\
\leq & G\left(x_{n(k)-1}^{j}, x_{n(k)}^{j}, x_{n(k)}^{j}\right)+G\left(x_{n(k)}^{j}, x_{n(k)+1}^{j}, x_{n(k)+1}^{j}\right) \\
& +G\left(x_{n(k)+1}^{j}, x_{n(k)}^{j}, x_{m(k)-1}^{j}\right) \\
\leq & G\left(x_{n(k)-1}^{j}, x_{n(k)}^{j}, x_{n(k)}^{j}\right)+G\left(x_{n(k))}^{j}, x_{n(k)+1}^{j}, x_{n(k)+1}^{j}\right)+\varepsilon_{0} . \tag{12}
\end{align*}
$$

Applying Proposition 2 to guarantee that the following points are \sqsubseteq-comparable, the contractivity condition (7) assures us for all k

$$
\begin{align*}
0< & \psi\left(\varepsilon_{0}\right) \leq \psi\left(G\left(x_{n(k)}^{i(k)}, x_{n(k)+1}^{i(k)}, x_{m(k)}^{i(k)}\right)\right)=\psi\left(G\left(x_{n(k)}^{i(k)}, x_{m(k)}^{i(k)}, x_{n(k)+1}^{i(k)}\right)\right) \\
= & \psi\left(G \left(F\left(x_{n(k)-1}^{\sigma_{i(k)}^{(1)}}, x_{n(k)-1}^{\sigma_{i(k)}^{(2)}}, \ldots, x_{n(k)-1}^{\sigma_{i(k)}^{(n)}}\right), F\left(x_{m(k)-1}^{\sigma_{i(k)}^{(1)}}, x_{m(k)-1}^{\sigma_{i l(k)}^{(2)}}, \ldots, x_{m(k)-1}^{\sigma_{i(k)}^{(n)}}\right),\right.\right. \\
& F_{\Upsilon}^{2}\left(x_{n(k)-1}^{\left.\left.\left.\sigma_{i(k)}^{(1)}, x_{n(k)-1}^{\sigma_{i(k)}(2)}, \ldots, x_{n(k)-1}^{\sigma_{i(k)}(n)}\right)\right)\right)}\right. \\
\leq & (\psi-\varphi)\left(\max _{1 \leq j \leq n} G\left(x_{n(k)-1}^{\sigma_{i(k)}^{(j)},}, x_{m(k)-1}^{\sigma_{i(k)}(j)}, F\left(x_{n(k)-1}^{\sigma_{i(k)}^{(1)}}, x_{n(k)-1}^{\sigma_{i(k)}(2)}, \ldots, x_{n(k)-1}^{\sigma_{i(k)}^{(n)}}\right)\right)\right) \\
= & (\psi-\varphi)\left(\operatorname { m a x } _ { 1 \leq j \leq n } G \left(x_{n(k)-1}^{\sigma_{i(k)}^{(j)},}, x_{m(k)-1}^{\left.\left.\sigma_{i(k)}^{(j)}, x_{n(k)}^{\sigma_{i(k)}^{(j)}}\right)\right)}\right.\right. \\
= & (\psi-\varphi)\left(\max _{1 \leq j \leq n} G\left(x_{n(k)-1}^{\sigma_{i(k)}^{(j)}}, x_{n(k)}^{\sigma_{i(k)}(j)}, x_{m(k)-1}^{\sigma_{i(k)}^{(j)}}\right)\right) . \tag{13}
\end{align*}
$$

Consider the sequence

$$
\begin{equation*}
\left\{\max _{1 \leq j \leq n} G\left(x_{n(k)-1}^{\sigma_{i(k)}^{(j)}}, x_{n(k)}^{\sigma_{i(k)}^{(j)}}, x_{m(k)-1}^{\sigma_{i(k)}^{(j)}}\right)\right\}_{k \geq 1} \tag{14}
\end{equation*}
$$

If this sequence has a subsequence that converges to zero, then we can take limit when $k \rightarrow \infty$ in (13) using this subsequence, so that we would have $0<\psi\left(\varepsilon_{0}\right) \leq \psi(0)-\varphi(0)=0$, which is impossible since $\varepsilon_{0}>0$. Therefore, the sequence (14) has no subsequence converging to zero. In this case, taking $\varepsilon_{0}>0$ in Lemma 6 , there exist $\left.\delta \in\right] 0, \varepsilon_{0}\left[\right.$ and $k_{0} \in \mathbb{N}$ such that $\max _{1 \leq j \leq n} G\left(x_{n(k)-1}^{\sigma_{i(k)}(j)}, x_{n(k)}^{\sigma_{i(k)}(j)}, x_{m(k)-1}^{\sigma_{i(k)}(j)}\right) \geq \delta$ for all $k \geq k_{0}$. It follows that, for all $k \geq k_{0}$, $-\varphi\left(\max _{1 \leq j \leq n} G\left(x_{n(k)-1}^{\sigma_{i(k)}(j)}, x_{i(k)}^{\sigma_{i(k)}(j)}, x_{m(k)-1}^{\sigma_{i(k)}(j)}\right)\right) \leq-\varphi(\delta)$. Thus, by (13) and (12),

$$
\begin{align*}
0 & <\psi\left(\varepsilon_{0}\right) \leq \psi\left(\max _{1 \leq j \leq n} G\left(x_{n(k)-1}^{\sigma_{i(k)}^{(j)}}, x_{n(k)}^{\sigma_{i(k)}^{(j)}}, x_{m(k)-1}^{\sigma_{i(k)}^{(j)}}\right)\right)-\varphi\left(\max _{1 \leq j \leq n} G\left(x_{n(k)-1}^{\sigma_{i(k)}(j)}, x_{n(k)}^{\sigma_{i(k)}^{(j)}}, x_{m(k)-1}^{\sigma_{i l(k)}^{(j)}}\right)\right) \\
& \leq \psi\left(\max _{1 \leq j \leq n} G\left(x_{n(k)-1}^{\sigma_{i(k)}(j)}, x_{n(k)}^{\sigma_{i(k)}^{(j)}}, x_{m(k)-1}^{\sigma_{i(k)(j)}}\right)\right)-\varphi(\delta) \\
& \leq \psi\left(\max _{1 \leq j \leq n} G\left(x_{n(k)-1}^{j}, x_{n(k))}^{j}, x_{m(k)-1}^{j}\right)\right)-\varphi(\delta) \\
& \leq \psi\left(\max _{1 \leq j \leq n}\left(G\left(x_{n(k)-1}^{j}, x_{n(k)}^{j}, x_{n(k)}^{j}\right)+G\left(x_{n(k)}^{j}, x_{n(k)+1}^{j}, x_{n(k)+1}^{j}\right)\right)+\varepsilon_{0}\right)-\varphi(\delta) . \tag{15}
\end{align*}
$$

Taking limit in (15) as $k \rightarrow \infty$ and taking into account (9), we deduce that $0<\psi\left(\varepsilon_{0}\right) \leq$ $\psi\left(\varepsilon_{0}\right)-\varphi(\delta)$, which is impossible. The previous reasoning proves that every sequence $\left\{x_{m}^{i}\right\}$ is G-Cauchy.

Corollary 25 guarantees that the sequence $\left\{\mathbb{F}_{\Upsilon}^{m}\left(\mathrm{X}_{0}\right)=\mathrm{X}_{m}=\left(x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n}\right)\right\}$ is G_{n} Cauchy. Since (X^{n}, G_{n}) is complete (again by Corollary 25), there exists $Z \in X^{n}$ such that $\left\{X_{m}\right\} \xrightarrow{G_{n}} Z$, that is, if $Z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ then

$$
\begin{equation*}
\left\{G\left(x_{m}^{i}, x_{m+1}^{i}, z_{i}\right)\right\} \rightarrow 0 \quad \text { for all } i \tag{16}
\end{equation*}
$$

Suppose that F is G-continuous. In this case, item 3 of Lemma 29 implies that \mathbb{F}_{Υ} is $G_{n^{-}}$ continuous, so $\left\{X_{m}\right\} \xrightarrow{G_{n}} \mathrm{Z}$ and $\left\{\mathrm{X}_{m+1}=\mathbb{F}_{\Upsilon}\left(\mathrm{X}_{m}\right)\right\} \xrightarrow{G_{n}} \mathbb{F}_{\Upsilon}(\mathrm{Z})$. By the unicity of the G_{n}-limit, $\mathbb{F}_{\Upsilon}(Z)=Z$, which means that Z is a Υ-fixed point of F.

Suppose that (X, G, \preccurlyeq) is regular. In this case, by Corollary $25,\left(X^{n}, G_{n}, \sqsubseteq\right)$ is also regular. Then, taking into account that $\left\{\mathrm{X}_{m}=\mathbb{F}_{\Upsilon}^{m}\left(\mathrm{X}_{0}\right)\right\}$ is a \sqsubseteq-monotone non-decreasing sequence such that $\left\{X_{m}\right\} \xrightarrow{G_{n}} Z$, we deduce that $X_{m} \sqsubseteq Z$ for all m. From Proposition 2, since $\left(x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n}\right)=\mathrm{X}_{m} \sqsubseteq \mathrm{Z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$, then $\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right)$ and $\left(z_{\sigma_{i}(1)}, z_{\sigma_{i}(2)}\right.$, $\left.\ldots, z_{\sigma_{i}(n)}\right)$ are \sqsubseteq-comparable for all i and all m. Notice that for all i and all m,

$$
\begin{aligned}
F\left(x_{m+1}^{\sigma_{i}(1)}, x_{m+1}^{\sigma_{i}(2)}, \ldots, x_{m+1}^{\sigma_{i}(n)}\right)= & F\left(F\left(x_{m}^{\sigma_{\sigma_{i}(1)}(1)}, x_{m}^{\sigma_{\sigma_{i}(1)}(2)}, \ldots, x_{m}^{\sigma_{\sigma_{i}(1)}(n)}\right), \ldots,\right. \\
& \left.F\left(x_{m}^{\sigma_{\sigma_{i}(n)}(1)}, x_{m}^{\sigma_{\sigma_{i}(n)}(2)}, \ldots, x_{m}^{\sigma_{\sigma_{i}(n)}(n)}\right)\right) \\
= & F_{\Upsilon}^{2}\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right) .
\end{aligned}
$$

It follows from condition (7) and (8) that, for all i,

$$
\begin{aligned}
\psi & \left(G\left(F\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right), F\left(x_{m+1}^{\sigma_{i}(1)}, x_{m+1}^{\sigma_{i}(2)}, \ldots, x_{m+1}^{\sigma_{i}(n)}\right), F\left(z_{\sigma_{i}(1)}, z_{\sigma_{i}(2)}, \ldots, z_{\sigma_{i}(n)}\right)\right)\right) \\
& =\psi\left(G\left(F\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right), F\left(z_{\sigma_{i}(1)}, z_{\sigma_{i}(2)}, \ldots, z_{\sigma_{i}(n)}\right), F_{\Upsilon}^{2}\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right)\right)\right) \\
& \leq(\psi-\varphi)\left(\max _{1 \leq j \leq n} G\left(x_{m}^{\sigma_{i}(j)}, z_{\sigma_{i}(j)}, F\left(x_{m}^{\sigma_{\sigma_{i}(j)}(1)}, x_{m}^{\sigma_{\sigma_{i}(j)}(2)}, \ldots, x_{m}^{\sigma_{\sigma_{i}(j)}(n)}\right)\right)\right) \\
& =(\psi-\varphi)\left(\max _{1 \leq j \leq n} G\left(x_{m}^{\sigma_{i}(j)}, z_{\sigma_{i}(j)}, x_{m+1}^{\sigma_{i}(j)}\right)\right) \leq \psi\left(\max _{1 \leq j \leq n} G\left(x_{m}^{\sigma_{i}(j)}, x_{m+1}^{\sigma_{i}(j)}, z_{\sigma_{i}(j)}\right)\right) \\
& \leq \psi\left(\max _{1 \leq j \leq n} G\left(x_{m}^{j}, x_{m+1}^{j}, z_{j}\right)\right) .
\end{aligned}
$$

By (16) we deduce that

$$
\left\{F\left(x_{m}^{\sigma_{i}(1)}, x_{m}^{\sigma_{i}(2)}, \ldots, x_{m}^{\sigma_{i}(n)}\right)\right\} \rightarrow F\left(z_{\sigma_{i}(1)}, z_{\sigma_{i}(2)}, \ldots, z_{\sigma_{i}(n)}\right) \quad \text { for all } i,
$$

which means that

$$
\begin{aligned}
& \left\{\mathbb{F}_{\Upsilon} \mathrm{X}_{m}=\left(F\left(x_{m}^{\sigma_{1}(1)}, x_{m}^{\sigma_{1}(2)}, \ldots, x_{m}^{\sigma_{1}(n)}\right), \ldots, F\left(x_{m}^{\sigma_{n}(1)}, x_{m}^{\sigma_{n}(2)}, \ldots, x_{m}^{\sigma_{n}(n)}\right)\right)\right\} \\
& \quad \xrightarrow{G_{n}}\left(F\left(z_{\sigma_{1}(1)}, z_{\sigma_{1}(2)}, \ldots, z_{\sigma_{1}(n)}\right), \ldots, F\left(z_{\sigma_{n}(1)}, z_{\sigma_{n}(2)}, \ldots, z_{\sigma_{n}(n)}\right)\right)=\mathbb{F}_{\Upsilon} Z .
\end{aligned}
$$

Since $\left\{\mathbb{F}_{\Upsilon} X_{m}=X_{m+1}\right\} \xrightarrow{G_{n}} Z$, we conclude that $\mathbb{F}_{\Upsilon} Z=Z$, that is, Z is a Υ-fixed point of F.
If we take $\psi(t)=t$ in Theorem 26, then we get the following results.
Corollary 32 Let (X, G) be a complete G^{*}-metric space and let \preccurlyeq be a partial preorder on X. Let $\Upsilon=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ be an n-tuple of mappings from $\{1,2, \ldots, n\}$ into itself verifying $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}$ if $i \in \mathrm{~A}$ and $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}^{\prime}$ if $i \in \mathrm{~B}$. Let $F: X^{n} \rightarrow X$ be a mapping verifying the mixed monotone property on X. Assume that there exists $\varphi \in \Psi$ such that

$$
\begin{aligned}
& G\left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right), F\left(y_{1}, y_{2}, \ldots, y_{n}\right), F_{\Upsilon}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
& \quad \leq \max _{1 \leq i \leq n} G\left(x_{i}, y_{i}, F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)\right)-\varphi\left(\max _{1 \leq i \leq n} G\left(x_{i}, y_{i}, F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)\right)\right)
\end{aligned}
$$

for which $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}$ are \sqsubseteq-comparable. Suppose either F is continuous or (X, G, \preccurlyeq) is regular. If there exist $x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n} \in X$ verifying $x_{0}^{i} \preccurlyeq{ }_{i} F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}\right.$, $\ldots, x_{0}^{\sigma_{i}(n)}$) for all i, then F has, at least, one Υ-fixed point.

If we take $\varphi(t)=(1-k) t$ for all $t \geq 0$, with $k \in[0,1)$, in Corollary 32 , then we derive the following result.

Corollary 33 Let (X, G) be a complete G^{*}-metric space and let \preccurlyeq be a partial preorder on X. Let $\Upsilon=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ be an n-tuple of mappings from $\{1,2, \ldots, n\}$ into itself verifying $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}$ if $i \in \mathrm{~A}$ and $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}^{\prime}$ if $i \in \mathrm{~B}$. Let $F: X^{n} \rightarrow X$ be a mapping verifying the mixed monotone property on X. Assume that there exists $k \in[0,1)$ such that

$$
\begin{align*}
& G\left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right), F\left(y_{1}, y_{2}, \ldots, y_{n}\right), F_{\Upsilon}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
& \quad \leq k \max _{1 \leq i \leq n} G\left(x_{i}, y_{i}, F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)\right) \tag{17}
\end{align*}
$$

for which $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}$ are \sqsubseteq-comparable. Suppose either F is continuous or (X, G, \preccurlyeq) is regular. If there exist $x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n} \in X$ verifying $x_{0}^{i} \preccurlyeq{ }_{i} F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}\right.$, $\left.\ldots, x_{0}^{\sigma_{i}(n)}\right)$ for all i, then F has, at least, one Υ-fixed point.

Example 34 Let $X=\{0,1,2,3,4\}$ and let G be the G-metric on X given, for all $x, y, z \in X$, by $G(x, y, z)=\max (|x-y|,|x-z|,|y-z|)$. Then (X, G) is complete and G generates the discrete topology on X. Consider on X the following partial order:

$$
x, y \in X, \quad x \preccurlyeq y \quad \Leftrightarrow \quad x=y \quad \text { or } \quad(x, y)=(0,2) \text {. }
$$

Define $F: X^{n} \rightarrow X$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}0, & \text { if } x_{1}, x_{2}, \ldots, x_{n} \in\{0,1,2\}, \\ 1, & \text { otherwise }\end{cases}
$$

Then the following statements hold.

1. F is a G-continuous mapping.
2. If $y, z \in X$ verify $y \preccurlyeq z$, then either $y, z \in\{0,1,2\}$ or $y, z \in\{3,4\}$. In particular,
$F\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right)=F\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right)$ and F has the mixed monotone property on X.
3. If $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}$ are \sqsubseteq-comparable, then $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. In particular, (17) holds for $k=1 / 2$.

For simplicity, henceforth, suppose that n is even and let A (respectively, B) be the set of all odd (respectively, even) numbers in $\{1,2, \ldots, n\}$.
4. For a mapping $\sigma: \Lambda_{n} \rightarrow \Lambda_{n}$, we use the notation $\sigma \equiv(\sigma(1), \sigma(2), \ldots, \sigma(n))$ and consider

$$
\sigma_{i} \equiv(i, i+1, \ldots, n-1, n, 1,2, \ldots, i-1) \quad \text { for all } i
$$

Then $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}$ if i is odd and $\sigma_{i} \in \Omega_{\mathrm{A}, \mathrm{B}}^{\prime}$ if i is even. Let $\Upsilon=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$.
5. Take $x_{0}^{i}=0$ if i is odd and $x_{0}^{i}=2$ if i is even. Then $x_{0}^{i} \npreccurlyeq_{i} F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}, \ldots, x_{0}^{\sigma_{i}(n)}\right)$ for all i.
Therefore, we can apply Corollary 33 to conclude that F has, at least, one Υ-fixed point. To finish, we prove the previous statements.

If $\left\{x_{m}\right\} \xrightarrow{G} x$, then there exists $m_{0} \in \mathbb{N}$ such that $\left|x_{m}-x\right|=G\left(x, x, x_{m}\right)<1 / 2$ for all $m \geq m_{0}$. Since X is discrete, then $x_{m}=x$ for all $m \geq m_{0}$. This proves that τ_{G} is the discrete topology on X.

1. If $\left\{a_{m}^{1}\right\},\left\{a_{m}^{2}\right\}, \ldots,\left\{a_{m}^{n}\right\} \subseteq X$ are n sequences such that $\left\{a_{m}^{i}\right\} \xrightarrow{G} a_{i} \in X$ for all i, then there exists $m_{0} \in \mathbb{N}$ such that $a_{m}^{i}=a_{i}$ for all $m \geq m_{0}$ and all i. Then $\left\{F\left(a_{m}^{1}, a_{m}^{2}, \ldots, a_{m}^{n}\right)\right\} \xrightarrow{G} F\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and F is G-continuous.
2. If $y, z \in X$ verify $y \preccurlyeq z$, the either $y=z$ (in this case, there is nothing to prove) or $(y, z)=(0,2)$. Then either $y, z \in\{0,1,2\}$ or $y, z \in\{3,4\}$. In particular,

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right) & =\left\{\begin{array}{ll}
0 & \text { if } x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n} \in\{0,1,2\} \\
1, & \text { otherwise }
\end{array}\right\} \\
& =F\left(x_{1}, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Hence F has the mixed monotone property on X.
3. Suppose that $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}$ are \sqsubseteq-comparable, and we claim that $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. Indeed, assume, for instance, that $x_{i} \preccurlyeq_{i} y_{i}$ for all i. By item 2, for all i, either $x_{i}, y_{i} \in\{0,1,2\}$ or $x_{i}, y_{i} \in\{3,4\}$. Then

$$
\begin{aligned}
F\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\left\{\begin{array}{ll}
0 & \text { if } x_{1}, x_{2}, \ldots, x_{n} \in\{0,1,2\}, \\
1, & \text { otherwise }
\end{array}\right\} \\
& =\left\{\begin{array}{ll}
0 & \text { if } y_{1}, y_{2}, \ldots, y_{n} \in\{0,1,2\}, \\
1, & \text { otherwise }
\end{array}\right\} \\
& =F\left(y_{1}, y_{2}, \ldots, y_{n}\right) .
\end{aligned}
$$

If $x_{i} \succcurlyeq_{i} y_{i}$ for all i, the proof is similar. Next, we prove that (17) holds using $k=1 / 4$. If $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$, then $F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right) \in\{0,1\} \subset\{0,1,2\}$. Therefore

$$
\begin{aligned}
F_{\Upsilon}^{2} & \left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
= & F\left(F\left(x_{\sigma_{1}(1)}, x_{\sigma_{1}(2)}, \ldots, x_{\sigma_{1}(n)}\right), F\left(x_{\sigma_{2}(1)}, x_{\sigma_{2}(2)}, \ldots, x_{\sigma_{2}(n)}\right), \ldots,\right. \\
& \left.F\left(x_{\sigma_{n}(1)}, x_{\sigma_{n}(2)}, \ldots, x_{\sigma_{n}(n)}\right)\right) \\
= & 0
\end{aligned}
$$

Suppose that $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}$ are \sqsubseteq-comparable. It follows that

$$
\begin{aligned}
G & \left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right), F\left(y_{1}, y_{2}, \ldots, y_{n}\right), F_{\Upsilon}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
& =\max \left(\left|F\left(x_{1}, x_{2}, \ldots, x_{n}\right)-F\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right|,\right. \\
& \left.\left|F\left(x_{1}, x_{2}, \ldots, x_{n}\right)-0\right|,\left|F\left(y_{1}, y_{2}, \ldots, y_{n}\right)-0\right|\right) \\
& =\max \left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right), F\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \\
& = \begin{cases}0 & \text { if } F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0, \\
1, & \text { otherwise. }\end{cases}
\end{aligned}
$$

It is clear that (17) holds if the previous number is 0 . On the contrary, suppose that

$$
G\left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right), F\left(y_{1}, y_{2}, \ldots, y_{n}\right), F_{\Upsilon}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=1 .
$$

Then $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ or $F\left(y_{1}, y_{2}, \ldots, y_{n}\right)=1$ (both cases are similar). Assume, for instance, that $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$. Then there exists $i_{0} \in\{1,2, \ldots, n\}$ such that $x_{i_{0}} \in\{3,4\}$. In particular

$$
\left|x_{i_{0}}-F\left(x_{\sigma_{i_{0}}(1)}, x_{\sigma_{i_{0}}(2)}, \ldots, x_{\sigma_{i_{0}}(n)}\right)\right| \geq 3-1=2
$$

Therefore

$$
\begin{aligned}
\max _{1 \leq i \leq n} G\left(x_{i}, y_{i}, F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)\right) & \geq G\left(x_{i_{0}}, y_{i_{0}}, F\left(x_{\sigma_{i_{0}}(1)}, x_{\sigma_{i_{0}}(2)}, \ldots, x_{\sigma_{i_{0}}(n)}\right)\right) \\
& \geq\left|x_{i_{0}}-F\left(x_{\sigma_{i_{0}}(1)}, x_{\sigma_{i_{0}}(2)}, \ldots, x_{\sigma_{i_{0}}(n)}\right)\right| \geq 2
\end{aligned}
$$

This means that

$$
\begin{aligned}
& G\left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right), F\left(y_{1}, y_{2}, \ldots, y_{n}\right), F_{\Upsilon}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
& \quad=1=\frac{1}{2} 2 \leq \frac{1}{2} \max _{1 \leq i \leq n} G\left(x_{i}, y_{i}, F\left(x_{\sigma_{i}(1)}, x_{\sigma_{i}(2)}, \ldots, x_{\sigma_{i}(n)}\right)\right) .
\end{aligned}
$$

Therefore, in this case, (17) also holds.
4. It is evident.
5. Since $x_{0}^{i} \in\{0,1,2\}$ for all i, then $F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}, \ldots, x_{0}^{\sigma_{i}(n)}\right)=0$ for all i. If i is odd, then $x_{0}^{i}=0 \preccurlyeq_{i} 0=F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}, \ldots, x_{0}^{\sigma_{i}(n)}\right)$. If i is even, then $x_{0}^{i}=2 \succcurlyeq 0=F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}, \ldots, x_{0}^{\sigma_{i}(n)}\right)$, so $x_{0}^{i} \preccurlyeq i F\left(x_{0}^{\sigma_{i}(1)}, x_{0}^{\sigma_{i}(2)}, \ldots, x_{0}^{\sigma_{i}(n)}\right)$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Acknowledgements

The second author has been partially supported by Junta de Andalucía and by project FQM-268 of the Andalusian CICYE.

Received: 4 April 2013 Accepted: 24 May 2013 Published: 18 June 2013

References

1. Gähler, S: 2-metrische Räume und ihr topologische struktur. Math. Nachr. 26, 115-148 (1963)
2. Gähler, S: Zur geometric 2-metrische räume. Rev. Roum. Math. Pures Appl. XL, 664-669 (1966)
3. Ha, KS, Cho, YJ, White, A: Strictly convex and strictly 2-convex 2-normed spaces. Math. Jpn. 33, 375-384 (1988)
4. Dhage, BC: Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc. 84, 329-336 (1992)
5. Dhage, BC: Generalized metric space and topological structure I. An. ştiinţ. Univ. "Al.I. Cuza" Iaşi, Mat. 46, 3-24 (2000)
6. Dhage, BC : On generalized metric spaces and topological structure II. Pure Appl. Math. Sci. 40, 37-41 (1994)
7. Dhage, BC: On continuity of mappings in D-metric spaces. Bull. Calcutta Math. Soc. 86, 503-508 (1994)
8. Mustafa, Z, Sims, B: Some remarks concerning D-metric spaces. In: Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia (Spain), July, pp. 189-198 (2003)
9. Naidu, SVR, Rao, KPR, Rao, S: On the concepts of balls in a D-metric space. Int. J. Math. Math. Sci. 1, 133-141 (2005)
10. Mustafa, Z: A new structure for generalized metric spaces with applications to fixed point theory. PhD thesis, The University of Newcastle, Australia (2005)
11. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7, 289-297 (2006)
12. Mustafa, Z, Obiedat, H, Awawdeh, F: Some fixed point theorem for mapping on complete G-metric spaces. Fixed Point Theory Appl. 2008, Article ID 189870 (2008)
13. Mustafa, Z, Khandaqji, M, Shatanawi, W: Fixed point results on complete G-metric spaces. Studia Sci. Math. Hung. 48, 304-319 (2011)
14. Mustafa, Z, Shatanawi, W, Bataineh, M: Existence of fixed point results in G-metric spaces. Int. J. Math. Math. Sci. 2009, Article ID 283028 (2009)
15. Shatanawi, W: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 40, 441-447 (2011)
16. Agarwal, RP, Karapınar, E: Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point Theory Appl. 2013, 2 (2013)
17. Ding, H-S, Karapınar, E: Meir-Keeler type contractions in partially ordered G-metric spaces. Fixed Point Theory Appl. 2013, 35 (2013)
18. Abbas, M, Sintunavarat, W, Kumam, P: Coupled fixed point of generalized contractive mappings on partially ordered G-metric spaces. Fixed Point Theory Appl. 2012, 31 (2012)
19. Chandok, S, Sintunavarat, W, Kumam, P: Some coupled common fixed points for a pair of mappings in partially ordered G-metric spaces. Math. Sci. 7, 24 (2013)
20. Roldán, A, Martínez-Moreno, J, Roldán, C: Multidimensional fixed point theorems in partially ordered complete metric spaces. J. Math. Anal. Appl. 396, 536-545 (2012)
21. Agarwal, RP, Sintunavarat, W, Kumam, P: Coupled coincidence point and common coupled fixed point theorems lacking the mixed monotone property. Fixed Point Theory Appl. 2013, 22 (2013)
22. Abbas, M, Ali, B, Sintunavarat, W, Kumam, P: Tripled fixed point and tripled coincidence point theorems in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. 2012, 187 (2012)
23. Aydi, H, Abbas, M, Sintunavarat, W, Kumam, P: Tripled fixed point of W-compatible mappings in abstract metric spaces. Fixed Point Theory Appl. 2012, 134 (2012)
24. Choudhury, BS, Maity, P: Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 54, 73-79 (2011)
25. Mustafa, Z, Sims, B: Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009, Article ID 917175 (2009)
26. Roldán, A, Martínez-Moreno, J, Roldán, C, Karapınar, E: Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces. Abstr. Appl. Anal. 2013, Article ID 406026 (2013). doi:10.1155/2013/406026
27. Sintunavarat, W, Cho, YJ, Kumam, P: Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. 2011, 81 (2011)
28. Sintunavarat, W, Cho, YJ, Kumam, P: Coupled fixed point theorems for weak contraction mapping under F-invariant set. Abstr. Appl. Anal. 2012, Article ID 324874 (2012)

doi:10.1186/1687-1812-2013-158

Cite this article as: Roldán and Karapınar: Some multidimensional fixed point theorems on partially preordered G^{*}-metric spaces under (ψ, φ)-contractivity conditions. Fixed Point Theory and Applications 2013 2013:158.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

