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Abstract
In this paper we present some (unidimensional and) multidimensional fixed point
results under (ψ ,ϕ)-contractivity conditions in the framework of G∗-metric spaces,
which are spaces that result from G-metric spaces (in the sense of Mustafa and Sims)
omitting one of their axioms. We prove that these spaces let us consider easily the
product of G∗-metrics. Our result clarifies and improves some recent results on this
topic because, among other different reasons, we will not need a partial order on the
underlying space. Furthermore, the way in which several contractivity conditions are
proposed imply that our theorems cannot be reduced to metric spaces.
MSC: 46T99; 47H10; 47H09; 54H25

1 Introduction
In the sixties, inspired by the mapping that associated the area of a triangle to its three
vertices, Gähler [, ] introduced the concept of -metric spaces. Gähler believed that -
metric spaces can be interpreted as a generalization of usualmetric spaces. However, some
authors demonstrated that there is no clear relationship between these notions. For in-
stance, Ha et al. [] showed that a -metric does not have to be a continuous function
of its three variables. Later, inspired by the perimeter of a triangle rather than the area,
Dhage [] changed the axioms and presented the concept of D-metric. Different topolog-
ical structures (see [–]) were considered in such spaces and, subsequently, several fixed
point results were established. Unfortunately, most of their properties turned out to be
false (see [–]). These considerations led to the concept of G-metric space introduced
by Mustafa and Sims []. Since then, this theory has been expansively developed, pay-
ing a special attention to fixed point theorems (see, for instance, [–] and references
therein).
The main aim of the present paper is to prove new unidimensional and multidimen-

sional fixed point results in the framework of the G-metric spaces provided with a partial
preorder (not necessarily a partial order). However, we need to overcome the well-known
fact that the usual product ofG-metrics is not necessarily aG-metric unless it comes from
classical metrics (see [], Section ). Hence, we will omit one of the axioms that define
a G-metric and we consider a new class of metrics, called G∗-metrics. As a consequence,
our main results are valid in the context of G-metric spaces.
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2 Preliminaries
Let n be a positive integer. Henceforth, X will denote a non-empty set and Xn will denote
the product space X × X × n· · · × X. Throughout this manuscript, m and k will denote
non-negative integers and i, j, s ∈ {, , . . . ,n}. Unless otherwise stated, ‘for allm’ will mean
‘for allm ≥ ’ and ‘for all i’ will mean ‘for all i ∈ {, , . . . ,n}’. Let R+

 = [,∞).

Definition  We will say that � is a partial preorder on X (or (X,�) is a preordered set
or (X,�) is a partially preordered space) if the following properties hold.
• Reflexivity: x� x for all x ∈ X .
• Transitivity: If x, y, z ∈ X verify x� y and y� z, then x� z.

Henceforth, let {A,B} be a partition of �n = {, , . . . ,n}, that is, A∪B = �n and A∩B =∅

such that A and B are non-empty sets. In the sequel, we will denote

�A,B =
{
σ :�n → �n : σ (A)⊆ A and σ (B)⊆ B

}
and

�′
A,B =

{
σ :�n → �n : σ (A)⊆ B and σ (B)⊆ A

}
.

From now on, let ϒ = (σ,σ, . . . ,σn) be an n-tuple of mappings from {, , . . . ,n} into itself
verifying σi ∈ �A,B if i ∈ A and σi ∈ �′

A,B if i ∈ B.
If (X,�) is a partially preordered space, x, y ∈ X and i ∈ �n, we will use the following

notation:

x�i y ⇔
{
x� y, if i ∈ A,
x� y, if i ∈ B.

Consider on the product spaceXn the following partial preorder: for X = (x,x, . . . ,xn),Y =
(y, y, . . . , yn) ∈ Xn,

X � Y ⇔ xi �i yi for all i. ()

Notice that � depends on A and B. We say that two points X and Y are �-comparable if
X � Y or X  Y.

Proposition  If X � Y and σ ∈ �A,B ∪ �′
A,B, then (xσ (),xσ (), . . . ,xσ (n)) and (yσ (), yσ (), . . . ,

yσ (n)) are �-comparable. In particular,

(xσ (),xσ (), . . . ,xσ (n)) � (yσ (), yσ (), . . . , yσ (n)) if σ ∈ �A,B,

(xσ (),xσ (), . . . ,xσ (n))  (yσ (), yσ (), . . . , yσ (n)) if σ ∈ �′
A,B.

Proof Suppose that xi �i yi for all i. Hence xσ (i) �σ (i) yσ (i) for all i. Fix σ ∈ �A,B. If i ∈ A, then
σ (i) ∈ A, so xσ (i) �σ (i) yσ (i) implies that xσ (i) � yσ (i), which means that xσ (i) �i yσ (i). If i ∈ B,
then σ (i) ∈ B, so xσ (i) �σ (i) yσ (i) implies that xσ (i) � yσ (i), which means that xσ (i) �i yσ (i).
In any case, if σ ∈ �A,B, then xσ (i) �i yσ (i) for all i. It follows that (xσ (),xσ (), . . . ,xσ (n)) �
(yσ (), yσ (), . . . , yσ (n)).
Now fix σ ∈ �′

A,B. If i ∈ A, then σ (i) ∈ B, so xσ (i) �σ (i) yσ (i) implies that xσ (i) � yσ (i), which
means that xσ (i) �i yσ (i). If i ∈ B, then σ (i) ∈ A, so xσ (i) �σ (i) yσ (i) implies that xσ (i) � yσ (i),
which means that xσ (i) �i yσ (i). �
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Let F : Xn → X be a mapping.

Definition  (Roldán et al. []) A point (x,x, . . . ,xn) ∈ Xn is called an ϒ-fixed point of
the mapping F if

F(xσi(),xσi(), . . . ,xσi(n)) = xi for all i. ()

Definition  (Roldán et al. []) Let (X,�) be a partially preordered space. We say that
F has the mixed monotone property (w.r.t. {A,B}) if F is monotone non-decreasing in
the arguments of A and monotone non-increasing in the arguments of B, i.e., for all
x,x, . . . ,xn, y, z ∈ X and all i,

y� z ⇒ F(x, . . . ,xi–, y,xi+, . . . ,xn)�i F(x, . . . ,xi–, z,xi+, . . . ,xn).

Wewill use the following results about real sequences in the proof of ourmain theorems.

Lemma  Let {am}m∈N, . . . , {anm}m∈N be n real lower bounded sequences such that {max(am,
. . . ,anm)}m∈N → δ. Then there exist i ∈ {, , . . . ,n} and a subsequence {aim(k)}k∈N such that
{aim(k)}k∈N → δ.

Proof Let bm = max(am,am, . . . ,anm) for all m. As {bm} is convergent, it is bounded. As
aim ≤ bm for all m and i, then every {aim} is bounded. As {am}m∈N is a real bounded se-
quence, it has a convergent subsequence {a

σ(m)}m∈N → a. Consider the subsequences
{a

σ(m)}m∈N, {aσ(m)}m∈N, . . . , {anσ(m)}m∈N, that are n–  real bounded sequences, and the se-
quence {bσ(m)}m∈N that also converges to δ. As {aσ(m)}m∈N is a real bounded sequence,
it has a convergent subsequence {aσσ(m)}m∈N → a. Then the sequences {aσσ(m)}m∈N,
{a

σσ(m)}m∈N, . . . , {anσσ(m)}m∈N also are n– real bounded sequences and {a
σσ(m)}m∈N →

a and {bσσ(m)}m∈N → δ. Repeating this process n times, we can find n subsequences
{aσ (m)}m∈N, {aσ (m)}m∈N, . . . , {anσ (m)}m∈N (where σ = σn · · ·σ) such that {aiσ (m)}m∈N → ai for
all i. And {bσ (m)}m∈N → δ. But

{bσ (m)}m∈N =
{
max

(
anσ (m), . . . ,a

n
σ (m)

)}
m∈N →max(a, . . . ,an),

so δ = max(a, . . . ,an) and there exists i ∈ {, , . . . ,n} such that ai = δ. Therefore, there
exist i ∈ {, , . . . ,n} and a subsequence {aiσ (m)}m∈N such that {aiσ (m)}m∈N → ai = δ. �

Lemma  Let {am}m∈N be a sequence of non-negative real numbers which has not any
subsequence converging to zero. Then, for all ε > , there exist δ ∈ ], ε[ and m ∈ N such
that am ≥ δ for all m ≥ m.

Proof Suppose that the conclusion is not true. Then there exists ε >  such that, for all
δ ∈ ], ε[, there exists m ∈ N verifying am < δ. Let k ∈ N be such that /k < ε. For all
k ∈ N, take δk = /(k + k) ∈ ], ε[. Then there exists m(k) ∈ N verifying  ≤ am(k) < δk =
/(k + k). Taking limit when k → ∞, we deduce that limk→∞ am(k) = . Then {am} has a
subsequence converging to zero (maybe, reordering {am(k)}), but this is a contradiction.

�
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Let


 =
{
φ : [,∞) → [,∞) : φ is continuous, non-decreasing and φ–({}) = {}}.

Lemma  If ψ ∈ 
 and {am} ⊂ [,∞) verifies {ψ(am)} → , then {am} → .

Proof If the conclusion does not hold, there exists ε >  such that, for all m ∈ N, there
exists m ≥ m verifying am ≥ ε. This means that {am} has a partial subsequence {am(k)}k
such that am(k) ≥ ε. As ψ is non-decreasing, ψ(ε) ≤ ψ(am(k)) for all k ∈ N. Therefore,
{ψ(am)}m has a subsequence {ψ(am(k))}k lower bounded byψ(ε) > , but this is impossible
since limm→∞ ψ(am) = . �

Lemma  Let {am}, {am}, . . . , {anm}, {bm}, {bm}, . . . , {bnm} ⊂ [,∞) be n sequences of non-
negative real numbers and suppose that there exist ψ ,ϕ ∈ 
 such that

ψ
(
aim+

) ≤ (ψ – ϕ)
(
bim

)
for all i and all m, and

ψ
(
max
≤i≤n

bim
)

≤ ψ
(
max
≤i≤n

aim
)

for all m.

Then {aim} →  for all i.

Proof Let cm =max≤i≤n aim for allm. Then, for allm,

ψ(cm+) = ψ
(
max
≤i≤n

aim+

)
= max

≤i≤n
ψ

(
aim+

) ≤ max
≤i≤n

[
(ψ – ϕ)

(
bim

)] ≤ max
≤i≤n

ψ
(
bim

)
= ψ

(
max
≤i≤n

bim
)

≤ ψ
(
max
≤i≤n

aim
)
= ψ(cm).

Therefore, {ψ(cm)} is a non-increasing, bounded below sequence. Then it is convergent.
Let � ≥  be such that {ψ(cm)} → � and � ≤ ψ(cm). Let us show that � = . Since

{
max
≤i≤n

ψ
(
aim

)}
=

{
ψ

(
max
≤i≤n

aim
)}

=
{
ψ(cm)

} → �,

Lemma  guarantees that there exist i ∈ {, , . . . ,n} and a partial subsequence {aim(k)}k∈N
such that {ψ(aim(k))} → �. Moreover,

 ≤ ψ
(
aim(k)

) ≤ (ψ – ϕ)
(
bim(k)–

)
for all k. ()

Consider the sequence {bim(k)–}k∈N. If this sequence has a partial subsequence converging
to zero, then we can take limit in () when k →  using that partial subsequence, and we
deduce � = . On the contrary, if {bim(k)–}k∈N has not any partial subsequence converging
to zero, Lemma  assures us that there exist δ ∈ ], [ and k ∈ N such that bim(k)– ≥ δ for
all k ≥ k. Since ϕ is non-decreasing, –ϕ(bim(k)–) ≤ –ϕ(δ) < . Then, by (), for all k ≥ k,

 ≤ ψ
(
aim(k)

) ≤ (ψ – ϕ)
(
bim(k)–

)
= ψ

(
bim(k)–

)
– ϕ

(
bim(k)–

) ≤ ψ
(
bim(k)–

)
– ϕ(δ)

≤ ψ
(
max
≤i≤n

bim(k)–

)
– ϕ(δ) ≤ ψ

(
max
≤i≤n

aim(k)–

)
– ϕ(δ) = ψ(cm(k)–) – ϕ(δ).
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Taking limit as k → ∞, we deduce � ≤ � – ϕ(δ), which is impossible. This proves that
� = . Since {ψ(cm)} → � = , Lemma  implies that {cm} → , which is equivalent to
{aim} →  for all i. �

Corollary  If ψ ,ϕ ∈ 
 and {am}, {bm} ⊂ [,∞) verify ψ(am+) ≤ (ψ – ϕ)(bm) and
ψ(bm) ≤ ψ(am) for all m, then {am} → .

Corollary  If ψ ,ϕ ∈ 
 and {am} ⊂ [,∞) verifies ψ(am+) ≤ ψ(am) – ϕ(am) for all m,
then {am} → .

Definition  (Mustafa and Sims []) A generalized metric (or a G-metric) on X is a
mapping G : X →R

+
 verifying, for all x, y, z ∈ X:

(G) G(x,x,x) = .
(G) G(x,x, y) >  if x �= y.
(G) G(x,x, y)≤ G(x, y, z) if y �= z.
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables).
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) (rectangle inequality).

Let {(Xi,Gi)}ni= be a family ofG-metric spaces, consider the product spaceX = X×X×
· · · ×Xn and define Gm and Gs on X by

Gm(X,Y,Z) = max
≤i≤n

Gi(xi, yi, zi) and Gs(X,Y,Z) =
n∑
i=

Gi(xi, yi, zi)

for all X = (x,x, . . . ,xn),Y = (y, y, . . . , yn),Z = (z, z, . . . , zn) ∈ X.
A classical example of G-metric comes from a metric space (X,d), where G(x, y, z) =

dxy + dyz + dzx measures the perimeter of a triangle. In this case, property (G) has an
obvious geometric interpretation: the length of an edge of a triangle is less than or equal
to its semiperimeter, that is, dxy ≤ dxy +dyz +dzx. However, property (G) implies that, in
general, the major structures Gm and Gs are not necessarily G-metrics on X ×X × · · · ×
Xn. Only when eachGi is symmetric (that is,G(x,x, y) =G(y, y,x) for all x, y), the product is
also a G-metric (see []). But in this case, symmetric G-metrics can be reduced to usual
metrics, which limits the interest in this kind of spaces.
In order to prove our main results, that are also valid in G-metric spaces, we will not

need property (G). Omitting this property, we consider a class of spaces for which Gm

and Gs have the same initial metric structure. Then we present the following spaces.

3 G∗-metric spaces
Definition  A G∗-metric on X is a mapping G : X →R

+
 verifying (G), (G), (G) and

(G).

The open ball B(x, r) of center x ∈ X and radius r >  in a G∗-metric space (X,G) is

B(x, r) =
{
y ∈ X :G(x,x, y) < r

}
.

The following lemma is a characterization of the topology generated by a neighborhood
system at each point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/158
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Lemma  Let X be a set and, for all x ∈ X, let βx be a non-empty family of subsets of X
verifying:
. x ∈N for all N ∈ βx.
. For all N,N ∈ βx, there exists N ∈ βx such that N ⊆N ∩N.
. For all N ∈ βx, there exists N ′ ∈ βx such that for all y ∈ N ′, there exists N ′′ ∈ βy

verifying N ′′ ⊆N .
Then there exists a unique topology τ on X such that βx is a neighborhood system at x.

Let (X,G) be a G∗-metric space and consider the family βx = {B(x, r) : r > }. It is clear
that x ∈ B(x, r) (by (G), G(x,x,x) = ) and N = B(x,min(r, s)) ⊆ B(x, r) ∩ B(x, s). Next, let
N =N ′ = B(x, r) ∈ βx and let y ∈ N ′ = B(x, r). We have to prove that there exists s >  such
that N ′′ = B(y, s)⊆ B(x, r) =N . Indeed, if y = x, then we can take s = r > . On the contrary,
if y �= x, then  < G(x,x, y) < r by (G). Let r′ ∈ ]G(x,x, y), r[ arbitrary and let s = r – r′ > 
(that is, r′ + s = r). Now we prove that B(y, s) ⊆ B(x, r). Let z ∈ B(y, s). Then, using (G) and
(G),

G(x,x, z) =G(z,x,x)
a=y≤ G(z, y, y) +G(y,x,x) =G(x,x, y) +G(y, y, z) < r′ + s = r.

Then z ∈ B(x, r) and, as a consequence, B(y, s) ⊆ B(x, r). Lemma  guarantees that there
exists a unique topology τG on X such that βx = {B(x, r) : r > } is a neighborhood system
at each x ∈ X.
Next, let us show that τG is Hausdorff. Let x, y ∈ X be two points such that x �= y. By

(G), r =G(x,x, y) > . We claim that B(x, r/)∩B(y, r/) =∅. We reason by contradiction.
Let z ∈ B(x, r/)∩ B(y, r/), that is, G(x,x, z) < r/ and G(y, y, z) < r/. Using (G) and (G)
twice

 < r =G(x,x, y) =G(y,x,x)≤ G(y, z, z) +G(z,x,x) =G(z, z, y) +G(x,x, z)

≤ G(z, y, y) +G(y, z, y) +G(x,x, z) =G(y, y, z) +G(y, y, z) +G(x,x, z)

<
r

+
r

+
r

=
r


< r,

which is impossible. Then B(x, r/)∩ B(y, r/) =∅ and τG is Hausdorff.
A subsetA⊆ X isG-open if for all x ∈ A there exists r >  such thatB(x, r)⊆ A. Following

classic techniques, it is possible to prove that there exists a unique topology τG on X such
that βx = {B(x, r) : r > } is a neighborhood system at each x ∈ X. Furthermore, τG is a
Hausdorff topology. In this topology, we characterize the notions of convergent sequence
and Cauchy sequence in the following way. Let (X,G) be a G∗-metric space, let {xm} ⊆ X
be a sequence and let x ∈ X.
• {xm} G-converges to x, and we will write {xm} G→ x if limm,m′→∞ G(xm,xm′ ,x) = , that
is, for all ε > , there existsm ∈N verifying that G(xm,xm′ ,x) < ε for all m,m′ ∈N

such thatm,m′ ≥ m.
• {xm} is G-Cauchy if limm,m′ ,m′′→∞ G(xm,xm′ ,xm′′ ) = , that is, for all ε > , there exists
m ∈N verifying that G(xm,xm′ ,xm′′ ) < ε for all m,m′,m′′ ∈N such that
m,m′,m′′ ≥ m.

Lemma  Let (X,G) be a G∗-metric space, let {xm} ⊆ X be a sequence and let x ∈ X. Then
the following conditions are equivalent.

http://www.fixedpointtheoryandapplications.com/content/2013/1/158


Roldán and Karapınar Fixed Point Theory and Applications 2013, 2013:158 Page 7 of 23
http://www.fixedpointtheoryandapplications.com/content/2013/1/158

(a) {xm} G-converges to x.
(b) limm→∞ G(x,x,xm) = .
(c) limm→∞ G(xm,xm,x) = .
(d) limm→∞ G(xm,xm,x) =  and limm→∞ G(xm,xm+,x) = .
(e) limm→∞ G(x,x,xm) =  and limm→∞ G(xm,xm+,x) = .

Notice that the condition limm→∞ G(xm,xm+,x) =  is not strong enough to prove that
{xm} G-converges to x.

Proposition  The limit of a G-convergent sequence in a G∗-metric space is unique.

Lemma  If (X,G) is a G∗-metric space and {xm} ⊆ X is a sequence, then the following
conditions are equivalent.
(a) {xm} is G-Cauchy.
(b) limm,m′→∞ G(xm,xm′ ,xm′ ) = .
(c) limm,m′→∞ G(xm,xm+,xm′ ) = .

Remark  As a consequence, a sequence {xm} ⊆ X is not G-Cauchy if and only if there
exist ε >  and two partial subsequences {xn(k)}k∈N and {xm(k)}k∈N such that k < n(k) <
m(k) < n(k + ), G(xn(k),xn(k)+,xm(k)) ≥ ε and G(xn(k),xn(k)+,xm(k)–) < ε for all k.

Definition  Let (X,G) be a G∗-metric space and let � be a preorder on X. We will say
that (X,G,�) is regular non-decreasing (respectively, regular non-increasing) if for all �-
monotone non-decreasing (respectively, non-increasing) sequence {xm} such that {xm} G→
z, we have that xm � z (respectively, xm � z) for all m. We will say that (X,G,�) is
regular if it is both regular non-decreasing and regular non-increasing.

Some authors said that (X,G,�) verifies the sequential monotone property if (X,G,�) is
regular (see []). The notion of G-continuous mapping F : Xn → X follows considering
on X the topology τG and in Xn the product topology.

Definition  If (X,G) is a G∗-metric space, we will say that a mapping F : Xn → X is
G-continuous if for all n sequences {am}, {am}, . . . , {anm} ⊆ X such that {aim} G→ ai ∈ X for
all i, we have that {F(am,am, . . . ,anm)} G→ F(a,a, . . . ,an).

In this topology, the notion of convergence is the following.

{xm} G→ x⇔ [∀B(x, r),∃m ∈ N :
(
m ≥ m ⇒ xm ∈ B(x, r)

)]
⇔ [∀ε > ,∃m ∈N :

(
m ≥ m ⇒ G(x,x,xm) < ε

)]
⇔

[
lim

m→∞G(x,x,xm) = 
]
.

This property can be characterized as follows.

Lemma Let (X,G) be a G∗-metric space, let {xm} ⊆ X be a sequence and let x ∈ X.Then
the following conditions are equivalent.
(a) {xm} G-converges to x (that is, limm,m′→∞ G(xm,xm′ ,x) = , which means that for all

ε > , there exists n ∈N such that G(xm,xm′ ,x) for all m,m′ ≥ m).

http://www.fixedpointtheoryandapplications.com/content/2013/1/158
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(b) limm→∞ G(x,x,xm) = .
(c) limm→∞ G(xm,xm,x) = .
(d) limm→∞ G(xm,xm,x) =  and limm→∞ G(xm,xm+,x) = .
(e) limm→∞ G(x,x,xm) =  and limm→∞ G(xm,xm+,x) = .

Proof [(a) ⇒ (c)] It is apparent using m =m′.
[(c) ⇒ (b)] Using (G), G(x,x,xm)≤ G(x,xm,xm) +G(xm,x,xm) = G(xm,xm,x).
[(b) ⇒ (a)] Using (G) and (G),

G(xm,xm′ ,x)≤ G(xm,x,x) +G(x,xm′ ,x)≤ max
(
G(x,x,xm),G(x,x,xm′ )

)
.

[(a) ⇒ (d),(e)] It is apparent usingm′ =m andm′ =m + .
[(d) ⇒ (c)] It is evident.
[(e) ⇒ (b)] It is evident. �

Corollary  If (X,G) is a G-metric space, then {xm} G→ x if and only if limm→∞ G(xm,
xm+,x) = .

Proof We only need to prove that the condition is sufficient. Suppose that limm→∞ G(xm,
xm+,x) = . In a G-metric space, the following property holds (see []):

G(x, y, z) ≤ G(x,a, z) +G(a, y, z) for all x, y, z,a ∈ X.

Then, using a = xm+,

G(x,x,xm) =G(x,xm+,xm) +G(xm+,x,xm) = G(xm,xm+,x).

This proves (b) in the previous lemma. �

Proposition  The limit of a G-convergent sequence in a G∗-metric space is unique.

Proof Suppose that {xm} G→ x and {xm} G→ y. Then

G(x,x, y) =G(y,x,x)≤ G(y,xm,xm) +G(xm,x,x).

By items (a) and (c) of Lemma , we deduce that G(x,x, y) = , which means that x = y by
(G). �

In the topology τG, the notion of Cauchy sequence is the following.

{xm} is G-Cauchy ⇔ [∀ε > ,∃m ∈N :
(
m,m′,m′′ ≥ m ⇒G(xm,xm′ ,xm′′ ) < ε

)]
.

This definition can be characterized as follows.

Lemma  If (X,G) is a G∗-metric space and {xm} ⊆ X is a sequence, then the following
conditions are equivalent.
(a) {xm} is G-Cauchy.

http://www.fixedpointtheoryandapplications.com/content/2013/1/158
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(b) limm,m′→∞ G(xm,xm′ ,xm′ ) = .
(c) limm,m′→∞ G(xm,xm+,xm′ ) = .

Proof [(b) ⇒ (a)] Using (G), G(xm,xm′ ,xm′′ )≤ G(xm,xm′ ,xm′ ) +G(xm′ ,xm′ ,xm′′ ).
[(a) ⇒ (c)] It is apparent usingm′′ =m + .
[(c)⇒ (b)] Let ε >  and letm ∈ N be such thatG(xm,xm+,xm′ ) < ε/ for allm,m′ ≥ m.

Then

m′,m ≥ m ⇒G(xm′ ,xm′+,xm) < ε/,

m′,m′ +  ≥ m ⇒ G(xm′ ,xm′+,xm′+) < ε/.

Therefore, using (G) and (G),

G(xm,xm′ ,xm′ ) = G(xm′ ,xm′ ,xm) ≤ G(xm′ ,xm′+,xm′+) +G(xm′+,xm′ ,xm)

< ε/ + ε/ = ε.

Therefore, limm,m′→∞ G(xm,xm′ ,xm′ ) = . �

4 Product of G∗-metric spaces
Lemma  Let {(Xi,Gi)}ni= be a family of G∗-metric spaces, consider the product space
X = X ×X × · · · ×Xn and define Gmax

n and Gsum
n on X

 by

Gmax
n (X,Y,Z) = max

≤i≤n
Gi(xi, yi, zi) and Gsum

n (X,Y,Z) =
n∑
i=

Gi(xi, yi, zi)

for all X = (x,x, . . . ,xn),Y = (y, y, . . . , yn),Z = (z, z, . . . , zn) ∈ X. Then the following state-
ments hold.
. Gmax

n and Gsum
n are G∗-metrics on X.

. If Am = (am,am, . . . ,anm) ∈X for all m and A = (a,a, . . . ,an) ∈X, then {Am}
Gmax

n -converges (respectively, Gsum
n -converges) to A if and only if each {aim}

Gi-converges to ai.
. {Am} is Gmax

n -Cauchy if and only if each {aim} is Gi-Cauchy.
. (X,Gmax

n ) (respectively, (X,Gsum
n )) is complete if and only if every (Xi,Gi) is complete.

. For all i, let �i be a preorder on Xi and define X � Y if and only if xi �i yi for all i.
Then (X,Gmax

n ,�) is regular (respectively, regular non-decreasing, regular
non-increasing) if and only if each factor (Xi,Gi) is also regular (respectively, regular
non-decreasing, regular non-increasing).

Proof Let us denoteG =Gmax
n . Taking into account thatGmax

n ≤ Gsum
n ≤ nGmax

n , we will only
develop the proof using G.
() It is a straightforward exercise to prove the following statements.
• G(X,X,X) =max≤i≤n Gi(xi,xi,xi) =max≤i≤n  = .
• If Y �= Z, there exists j ∈ {, , . . . ,n} such that yj �= zj. Then
G(X,Y,Z) =max≤i≤n Gi(xi, yi, zi) ≥ Gj(xj, yj, zj) > .

• Symmetry in all three variables of G follows from symmetry in all three variables of
each Gi.

http://www.fixedpointtheoryandapplications.com/content/2013/1/158
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• We have that

G(X,Y,Z) = max
≤i≤n

Gi(xi, yi, zi) ≤ max
≤i≤n

[
Gi(xi,ai,ai) +Gi(ai, yi, zi)

]
≤ max

≤i≤n
Gi(xi,ai,ai) + max

≤i≤n
Gi(ai, yi, zi) =G(X,A,A) +G(A,Y,Z).

Then G is a G∗-metric on X.
() We use Lemma . Suppose that {Am} G-converges to A and let ε > . Then, for all

j ∈ {, , . . . ,n} and allm,

Gj
(
aj,aj,ajm

) ≤ max
≤i≤n

Gi
(
ai,ai,aim

)
=G(A,A,Am).

Therefore, {ajm} Gj-converges to aj. Conversely, assume that each {aim} Gi-converges to
ai. Let ε >  and let mi ∈ N be such that if m ≥ mi, then Gi(ai,ai,aim) < ε. If m =
max(m,m, . . . ,mn) and m,m′ ≥ m, then G(A,A,Am) = max≤i≤n Gi(ai,ai,aim) < ε, so
{Am} G-converges to A.
() We use Lemma . Suppose that {Am} is G-Cauchy and let ε > . Then, for all j ∈

{, , . . . ,n} and allm,m′,

Gj
(
ajm,a

j
m,a

j
m′

) ≤ max
≤i≤n

Gi
(
aim,a

i
m,a

i
m′

)
=G(Am,Am,Am′ ).

Therefore, {ajm} is Gj-Cauchy. Conversely, assume that each {aim} is Gi-Cauchy. Let
ε >  and let mi ∈ N be such that if m,m′ ≥ mi, then Gi(a

j
m,a

j
m,a

j
m′ ) < ε. If m =

max(m,m, . . . ,mn) and m,m′ ≥ m, then G(Am,Am,Am′ ) = max≤i≤n Gi(aim,aim,aim′ ) < ε,
so {Am} is G-Cauchy.
() It is an easy consequence of items  and  since

{Am}G-Cauchy⇔ each
{
aim

}
G-Cauchy ⇔ each

{
aim

}
G-convergent

⇔ {Am}G-convergent.

() A sequence {Am} on X is �-monotone non-decreasing if and only if each sequence
{aim} is�-monotone non-decreasing.Moreover, {Am}G-converges toA = (a,a, . . . ,an) ∈
X if and only if each {aim} Gi-converges to ai. Finally,Am � A if and only if aim �i ai for all i.
Therefore, (X,Gmax

n ,�) is regular non-decreasing if and only if each factor (Xi,Gi) is also
regular non-decreasing. Other statements may be proved similarly. �

Taking (Xi,Gi) = (X,G) for all i, we derive the following result.

Corollary  Let (X,G) be a G∗-metric space and consider on the product space Xn the
mappings Gn and G′

n defined by

Gn(X,Y,Z) = max
≤i≤n

G(xi, yi, zi) and G′
n(X,Y,Z) =

n∑
i=

G(xi, yi, zi)

for all X = (x,x, . . . ,xn),Y = (y, y, . . . , yn),Z = (z, z, . . . , zn) ∈ Xn.

http://www.fixedpointtheoryandapplications.com/content/2013/1/158
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. Gn and G′
n are G∗-metrics on Xn.

. If Am = (am,am, . . . ,anm) ∈ Xn for all m and A = (a,a, . . . ,an) ∈ Xn, then {Am}
Gn-converges (respectively, G′

n-converges) to A if and only if each {aim} G-converges
to ai.

. {Am} is Gn-Cauchy (respectively, G′
n-Cauchy) if and only if each {aim} is G-Cauchy.

. (X,Gn) (respectively, (Xn,G′
n)) is complete if and only if (X,G) is complete.

. If (X,G) is �-regular, then (Xn,Gn) is �-regular.

5 Unidimensional fixed point result in partially preordered G∗-metric spaces
Theorem Let (X,�) be a preordered set endowedwith a G∗-metric G and let T : X → X
be a given mapping. Suppose that the following conditions hold:
(a) (X,G) is complete.
(b) T is non-decreasing (w.r.t. �).
(c) Either T is G-continuous or (X,G,�) is regular non-decreasing.
(d) There exists x ∈ X such that x � Tx.
(e) There exist two mappings ψ ,ϕ ∈ 
 such that, for all x, y ∈ X with x� y,

ψ
(
G

(
Tx,Ty,Tx

)) ≤ ψ
(
G(x, y,Tx)

)
– ϕ

(
G(x, y,Tx)

)
.

Then T has a fixed point. Furthermore, if for all z, z ∈ X fixed points of T there exists
z ∈ X such that z � z and z � z, we obtain uniqueness of the fixed point.

Proof Define xm = Tmx for allm ≥ . Since T is non-decreasing (w.r.t.�), then xm � xm+

for allm ≥ . Then

ψ
(
G(xm+,xm+,xm+)

)
= ψ

(
G

(
Txm,Txm+,Txm

))
≤ ψ

(
G(xm,xm+,Txm)

)
– ϕ

(
G(xm,xm+,Txm)

)
= ψ

(
G(xm,xm+,xm+)

)
– ϕ

(
G(xm,xm+,xm+)

)
.

Applying Lemma , {G(xm,xm+,xm+)} → . Let us show that {xm} is G-Cauchy. Reason-
ing by contradiction, if {xm} is not G-Cauchy, by Remark , there exist ε >  and two
partial subsequences {xn(k)} and {xm(k)} verifying k < n(k) <m(k) < n(k + ),

G(xn(k),xm(k),xn(k)+) > ε and G(xn(k),xm(k)–,xn(k)+)≤ ε for all k ≥ . ()

Therefore

 < ψ(ε) ≤ ψ
(
G(xn(k),xm(k),xn(k)+)

)
= ψ

(
G

(
Txn(k)–,Txm(k)–,Txn(k)–

))
≤ ψ

(
G(xn(k)–,xm(k)–,Txn(k)–)

)
– ϕ

(
G(xn(k)–,xm(k)–,Txn(k)–)

)
= ψ

(
G(xn(k)–,xm(k)–,xn(k))

)
– ϕ

(
G(xn(k)–,xm(k)–,xn(k))

)
. ()

Consider the sequence of non-negative real numbers {G(xn(k)–,xm(k)–,xn(k))}. If this se-
quence has a partial subsequence converging to zero, then we can take the limit in ()
using this partial subsequence and we would deduce  < ψ(ε) ≤ , which is impossible.
Then {G(xn(k)–,xm(k)–,xn(k))} cannot have a partial subsequence converging to zero. This

http://www.fixedpointtheoryandapplications.com/content/2013/1/158
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means that there exist δ >  and k ∈N such that

G(xn(k)–,xm(k)–,xn(k))≥ δ for all k ≥ k.

Since ϕ is non-decreasing, –ϕ(G(xn(k)–,xm(k)–,xn(k)) ≤ –ϕ(δ) < . By (G) and (),

G(xn(k)–,xm(k)–,xn(k))

=G(xn(k)–,xn(k),xm(k)–) [x = xn(k)–, y = xn(k), z = xm(k)–,a = xn(k)+]

≤ G(xn(k)–,xn(k)+,xn(k)+) +G(xn(k)+,xn(k),xm(k)–)

=G(xn(k)–,xn(k)+,xn(k)+) +G(xn(k),xn(k)+,xm(k)–)

[x = xn(k)–, y = z = xn(k)+,a = xn(k)]

≤ G(xn(k)–,xn(k),xn(k)) +G(xn(k),xn(k)+,xn(k)+) +G(xn(k),xn(k)+,xm(k)–)

≤ G(xn(k)–,xn(k),xn(k)) +G(xn(k),xn(k)+,xn(k)+) + ε.

Since ψ is non-decreasing, it follows from () that

 < ψ(ε) ≤ ψ
(
G(xn(k)–,xm(k)–,xn(k))

)
– ϕ

(
G(xn(k)–,xm(k)–,xn(k))

)
≤ ψ

(
G(xn(k)–,xm(k)–,xn(k))

)
– ϕ(δ)

≤ ψ
(
G(xn(k)–,xn(k),xn(k)) +G(xn(k),xn(k)+,xn(k)+) + ε

)
– ϕ(δ).

Taking limit when k → ∞, we deduce that  < ψ(ε) ≤ ψ(ε) – ϕ(δ) < ψ(ε), which is im-
possible. This contradiction finally proves that {xm} isG-Cauchy. Since (X,G) is complete,
there exists z ∈ X such that {xm} G→ z.
Now suppose that T is G-continuous. Then {xm+} = {Txm} G→ Tz. By the unicity of the

limit, Tz = z and z is a fixed point of T .
On the contrary, suppose that (X,G,�) is regular non-decreasing. Since {xm} G→ z and

{xm} is monotone non-decreasing (w.r.t. �), it follows that xm � z for allm. Hence

ψ
(
G(xm+,Tz,xm+)

)
= ψ

(
G

(
Txm,Tz,Txm

))
≤ ψ

(
G(xm, z,Txm)

)
– ϕ

(
G(xm, z,Txm)

)
= ψ

(
G(xm,xm+, z)

)
– ϕ

(
G(xm,xm+, z)

)
.

Since {xm} G→ z, then {G(xm,xm+, z)} → . Taking limit when k → ∞, we deduce that
{ψ(G(xm+,Tz,xm+))} → . By Lemma , {G(xm+,xm+,Tz)} → , so {xm} G→ Tz and
we also conclude that z is a fixed point of T .
To prove the uniqueness, let z, z ∈ X be two fixed points of T . By hypothesis, there

exists z ∈ X such that z � z and z � z. Let us show that {Tmz} G→ z. Indeed,

ψ
(
G

(
z, z,Tm+z

))
= ψ

(
G

(
Tz,TTmz,Tz

))
≤ ψ

(
G

(
z,Tmz,Tz

))
– ϕ

(
G

(
z,Tmz,Tz

))
= ψ

(
G

(
z, z,Tmz

))
– ϕ

(
G

(
z, z,Tmz

))
.
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By Lemma , we deduce {G(z, z,Tmz)} → , that is, {Tmz} G→ z. The same reasoning
proves that {Tmz} G→ z, so z = z. �

Weparticularize the previous theorem in two cases. If takeψ(t) = t in Theorem , then
we get the following results.

Corollary  Let (X,�) be a preordered set endowed with a G∗-metric G and let T : X →
X be a given mapping. Suppose that the following conditions hold:
(a) (X,G) is complete.
(b) T is non-decreasing (w.r.t. �).
(c) Either T is G-continuous or (X,G,�) is regular non-decreasing.
(d) There exists x ∈ X such that x � Tx.
(e) There exists a mapping ϕ ∈ 
 such that, for all x, y ∈ X with x� y,

G
(
Tx,Ty,Tx

) ≤ G(x, y,Tx) – ϕ
(
G(x, y,Tx)

)
.

Then T has a fixed point. Furthermore, if for all z, z ∈ X fixed points of T there exists
z ∈ X such that z � z and z � z, we obtain uniqueness of the fixed point.

If take ϕ(t) = ( – k)t with k ∈ [, ) in Corollary , then we derive the following result.

Corollary  Let (X,�) be a preordered set endowed with a G∗-metric G and let T : X →
X be a given mapping. Suppose that the following conditions hold:
(a) (X,G) is complete.
(b) T is non-decreasing (w.r.t. �).
(c) Either T is G-continuous or (X,G,�) is regular non-decreasing.
(d) There exists x ∈ X such that x � Tx.
(e) There exists a constant k ∈ [, ) such that, for all x, y ∈ X with x� y,

G
(
Tx,Ty,Tx

) ≤ kG(x, y,Tx).

Then T has a fixed point. Furthermore, if for all z, z ∈ X fixed points of T there exists
z ∈ X such that z � z and z � z, we obtain uniqueness of the fixed point.

6 Multidimensionalϒ-fixed point results in partially preordered G∗-metric
spaces

In this section we extend Theorem  to an arbitrary number of variables. To do that, it
is necessary to introduce the following notation. Given a mapping F : Xn → X, we define
Fϒ : Xn → Xn by

Fϒ (x,x, . . . ,xn)

=
(
F(xσ(),xσ(), . . . ,xσ(n)),F(xσ(),xσ(), . . . ,xσ(n)), . . . ,F(xσn(),xσn(), . . . ,xσn(n))

)
,

and F
ϒ = F ◦ Fϒ : Xn → X will be

F
ϒ (x,x, . . . ,xn)

= F
(
F(xσ(),xσ(), . . . ,xσ(n)),F(xσ(),xσ(), . . . ,xσ(n)), . . . ,F(xσn(),xσn(), . . . ,xσn(n))

)
for all X = (x,x, . . . ,xn) ∈ Xn.
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Lemma 
. Z ∈ Xn is a ϒ-fixed point of F if and only if Z is a fixed point of Fϒ (that is, FϒZ = Z).
. If F has the mixed monotone property, then Fϒ is �-monotone non-decreasing on

Xn.
. If (X,G) is a G∗-metric space and F is G-continuous, then Fϒ : Xn → Xn is

Gn-continuous and F
ϒ = F ◦ Fϒ : Xn → X is G-continuous.

6.1 A first multidimensional contractivity result
In this subsection we apply Theorem  considering T = Fϒ defined on (Xn,Gn,�). In or-
der to do that, we notice that joining some of the previous results, we obtain the following
consequences.
• If (X,G) is complete, it follows from Corollary  that (Xn,Gn) is also complete.
• By item  of Lemma , if F has the mixed monotone property, then Fϒ is

�-monotone non-decreasing on Xn.
• By item  of Lemma , if F is G-continuous, then Fϒ : Xn → Xn is Gn-continuous
and F

ϒ = F ◦ Fϒ : Xn → X is G-continuous.
• If (X,G,�) is regular, it follows from Corollary  that (Xn,Gn,�) is also regular.
• If x,x, . . . ,xn ∈ X are such that xi �i F(xσi()

 ,xσi()
 , . . . ,xσi(n)

 ) for all i, then
X = (x,x, . . . ,xn) ∈ Xn verifies X � Fϒ (X).

We study how the contractivity condition

ψ
(
Gn

(
FϒX,FϒY,F

ϒX
)) ≤ (ψ – ϕ)

(
Gn(X,Y,FϒX)

)
for all X,Y ∈ Xn such that X � Y

may be equivalently established. Let X = (x,x, . . . ,xn) ∈ Xn and let zi = F(xσi(),xσi(), . . . ,
xσi(n)) ∈ X for all i. Then

F

ϒX = Fϒ

(
F(xσ(),xσ(), . . . ,xσ(n)),F(xσ(),xσ(), . . . ,xσ(n)), . . . ,

F(xσn(),xσn(), . . . ,xσn(n))
)

= Fϒ (z, z, . . . , zn)

=
(
F(zσ(), zσ(), . . . , zσ(n)),F(zσ(), zσ(), . . . , zσ(n)), . . . ,F(zσn(), zσn(), . . . , zσn(n))

)
=

(
F
(
F(xσσ()()

, . . . ,xσσ()(n)
),F(xσσ()()

, . . . ,xσσ()(n)
), . . . ,F(xσσ(n)()

, . . . ,xσσ(n)(n)
)
)
,

F
(
F(xσσ()()

, . . . ,xσσ()(n)
),F(xσσ()()

, . . . ,xσσ()(n)
), . . . ,F(xσσ(n)()

, . . . ,xσσn(n)(n))
)
, . . . ,

F
(
F(xσσn()(), . . . ,xσσn()(n)),F(xσσn()(), . . . ,xσσn()(n)), . . . ,F(xσσn(n)(), . . . ,xσσn(n)(n))

))
=

(
F

ϒ (xσ(),xσ() . . . ,xσ(n)),F

ϒ (xσ(),xσ() . . . ,xσ(n)), . . . ,

F
ϒ (xσn(),xσn() . . . ,xσn(n))

)
.

It follows that

Gn(X,Y,FϒX) = max
≤i≤n

G
(
xi, yi,F(xσi(),xσi(), . . . ,xσi(n))

)
and

Gn
(
FϒX,FϒY,F

ϒX
)
= max

≤i≤n
G

(
F(xσi(),xσi(), . . . ,xσi(n)),F(yσi(), yσi(), . . . , yσi(n)),

F
ϒ (xσi(),xσi() . . . ,xσi(n))

)
.
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Therefore, a possible version of Theorem  applied to (Xn,Gn,�) taking T = Fϒ is the
following.

Theorem  Let (X,G) be a complete G∗-metric space and let � be a partial preorder
on X. Let ϒ = (σ,σ, . . . ,σn) be an n-tuple of mappings from {, , . . . ,n} into itself verifying
σi ∈ �A,B if i ∈ A and σi ∈ �′

A,B if i ∈ B. Let F : Xn → X be a mapping verifying the mixed
monotone property on X. Assume that there exist ψ ,ϕ ∈ 
 such that

max
≤i≤n

ψ
(
G

(
F(xσi(),xσi(), . . . ,xσi(n)),F(yσi(), yσi(), . . . , yσi(n)),F


ϒ (xσi(),xσi() . . . ,xσi(n))

))
≤ (ψ – ϕ)

(
max
≤i≤n

G
(
xi, yi,F(xσi(),xσi(), . . . ,xσi(n))

))
()

for which xi �i yi for all i. Suppose either F is continuous or (X,G,�) is regular. If there
exist x,x, . . . ,xn ∈ X verifying xi �i F(xσi()

 ,xσi()
 , . . . ,xσi(n)

 ) for all i, then F has, at least,
one ϒ-fixed point.

6.2 A secondmultidimensional contractivity result
In this section we introduce a slightly different contractivity condition that cannot be di-
rectly deduced applyingTheorem to (X,Gn,�) takingT = Fϒ , because the contractivity
condition is weaker. Then we need to show a classical proof.

Theorem  Let (X,G) be a complete G∗-metric space and let � be a partial preorder
on X. Let ϒ = (σ,σ, . . . ,σn) be an n-tuple of mappings from {, , . . . ,n} into itself verifying
σi ∈ �A,B if i ∈ A and σi ∈ �′

A,B if i ∈ B. Let F : Xn → X be a mapping verifying the mixed
monotone property on X. Assume that there exist ψ ,ϕ ∈ 
 such that

ψ
(
G

(
F(x,x, . . . ,xn),F(y, y, . . . , yn),F

ϒ (x,x, . . . ,xn)
))

≤ (ψ – ϕ)
(
max
≤i≤n

G
(
xi, yi,F(xσi(),xσi(), . . . ,xσi(n))

))
()

for which (x,x, . . . ,xn), (y, y, . . . , yn) ∈ Xn are �-comparable. Suppose either F is contin-
uous or (X,G,�) is regular. If there exist x,x, . . . ,xn ∈ X verifying xi �i F(xσi()

 ,xσi()
 ,

. . . ,xσi(n)
 ) for all i, then F has, at least, one ϒ-fixed point.

Notice that () and () are very different contractivity conditions. For instance, () would
be simpler if the image of all σi are sets with a few points.

Proof Define X = (x,x, . . . ,xn) and let xi = F(xσi()
 ,xσi()

 , . . . ,xσi(n)
 ) for all i. If X =

(x,x , . . . ,xn ), then xi �i xi for all i is equivalent to X � X = Fϒ (X). By recurrence, de-
fine xim+ = F(xσi()

m ,xσi()
m , . . . ,xσi(n)

m ) for all i and allm, andwe have that Xm � Xm+ = Fϒ (Xm).
This means that the sequence {Xm+ = Fϒ (Xm)} is �-monotone non-decreasing. Since
(Xn,Gn,�) is complete, it is only necessary to prove that {Xm} is Gn-Cauchy in order to
deduce that it is Gn-convergent. By item  of Lemma , it will be sufficient to prove that
each sequence {xim} is G-Cauchy. Firstly, notice that Xm+ = Fϒ (Xm) means that

xim+ = F
(
xσi()
m ,xσi()

m , . . . ,xσi(n)
m

)
for all i and allm.
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Hence

xim+ = F
(
xσi()
m+ ,x

σi()
m+ , . . . ,x

σi(n)
m+

)
= F

(
F
(
x

σσi()()
m ,x

σσi()()
m , . . . ,x

σσi()(n)
m

)
,F

(
x

σσi()()
m ,x

σσi()()
m , . . . ,x

σσi()(n)
m

)
, . . . ,

F
(
x

σσi(n)()
m ,x

σσi(n)()
m , . . . ,x

σσi(n)(n)
m

))
= F

ϒ

(
xσi()
m ,xσi()

m , . . . ,xσi(n)
m

)
.

Furthermore, for allm,

F
ϒ (Xm) = F

ϒ

(
xm,x


m, . . . ,x

n
m
)

= F
(
F
(
xσ()
m ,xσ()

m , . . . ,xσ(n)
m

)
,F

(
xσ()
m ,xσ()

m , . . . ,xσ(n)
m

)
, . . . ,

F
(
xσn()
m ,xσn()

m , . . . ,xσn(n)
m

))
= F

(
xm+,x


m+, . . . ,x

n
m+

)
= F(Xm+). ()

Therefore, for all i and allm,

ψ
(
G

(
xim+,x

i
m+,x

i
m+

))
= ψ(G

(
F
(
xσi()
m ,xσi()

m , . . . ,xσi(n)
m

)
,F

(
xσi()
m+ ,x

σi()
m+ , . . . ,x

σi(n)
m+

)
,F

ϒ

(
xσi()
m ,xσi()

m , . . . ,xσi(n)
m

))
≤ (ψ – ϕ)

(
max
≤j≤n

G
(
xσi(j)
m ,xσi(j)

m+,F
(
x

σσi(j)()
m ,x

σσi(j)()
m , . . . ,x

σσi(j)(n)
m

)))

= (ψ – ϕ)
(
max
≤j≤n

G
(
xσi(j)
m ,xσi(j)

m+,x
σi(j)
m+

))
.

Since ψ is non-decreasing, for all i and allm,

ψ
(
max
≤j≤n

G
(
xσi(j)
m ,xσi(j)

m+,x
σi(j)
m+

)) ≤ ψ
(
max
≤j≤n

G
(
xjm,x

j
m+,x

j
m+

))
.

Applying Lemma  using

aim =G
(
xim,x

i
m+,x

i
m+

)
and bim = max

≤j≤n
G

(
xσi(j)
m ,xσi(j)

m+,x
σi(j)
m+

)

for all i and allm, we deduce that

{
G

(
xim,x

i
m+,x

i
m+

)} →  for all i, that is,
{
Gn(Xm,Xm+,Xm+)

} → . ()

Next, we prove that every sequence {xim} is G-Cauchy reasoning by contradiction. Sup-
pose that {xim}m≥, . . . , {xism}m≥ are not G-Cauchy (s ≥ ) and {xis+m }m≥, . . . , {xinm}m≥ are
G-Cauchy, being {i, . . . , in} = {, . . . ,n}. From Proposition , for all r ∈ {, , . . . , s}, there
exist εr >  and subsequences {xirnr(k)}k∈N and {xirmr(k)}k∈N such that, for all k ∈N,

k < nr(k) <mr(k) < nr(k + ), G
(
xirnr(k),x

ir
nr(k)+,x

ir
mr(k)

) ≥ εr ,

G
(
xirnr(k),x

ir
nr(k)+,x

ir
mr(k)–

)
< εr .
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Now, let ε =max(ε, . . . , εs) >  and ε′
 =min(ε, . . . , εs) > . Since {xis+m }m≥, . . . , {xinm}m≥

are G-Cauchy, for all j ∈ {is+, . . . , in}, there exists nj ∈ N such that if m,m′ ≥ nj, then
G(xjm,x

j
m+,x

j
m′ ) < ε′

/. Define n =maxj∈{is+,...,in}(nj). Therefore, we have proved that there
exists n ∈ N such that if m,m′ ≥ n then

G
(
xjm,x

j
m+,x

j
m′

)
< ε′

/ for all j ∈ {is+, . . . , in}. ()

Next, let q ∈ {, , . . . , s} be such that εq = ε = max(ε, . . . , εs). Let k ∈ N be such that
n < nq(k) and define n() = nq(k). Consider the numbers n()+,n()+, . . . ,mq(k) until
finding the first positive integer m() > n() verifying

max
≤r≤s

G
(
xirn(),x

ir
n()+,x

ir
m()

) ≥ ε, G
(
xijn(),x

ij
n()+,x

ij
m()–

)
< ε for all j ∈ {, , . . . , s}.

Now let k ∈ N be such thatm() < nq(k) and define n() = nq(k). Consider the numbers
n() + ,n() + , . . . ,mq(k) until finding the first positive integer m() > n() verifying

max
≤r≤s

G
(
xirn(),x

ir
n()+,x

ir
m()

) ≥ ε,

G
(
xijn(),x

ij
n()+,x

ij
m()–

)
< ε for all j ∈ {, , . . . , s}.

Repeating this process, we can find sequences such that, for all k ≥ ,

n < n(k) <m(k) < n(k + ), max
≤r≤s

G
(
xirn(k),x

ir
n(k)+,x

ir
m(k)

) ≥ ε,

G
(
xijn(k),x

ij
n(k)+,x

ij
m(k)–

)
< ε for all j ∈ {, , . . . , s}.

Note that by (), G(xirn(k),x
ir
n(k)+,x

ir
m(k)),G(x

ir
n(k),x

ir
n(k)+,x

ir
m(k)–) < ε′

/ < ε/ for all r ∈ {s +
, s + , . . . ,n}, so

max
≤j≤n

G
(
xjn(k),x

j
n(k)+,x

j
m(k)

)
= max

≤r≤s
G

(
xirn(k),x

ir
n(k)+,x

ir
m(k)

) ≥ ε and

G
(
xin(k),x

i
n(k)+, gx

i
m(k)–

)
< ε

()

for all i ∈ {, , . . . ,n} and all k ≥ . Next, for all k, let i(k) ∈ {, , . . . , s} be an index such that

G
(
xi(k)n(k),x

i(k)
n(k)+,x

i(k)
m(k)

)
= max

≤r≤s
G

(
xirn(k),x

ir
n(k)+,x

ir
m(k)

)
= max

≤j≤n
G

(
xjn(k),x

j
n(k)+,x

j
m(k)

) ≥ ε.

Notice that, applying (G) twice and (), for all k and all j,

G
(
xjn(k)–,x

j
n(k),x

j
m(k)–

) ≤ G
(
xjn(k)–,x

j
n(k),x

j
n(k)

)
+G

(
xjn(k),x

j
n(k),x

j
m(k)–

)
≤ G

(
xjn(k)–,x

j
n(k),x

j
n(k)

)
+G

(
xjn(k),x

j
n(k)+,x

j
n(k)+

)
+G

(
xjn(k)+,x

j
n(k),x

j
m(k)–

)
≤ G

(
xjn(k)–,x

j
n(k),x

j
n(k)

)
+G

(
xjn(k),x

j
n(k)+,x

j
n(k)+

)
+ ε. ()
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Applying Proposition  to guarantee that the following points are �-comparable, the con-
tractivity condition () assures us for all k

 < ψ(ε) ≤ ψ
(
G

(
xi(k)n(k),x

i(k)
n(k)+,x

i(k)
m(k)

))
= ψ

(
G

(
xi(k)n(k),x

i(k)
m(k),x

i(k)
n(k)+

))
= ψ

(
G

(
F
(
xσi(k)()
n(k)– ,x

σi(k)()
n(k)– , . . . ,x

σi(k)(n)
n(k)–

)
,F

(
xσi(k)()
m(k)–,x

σi(k)()
m(k)–, . . . ,x

σi(k)(n)
m(k)–

)
,

F
ϒ

(
xσi(k)()
n(k)– ,x

σi(k)()
n(k)– , . . . ,x

σi(k)(n)
n(k)–

)))
≤ (ψ – ϕ)

(
max
≤j≤n

G
(
xσi(k)(j)
n(k)–,x

σi(k)(j)
m(k)–,F

(
xσi(k)()
n(k)– ,x

σi(k)()
n(k)– , . . . ,x

σi(k)(n)
n(k)–

)))

= (ψ – ϕ)
(
max
≤j≤n

G
(
xσi(k)(j)
n(k)–,x

σi(k)(j)
m(k)–,x

σi(k)(j)
n(k)

))

= (ψ – ϕ)
(
max
≤j≤n

G
(
xσi(k)(j)
n(k)–,x

σi(k)(j)
n(k) ,xσi(k)(j)

m(k)–
))
. ()

Consider the sequence

{
max
≤j≤n

G
(
xσi(k)(j)
n(k)–,x

σi(k)(j)
n(k) ,xσi(k)(j)

m(k)–
)}

k≥
. ()

If this sequence has a subsequence that converges to zero, then we can take limit when
k → ∞ in () using this subsequence, so that we would have  <ψ(ε) ≤ ψ() –ϕ() = ,
which is impossible since ε > . Therefore, the sequence () has no subsequence con-
verging to zero. In this case, taking ε >  in Lemma , there exist δ ∈ ], ε[ and k ∈ N

such that max≤j≤n G(x
σi(k)(j)
n(k)–,x

σi(k)(j)
n(k) ,xσi(k)(j)

m(k)–) ≥ δ for all k ≥ k. It follows that, for all k ≥ k,

–ϕ(max≤j≤n G(x
σi(k)(j)
n(k)–,x

σi(k)(j)
n(k) ,xσi(k)(j)

m(k)–))≤ –ϕ(δ). Thus, by () and (),

 < ψ(ε) ≤ ψ
(
max
≤j≤n

G
(
xσi(k)(j)
n(k)–,x

σi(k)(j)
n(k) ,xσi(k)(j)

m(k)–
))

– ϕ
(
max
≤j≤n

G
(
xσi(k)(j)
n(k)–,x

σi(k)(j)
n(k) ,xσi(k)(j)

m(k)–
))

≤ ψ
(
max
≤j≤n

G
(
xσi(k)(j)
n(k)–,x

σi(k)(j)
n(k) ,xσi(k)(j)

m(k)–
))

– ϕ(δ)

≤ ψ
(
max
≤j≤n

G
(
xjn(k)–,x

j
n(k),x

j
m(k)–

))
– ϕ(δ)

≤ ψ
(
max
≤j≤n

(
G

(
xjn(k)–,x

j
n(k),x

j
n(k)

)
+G

(
xjn(k),x

j
n(k)+,x

j
n(k)+

))
+ ε

)
– ϕ(δ). ()

Taking limit in () as k → ∞ and taking into account (), we deduce that  < ψ(ε) ≤
ψ(ε)–ϕ(δ), which is impossible. The previous reasoning proves that every sequence {xim}
is G-Cauchy.
Corollary  guarantees that the sequence {Fm

ϒ (X) = Xm = (xm,xm, . . . ,xnm)} is Gn-
Cauchy. Since (Xn,Gn) is complete (again by Corollary ), there exists Z ∈ Xn such that
{Xm} Gn→ Z, that is, if Z = (z, z, . . . , zn) then

{
G

(
xim,x

i
m+, zi

)} →  for all i. ()

Suppose that F is G-continuous. In this case, item  of Lemma  implies that Fϒ is Gn-
continuous, so {Xm} Gn→ Z and {Xm+ = Fϒ (Xm)} Gn→ Fϒ (Z). By the unicity of the Gn-limit,
Fϒ (Z) = Z, which means that Z is a ϒ-fixed point of F .
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Suppose that (X,G,�) is regular. In this case, by Corollary , (Xn,Gn,�) is also reg-
ular. Then, taking into account that {Xm = F

m
ϒ (X)} is a �-monotone non-decreasing

sequence such that {Xm} Gn→ Z, we deduce that Xm � Z for all m. From Proposition ,
since (xm,xm, . . . ,xnm) = Xm � Z = (z, z, . . . , zn), then (xσi()

m ,xσi()
m , . . . ,xσi(n)

m ) and (zσi(), zσi(),
. . . , zσi(n)) are �-comparable for all i and allm. Notice that for all i and allm,

F
(
xσi()
m+ ,x

σi()
m+ , . . . ,x

σi(n)
m+

)
= F

(
F
(
x

σσi()()
m ,x

σσi()()
m , . . . ,x

σσi()(n)
m

)
, . . . ,

F
(
x

σσi(n)()
m ,x

σσi(n)()
m , . . . ,x

σσi(n)(n)
m

))
= F

ϒ

(
xσi()
m ,xσi()

m , . . . ,xσi(n)
m

)
.

It follows from condition () and () that, for all i,

ψ
(
G

(
F
(
xσi()
m ,xσi()

m , . . . ,xσi(n)
m

)
,F

(
xσi()
m+ ,x

σi()
m+ , . . . ,x

σi(n)
m+

)
,F(zσi(), zσi(), . . . , zσi(n))

))
= ψ

(
G

(
F
(
xσi()
m ,xσi()

m , . . . ,xσi(n)
m

)
,F(zσi(), zσi(), . . . , zσi(n)),F


ϒ

(
xσi()
m ,xσi()

m , . . . ,xσi(n)
m

)))
≤ (ψ – ϕ)

(
max
≤j≤n

G
(
xσi(j)
m , zσi(j),F

(
x

σσi(j)()
m ,x

σσi(j)()
m , . . . ,x

σσi(j)(n)
m

)))

= (ψ – ϕ)
(
max
≤j≤n

G
(
xσi(j)
m , zσi(j),x

σi(j)
m+

)) ≤ ψ
(
max
≤j≤n

G
(
xσi(j)
m ,xσi(j)

m+, zσi(j)
))

≤ ψ
(
max
≤j≤n

G
(
xjm,x

j
m+, zj

))
.

By () we deduce that

{
F
(
xσi()
m ,xσi()

m , . . . ,xσi(n)
m

)} → F(zσi(), zσi(), . . . , zσi(n)) for all i,

which means that

{
FϒXm =

(
F
(
xσ()
m ,xσ()

m , . . . ,xσ(n)
m

)
, . . . ,F

(
xσn()
m ,xσn()

m , . . . ,xσn(n)
m

))}
Gn→ (

F(zσ(), zσ(), . . . , zσ(n)), . . . ,F(zσn(), zσn(), . . . , zσn(n))
)
= FϒZ.

Since {FϒXm = Xm+} Gn→ Z, we conclude that FϒZ = Z, that is, Z is a ϒ-fixed point of F . �

If we take ψ(t) = t in Theorem , then we get the following results.

Corollary  Let (X,G) be a complete G∗-metric space and let � be a partial preorder
on X. Let ϒ = (σ,σ, . . . ,σn) be an n-tuple of mappings from {, , . . . ,n} into itself verifying
σi ∈ �A,B if i ∈ A and σi ∈ �′

A,B if i ∈ B. Let F : Xn → X be a mapping verifying the mixed
monotone property on X. Assume that there exists ϕ ∈ 
 such that

G
(
F(x,x, . . . ,xn),F(y, y, . . . , yn),F

ϒ (x,x, . . . ,xn)
)

≤ max
≤i≤n

G
(
xi, yi,F(xσi(),xσi(), . . . ,xσi(n))

)
– ϕ

(
max
≤i≤n

G
(
xi, yi,F(xσi(),xσi(), . . . ,xσi(n))

))

for which (x,x, . . . ,xn), (y, y, . . . , yn) ∈ Xn are �-comparable. Suppose either F is contin-
uous or (X,G,�) is regular. If there exist x,x, . . . ,xn ∈ X verifying xi �i F(xσi()

 ,xσi()
 ,

. . . ,xσi(n)
 ) for all i, then F has, at least, one ϒ-fixed point.
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If we take ϕ(t) = ( – k)t for all t ≥ , with k ∈ [, ), in Corollary , then we derive the
following result.

Corollary  Let (X,G) be a complete G∗-metric space and let � be a partial preorder
on X. Let ϒ = (σ,σ, . . . ,σn) be an n-tuple of mappings from {, , . . . ,n} into itself verifying
σi ∈ �A,B if i ∈ A and σi ∈ �′

A,B if i ∈ B. Let F : Xn → X be a mapping verifying the mixed
monotone property on X. Assume that there exists k ∈ [, ) such that

G
(
F(x,x, . . . ,xn),F(y, y, . . . , yn),F

ϒ (x,x, . . . ,xn)
)

≤ k max
≤i≤n

G
(
xi, yi,F(xσi(),xσi(), . . . ,xσi(n))

)
()

for which (x,x, . . . ,xn), (y, y, . . . , yn) ∈ Xn are �-comparable. Suppose either F is contin-
uous or (X,G,�) is regular. If there exist x,x, . . . ,xn ∈ X verifying xi �i F(xσi()

 ,xσi()
 ,

. . . ,xσi(n)
 ) for all i, then F has, at least, one ϒ-fixed point.

Example  LetX = {, , , , } and letG be theG-metric onX given, for all x, y, z ∈ X, by
G(x, y, z) =max(|x– y|, |x– z|, |y– z|). Then (X,G) is complete andG generates the discrete
topology on X. Consider on X the following partial order:

x, y ∈ X, x� y ⇔ x = y or (x, y) = (, ).

Define F : Xn → X by

F(x,x, . . . ,xn) =

{
, if x,x, . . . ,xn ∈ {, , },
, otherwise.

Then the following statements hold.
. F is a G-continuous mapping.
. If y, z ∈ X verify y� z, then either y, z ∈ {, , } or y, z ∈ {, }. In particular,

F(x, . . . ,xi–, y,xi+, . . . ,xn) = F(x, . . . ,xi–, y,xi+, . . . ,xn) and F has the mixed
monotone property on X .

. If (x,x, . . . ,xn), (y, y, . . . , yn) ∈ Xn are �-comparable, then
F(x,x, . . . ,xn) = F(y, y, . . . , yn). In particular, () holds for k = /.
For simplicity, henceforth, suppose that n is even and let A (respectively, B) be the

set of all odd (respectively, even) numbers in {, , . . . ,n}.
. For a mapping σ :�n → �n, we use the notation σ ≡ (σ (),σ (), . . . ,σ (n)) and

consider

σi ≡ (i, i + , . . . ,n – ,n, , , . . . , i – ) for all i.

Then σi ∈ �A,B if i is odd and σi ∈ �′
A,B if i is even. Let ϒ = (σ,σ, . . . ,σn).

. Take xi =  if i is odd and xi =  if i is even. Then xi �i F(xσi()
 ,xσi()

 , . . . ,xσi(n)
 ) for

all i.
Therefore, we can apply Corollary  to conclude that F has, at least, one ϒ-fixed point.

To finish, we prove the previous statements.
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If {xm} G→ x, then there existsm ∈N such that |xm–x| =G(x,x,xm) < / for allm ≥ m.
Since X is discrete, then xm = x for allm ≥ m. This proves that τG is the discrete topology
on X.
. If {am}, {am}, . . . , {anm} ⊆ X are n sequences such that {aim} G→ ai ∈ X for all i, then

there existsm ∈ N such that aim = ai for all m ≥ m and all i. Then
{F(am,am, . . . ,anm)} G→ F(a,a, . . . ,an) and F is G-continuous.

. If y, z ∈ X verify y� z, the either y = z (in this case, there is nothing to prove) or
(y, z) = (, ). Then either y, z ∈ {, , } or y, z ∈ {, }. In particular,

F(x, . . . ,xi–, y,xi+, . . . ,xn) =

{
 if x, . . . ,xi–, y,xi+, . . . ,xn ∈ {, , },
, otherwise

}

= F(x, . . . ,xi–, z,xi+, . . . ,xn).

Hence F has the mixed monotone property on X .
. Suppose that (x,x, . . . ,xn), (y, y, . . . , yn) ∈ Xn are �-comparable, and we claim

that F(x,x, . . . ,xn) = F(y, y, . . . , yn). Indeed, assume, for instance, that xi �i yi for
all i. By item , for all i, either xi, yi ∈ {, , } or xi, yi ∈ {, }. Then

F(x,x, . . . ,xn) =

{
 if x,x, . . . ,xn ∈ {, , },
, otherwise

}

=

{
 if y, y, . . . , yn ∈ {, , },
, otherwise

}

= F(y, y, . . . , yn).

If xi �i yi for all i, the proof is similar. Next, we prove that () holds using k = /. If
(x,x, . . . ,xn) ∈ Xn, then F(xσi(),xσi(), . . . ,xσi(n)) ∈ {, } ⊂ {, , }. Therefore

F
ϒ (x,x, . . . ,xn)

= F
(
F(xσ(),xσ(), . . . ,xσ(n)),F(xσ(),xσ(), . . . ,xσ(n)), . . . ,

F(xσn(),xσn(), . . . ,xσn(n))
)

= .

Suppose that (x,x, . . . ,xn), (y, y, . . . , yn) ∈ Xn are �-comparable. It follows that

G
(
F(x,x, . . . ,xn),F(y, y, . . . , yn),F

ϒ (x,x, . . . ,xn)
)

=max
(∣∣F(x,x, . . . ,xn) – F(y, y, . . . , yn)

∣∣,∣∣F(x,x, . . . ,xn) – 
∣∣, ∣∣F(y, y, . . . , yn) – 

∣∣)
=max

(
F(x,x, . . . ,xn),F(y, y, . . . , yn)

)
=

{
 if F(x,x, . . . ,xn) = F(y, y, . . . , yn) = ,
, otherwise.
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It is clear that () holds if the previous number is . On the contrary, suppose that

G
(
F(x,x, . . . ,xn),F(y, y, . . . , yn),F

ϒ (x,x, . . . ,xn)
)
= .

Then F(x,x, . . . ,xn) =  or F(y, y, . . . , yn) =  (both cases are similar). Assume, for
instance, that F(x,x, . . . ,xn) = . Then there exists i ∈ {, , . . . ,n} such that
xi ∈ {, }. In particular

∣∣xi – F(xσi (),xσi (), . . . ,xσi (n))
∣∣ ≥  –  = .

Therefore

max
≤i≤n

G
(
xi, yi,F(xσi(),xσi(), . . . ,xσi(n))

) ≥ G
(
xi , yi ,F(xσi (),xσi (), . . . ,xσi (n))

)
≥ ∣∣xi – F(xσi (),xσi (), . . . ,xσi (n))

∣∣ ≥ .

This means that

G
(
F(x,x, . . . ,xn),F(y, y, . . . , yn),F

ϒ (x,x, . . . ,xn)
)

=  =


 ≤ 


max
≤i≤n

G
(
xi, yi,F(xσi(),xσi(), . . . ,xσi(n))

)
.

Therefore, in this case, () also holds.
. It is evident.
. Since xi ∈ {, , } for all i, then F(xσi()

 ,xσi()
 , . . . ,xσi(n)

 ) =  for all i. If i is odd, then
xi = �i  = F(xσi()

 ,xσi()
 , . . . ,xσi(n)

 ). If i is even, then
xi = �  = F(xσi()

 ,xσi()
 , . . . ,xσi(n)

 ), so xi �i F(xσi()
 ,xσi()

 , . . . ,xσi(n)
 ).
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