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Abstract
In this paper, we study the strong convergence of Moudafi’s viscosity approximation
methods for approximating a common fixed point of a one-parameter continuous
semigroup of nonexpansive mappings in CAT(0) spaces. We prove that the proposed
iterative scheme converges strongly to a common fixed point of a one-parameter
continuous semigroup of nonexpansive mappings which is also a unique solution of
the variational inequality. The results presented in this paper extend and enrich the
existing literature.
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1 Introduction
Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly,
a geodesic from x to y) is a map c from a closed interval [, l] ⊂ R to X such that c() = x,
c(l) = y, and d(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (ormetric) segment joining x and y.When it
is unique, this geodesic segment is denoted by [x, y]. The space (X,d) is said to be a geodesic
space if every two points ofX are joined by a geodesic, andX is said to be uniquely geodesic
if there is exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to
be convex if Y includes every geodesic segment joining any two of its points. A geodesic
triangle �(x,x,x) in a geodesic metric space (X,d) consists of three points x, x, x
in X (the vertices of �) and a geodesic segment between each pair of vertices (the edges
of �). A comparison triangle for the geodesic triangle �(x,x,x) in (X,d) is a triangle
�̄(x,x,x) := �(x̄, x̄, x̄) in the Euclidean plane E such that dE (x̄i, x̄j) = d(xi,xj) for all
i, j ∈ {, , }.
A geodesic space is said to be a CAT() space if all geodesic triangles of appropriate size

satisfy the following comparison axiom.
CAT(): Let � be a geodesic triangle in X and let �̄ be a comparison triangle for �.

Then � is said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points
x̄, ȳ ∈ �̄,

d(x, y) ≤ dE (x̄, ȳ).
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If x, y, y are points in a CAT() space and if y is the midpoint of the segment [y, y],
then the CAT() inequality implies

d(x, y) ≤ 

d(x, y) +



d(x, y) –



d(y, y). (.)

This is the (CN)-inequality of Bruhat and Tits []. In fact (cf. [], p.), a geodesic space
is a CAT() space if and only if it satisfies the (CN)-inequality.
It is well known that any complete, simply connected Riemannianmanifold having non-

positive sectional curvature is aCAT() space. Other examples include pre-Hilbert spaces,
R-trees (see []), Euclidean buildings (see []), the complex Hilbert ball with a hyperbolic
metric (see []), and many others. Complete CAT() spaces are often called Hadamard
spaces.
It is proved in [] that a normed linear space satisfies the (CN)-inequality if and only if it

satisfies the parallelogram identity, i.e., is a pre-Hilbert space; hence it is not so unusual to
have an inner product-like notion in Hadamard spaces. Berg and Nikolaev [] introduced
the concept of quasilinearization as follows.
Let us formally denote a pair (a,b) ∈ X × X by

–→
ab and call it a vector. Then quasilin-

earization is defined as a map 〈·, ·〉 : (X ×X)× (X ×X)→R defined by

〈–→ab, –→cd〉 = 

(
d(a,d) + d(b, c) – d(a, c) – d(b,d)

)
(a,b, c,d ∈ X). (.)

It is easily seen that 〈–→ab, –→cd〉 = 〈–→cd, –→ab〉, 〈–→ab, –→cd〉 = –〈–→ba, –→cd〉 and 〈–→ax, –→cd〉+ 〈–→xb, –→cd〉 = 〈–→ab, –→cd〉
for all a,b, c,d,x ∈ X. We say that X satisfies the Cauchy-Schwarz inequality if

〈–→ab, –→cd〉 ≤ d(a,b)d(c,d) (.)

for all a,b, c,d ∈ X. It is known [, Corollary ] that a geodesically connected metric space
is a CAT() space if and only if it satisfies the Cauchy-Schwarz inequality.
In , Kakavandi and Amini [] introduced the concept of a dual space for CAT()

spaces as follows. Consider the map � :R×X ×X → C(X) defined by

�(t,a,b)(x) = t〈–→ab, –→ax〉, (.)

where C(X) is the space of all continuous real-valued functions on X. Then the Cauchy-
Schwarz inequality implies that �(t,a,b) is a Lipschitz function with a Lipschitz semi-
norm L(�(t,a,b)) = |t|d(a,b) for all t ∈ R and a,b ∈ X, where

L(f ) = sup

{
f (x) – f (y)
d(x, y)

: x, y ∈ X,x �= y
}

is the Lipschitz semi-norm of the function f : X →R. Now, define the pseudometric D on
R×X ×X by

D
(
(t,a,b), (s, c,d)

)
= L

(
�(t,a,b) –�(s, c,d)

)
.

Lemma . [, Lemma .] D((t,a,b), (s, c,d)) =  if and only if t〈–→ab, –→xy〉 = s〈–→cd, –→xy〉 for all
x, y ∈ X.
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For a complete CAT() space (X,d), the pseudometric space (R×X ×X,D) can be con-
sidered as a subspace of the pseudometric space (Lip(X,R),L) of all real-valued Lipschitz
functions. Also, D defines an equivalence relation on R × X × X, where the equivalence
class of t

–→
ab := (t,a,b) is

[t
–→
ab] =

{
s
–→
cd : t〈–→ab, –→xy〉 = s〈–→cd, –→xy〉 ∀x, y ∈ X

}
.

The set X∗ := {[t–→ab] : (t,a,b) ∈R×X ×X} is a metric space with metric D, which is called
the dual metric space of (X,d).
Recently, Dehghan and Rooin [] introduced the duality mapping in CAT() spaces and

studied its relation with subdifferential, by using the concept of quasilinearization. Then
they presented a characterization of metric projection in CAT() spaces as follows.

Theorem . [, Theorem .] Let C be a nonempty convex subset of a complete CAT()
space X, x ∈ X and u ∈ C. Then

u = PCx if and only if 〈–→yu, –→ux〉 ≥  for all y ∈ C.

From now on, let N be the set of positive integers, let R be the set of real numbers, and
let R+ be the set of nonnegative real numbers. Let C be a nonempty, closed and convex
subset of a complete CAT() space X. A family S := {T(t) : t ∈R

+} of self-mappings of C is
called a one-parameter continuous semigroup of nonexpansive mappings if the following
conditions hold:

(i) for each t ∈R
+, T(t) is a nonexpansive mapping on C, i.e.,

d
(
T(t)x,T(t)y

) ≤ d(x, y), ∀x, y ∈ C;

(ii) T(s + t) = T(t) ◦ T(s) for all t, s ∈R
+;

(iii) for each x ∈ X , the mapping T(·)x from R
+ into C is continuous.

A family S := {T(t) : t ∈ R
+} of mappings is called a one-parameter strongly continu-

ous semigroup of nonexpansive mappings if conditions (i), (ii) and (iii) and the following
condition are satisfied:
(iv) T()x = x for all x ∈ C.

We shall denote by F the common fixed point set of S , that is,

F := F(S) =
{
x ∈ C : T(t)x = x, t ∈R

+} = ⋂
t∈R+

F
(
T(t)

)
.

One classical way to study nonexpansivemappings is to use contractions to approximate
nonexpansivemappings.More precisely, take t ∈ (, ) and define a contractionTt : C → C
by

Tt = tu + ( – t)Tx, ∀x ∈ C,

where u ∈ C is an arbitrary fixed element. Banach’s contraction mapping principle guar-
antees that Tt has a unique fixed point xt in C. It is unclear, in general, what the behavior
of xt is as t → , even if T has a fixed point. However, in the case of T having a fixed point,

http://www.fixedpointtheoryandapplications.com/content/2013/1/160
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Browder [] proved that xt converges strongly to a fixed point of T that is nearest to u in
the framework of Hilbert spaces. Reich [] extended Browder’s result to the setting of Ba-
nach spaces and proved, in a uniformly smooth Banach space, that xt converges strongly
to a fixed point ofT and the limit defines the (unique) sunny nonexpansive retraction from
C onto F(T).
Halpern [] introduced the following explicit iterative scheme (.) for a nonexpansive

mapping T on a subset C of a Hilbert space by taking any points u,x ∈ C and defined the
iterative sequence {xn} by

xn+ = αnu + ( – αn)Txn. (.)

He proved that the sequence {xn} generated by (.) converges to a fixed point of T .
It is an interesting problem to extend the above (Browder’s [] andHalpern’s []) results

to the nonexpansive semigroup case. In [], Shioji andTakahashi introduced the following
implicit iteration in a Hilbert space:

xn = αnu + ( – αn)

tn

∫ tn


T(s)xn ds, (.)

where C is a nonempty closed convex subset of a real Hilbert space H , u ∈ C, {αn} is
a sequence in (, ), {tn} is a sequence of positive real numbers divergent to ∞. Under
suitable conditions, they proved strong convergence of {xn} to a member of F .
Later, Suzuki [] was the first to introduce in a Hilbert space the following iteration

process:

xn = αnu + ( – αn)T(tn)xn, ∀n≥ , (.)

where {T(t) : t ≥ } is a strongly continuous semigroup of nonexpansive mappings on C
such that F �= ∅ and {αn} and {tn} are appropriate sequences of real numbers. He proved
that {xn} generated by (.) converges strongly to the element of F nearest to u. Using
Moudafi’s viscosity approximation methods, Song and Xu [] introduced the following
iteration process:

xn = αnf (xn) + ( – αn)T(tn)xn, ∀n≥ , (.)

and

xn+ = αnf (xn) + ( – αn)T(tn)xn, ∀n≥ . (.)

They proved that {xn} converges to the same point ofF in a reflexive strictly Banach space
with a uniformly Gâteaux differentiable norm.
In the similar way, Dhompongsa et al. [] extended Browder’s iteration to a strongly

continuous semigroup of nonexpansive mappings {T(t) : t ≥ } in a complete CAT()
space X as follows:

xn = αnx ⊕ T(tn)xn, ∀n≥ ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/160
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where C is a nonempty closed convex subset of a complete CAT() space X, x ∈ C,
{αn} and {tn} are sequences of real numbers satisfying  < αn < , tn > , and limn→∞ tn =
limn→∞ αn/tn = . The proved that F �= ∅ and {xn} converges to the element of F nearest
to u. For other related results, see [, ].
In , Shi and Chen [], studied the convergence theorems of the followingMoudafi’s

viscosity iterations for a nonexpansive mapping T : for a contraction f on C and t ∈ (, ),
let xt ∈ C be a unique fixed point of the contraction x �→ tf (x)⊕ ( – t)Tx; i.e.,

xt = tf (xt)⊕ ( – t)Txt , (.)

and x ∈ C is arbitrarily chosen and

xn+ = αnf (xn)⊕ ( – αn)Txn, ∀n≥ , (.)

where {αn} ⊂ (, ). They proved {xt} defined by (.) converges strongly as t →  to
x̃ ∈ F(T) such that x̃ = PF(T)f (x̃) in the framework of CAT() space satisfying property P ,
i.e., if for x,u, y, y ∈ X,

d(x,P[x,y]u)d(x, y)≤ d(x,P[x,y]u)d(x, y) + d(x,u)d(y, y).

Furthermore, they also obtained that {xn} defined by (.) converges strongly as n → ∞
to x̃ ∈ F(T) under certain appropriate conditions imposed on {αn}.
By using the concept of quasilinearization, Wangkeeree and Preechasilp [] improved

Shi and Chen’s results. In fact, they proved the strong convergence theorems for two given
iterative schemes (.) and (.) in a complete CAT() space without the property P .
Motivated and inspired by Song and Xu [], Dhompongsa et al. [], and Wangkeeree

and Preechasilp [], in this paper we aim to study the strong convergence theorems of
Moudafi’s viscosity approximationmethods for a one-parameter continuous semigroup of
nonexpansivemappings S := {T(t) : t ∈R

+} inCAT() spaces. LetC be a nonempty, closed
and convex subset of a CAT() space X. For a given contraction f on C and αn ∈ (, ), let
xn ∈ C be a unique fixed point of the contraction x �→ αnf (x)⊕ ( – αn)T(tn)x; i.e.,

xn = αnf (xn)⊕ ( – αn)T(tn)xn, n≥ , (.)

and

xn+ = αnf (xn)⊕ ( – αn)T(tn)xn, n≥ . (.)

We prove that the iterative schemes {xn} defined by (.) and {xn} defined by (.) con-
verge strongly to the same point x̃ such that x̃ = PF f (x̃), which is the unique solution of
the variational inequality

〈––→x̃f x̃, –→xx̃〉 ≥ , x ∈F ,

where F is the common fixed point set of S , that is,

F := F(S) =
{
x ∈ C : T(t)x = x, t ∈R

+} = ⋂
t∈R+

F
(
T(t)

)
.
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2 Preliminaries
In this paper, we write ( – t)x⊕ ty for the unique point z in the geodesic segment joining
from x to y such that

d(z,x) = td(x, y) and d(z, y) = ( – t)d(x, y).

We also denote by [x, y] the geodesic segment joining from x to y, that is, [x, y] = {(– t)x⊕
ty : t ∈ [, ]}. A subset C of a CAT() space is convex if [x, y]⊆ C for all x, y ∈ C.
The following lemmas play an important role in our paper.

Lemma . [, Proposition .] Let X be a CAT() space, p,q, r, s ∈ X and λ ∈ [, ]. Then

d
(
λp⊕ ( – λ)q,λr ⊕ ( – λ)s

) ≤ λd(p, r) + ( – λ)d(q, s).

Lemma . [, Lemma .] Let X be a CAT() space, x, y, z ∈ X and λ ∈ [, ]. Then

d
(
λx⊕ ( – λ)y, z

) ≤ λd(x, z) + ( – λ)d(y, z).

Lemma . [, Lemma .] Let X be a CAT() space, x, y, z ∈ X and λ ∈ [, ]. Then

d(λx⊕ ( – λ)y, z
) ≤ λd(x, z) + ( – λ)d(y, z) – λ( – λ)d(x, y).

The concept of �-convergence introduced by Lim [] in  was shown by Kirk and
Panyanak [] inCAT() spaces to be very similar to theweak convergence in Banach space
setting. Next, we give the concept of �-convergence and collect some basic properties.
Let {xn} be a bounded sequence in a CAT() space X. For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ X

}
,

and the asymptotic center A({xn}) of {xn} is the set

A
({xn}) = {

x ∈ X : r
(
x, {xn}

)
= r

({xn})}.
It is known from Proposition  of [] that in a complete CAT() space, A({xn}) consists

of exactly one point. A sequence {xn} ⊂ X is said to �-converge to x ∈ X if A({xnk }) =
{x} for every subsequence {xnk } of {xn}. The uniqueness of an asymptotic center implies
that a CAT() space X satisfies Opial’s property, i.e., for given {xn} ⊂ X such that {xn}�-
converges to x and given y ∈ X with y �= x,

lim sup
n→∞

d(xn,x) < lim sup
n→∞

d(xn, y).

Since it is not possible to formulate the concept of demiclosedness in aCAT() setting, as
stated in linear spaces, let us formally say that ‘I –T is demiclosed at zero’ if the conditions
{xn} ⊆ C �-converges to x and d(xn,Txn) →  imply x ∈ F(T).

http://www.fixedpointtheoryandapplications.com/content/2013/1/160
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Lemma . [] Every bounded sequence in a complete CAT() space always has a �-
convergent subsequence.

Lemma . [] If C is a closed convex subset of a complete CAT() space and if {xn} is a
bounded sequence in C, then the asymptotic center of {xn} is in C.

Lemma . [] If C is a closed convex subset of X and T : C → X is a nonexpansive
mapping, then the conditions {xn} �-converges to x and d(xn,Txn) →  imply x ∈ C and
Tx = x.

Having the notion of quasilinearization, Kakavandi and Amini [] introduced the fol-
lowing notion of convergence.
A sequence {xn} in the complete CAT() space (X,d) w-converges to x ∈ X if

lim
n→∞〈––→xxn, –→xy〉 = ,

i.e., limn→∞(d(xn,x) – d(xn, y) + d(x, y)) =  for all y ∈ X.
It is obvious that convergence in the metric implies w-convergence, and it is easy to

check that w-convergence implies �-convergence [, Proposition .], but it is showed
in [, Example .] that the converse is not valid. However, the following lemma shows
another characterization of �-convergence as well as, more explicitly, a relation between
w-convergence and �-convergence.

Lemma . [, Theorem .] Let X be a complete CAT() space, {xn} be a sequence in X
and x ∈ X. Then {xn}�-converges to x if and only if lim supn→∞〈––→xxn, –→xy〉 ≤  for all y ∈ X.

Lemma. [, Lemma.] Let {an} be a sequence of non-negative real numbers satisfying
the property

an+ ≤ ( – αn)an + αnβn, n ≥ ,

where {αn} ⊆ (, ) and {βn} ⊆R such that
(i)

∑∞
n= αn = ∞;

(ii) lim supn→∞ βn ≤  or
∑∞

n= |αnβn| <∞.
Then {an} converges to zero as n → ∞.

3 Viscosity approximationmethods
In this section, we present the strong convergence theorems ofMoudafi’s viscosity approx-
imation methods for a one-parameter continuous semigroup of nonexpansive mappings
S := {T(t) : t ∈ R

+} in CAT() spaces. Before proving main results, we need the following
two vital lemmas.

Lemma . Let X be a complete CAT() space. Then, for all u,x, y ∈ X, the following in-
equality holds:

d(x,u) ≤ d(y,u) + 〈–→xy, –→xu〉.

http://www.fixedpointtheoryandapplications.com/content/2013/1/160
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Proof Using (.), we have that

d(y,u) – d(x,u) – 〈–→yx, –→xu〉 = d(y,u) – d(x,u) – 〈–→yu, –→xu〉 – 〈–→ux, –→xu〉
= d(y,u) – d(x,u) – 〈–→yu, –→xu〉 + d(x,u)

= d(y,u) + d(x,u) – 〈–→yu, –→xu〉
≥ d(y,u) + d(x,u) – d(y,u)d(x,u)

=
(
d(y,u) – d(x,u)

) ≥ .

Therefore we obtain that

d(x,u) ≤ d(y,u) + 〈–→xy, –→xu〉,

which is the desired result. �

Lemma . Let X be a CAT() space. For any t ∈ [, ] and u, v ∈ X, let ut = tu⊕ ( – t)v.
Then, for all x, y ∈ X,

(i) 〈––→utx, ––→uty〉 ≤ t〈–→ux, ––→uty〉 + ( – t)〈–→vx, ––→uty〉;
(ii) 〈––→utx, –→uy〉 ≤ t〈–→ux, –→uy〉 + ( – t)〈–→vx, –→uy〉 and 〈––→utx, –→vy〉 ≤ t〈–→ux, –→vy〉 + ( – t)〈–→vx, –→vy〉.

Proof (i) It follows from (CN)-inequality (.) that

〈––→utx, ––→uty〉 = d(ut , y) + d(x,ut) – d(x, y)

≤ td(u, y) + ( – t)d(v, y) – t( – t)d(u, v) + d(x,ut) – d(x, y)

= td(u, y) + td(x,ut) – td(u,ut) – td(x, y)

+ ( – t)d(v, y) + ( – t)d(x,ut) – ( – t)d(v,ut) – ( – t)d(x, y)

+ td(u,ut) + ( – t)d(v,ut) – t( – t)d(u, v)

= t
[
d(u, y) + d(x,ut) – d(u,ut) – d(x, y)

]
+ ( – t)

[
d(v, y) + d(x,ut) – d(v,ut) – d(x, y)

]
+ t( – t)d(u, v) + ( – t)td(u, v) – t( – t)d(u, v)

= t〈–→ux, ––→uty〉 + ( – t)〈–→vx, ––→uty〉.

(ii) The proof is similar to (i). �

For any αn ∈ (, ), tn ∈ [,∞) and a contraction f with coefficient α ∈ (, ), define the
mapping Gn : C → C by

Gn(x) = αnf (x)⊕ ( – αn)T(tn)x, ∀x ∈ C. (.)

It is not hard to see that Gn is a contraction on C. Indeed, for x, y ∈ C, we have

d
(
Gn(x),Gn(y)

)
= d

(
αnf (x)⊕ ( – αn)T(tn)x,αnf (y)⊕ ( – αn)T(tn)y

)
≤ d

(
αnf (x)⊕ ( – αn)T(tn)x,αnf (y)⊕ ( – αn)T(tn)x

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/160
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+ d
(
αnf (y)⊕ ( – αn)T(tn)x,αnf (y)⊕ ( – αn)T(tn)y

)
≤ αnd

(
f (x), f (y)

)
+ ( – αn)d

(
T(tn)x,T(tn)y

)
≤ αnαd(x, y) + ( – αn)d(x, y)

=
(
 – αn( – α)

)
d(x, y).

Therefore we have that Gn is a contraction mapping. Let xn ∈ C be the unique fixed point
of Gn; that is,

xn = αnf (xn)⊕ ( – αn)T(tn)xn for all n≥ . (.)

Now we are in a position to state and prove our main results.

Theorem . Let C be a closed convex subset of a complete CAT() space X, and let {T(t)}
be a one-parameter continuous semigroup of nonexpansive mappings on C satisfyingF �= ∅
and uniformly asymptotically regular (in short, u.a.r.) on C, that is, for all h ≥  and any
bounded subset B of C,

lim
t→∞ sup

x∈B
d
(
T(h)

(
T(t)x

)
,T(t)x

)
= .

Let f be a contraction on C with coefficient  < α < . Suppose that tn ∈ [,∞), αn ∈ (, )
such that limn→∞ tn = ∞, limn→∞ αn =  and let {xn} be given by (.). Then {xn} converges
strongly as n→ ∞ to x̃ such that x̃ = PF f (x̃),which is equivalent to the following variational
inequality:

〈––→x̃f x̃, –→xx̃〉 ≥ , ∀x ∈F . (.)

Proof We first show that {xn} is bounded. For any p ∈F , we have that

d(xn,p) = d
(
αnf (xn)⊕ ( – αn)T(tn)xn,p

) ≤ αnd
(
f (xn),p

)
+ ( – αn)d

(
T(tn)xn,p

)
≤ αnd

(
f (xn),p

)
+ ( – αn)d(xn,p).

Then

d(xn,p) ≤ d
(
f (xn),p

) ≤ d
(
f (xn), f (p)

)
+ d

(
f (p),p

) ≤ αd(xn,p) + d
(
f (p),p

)
.

This implies that

d(xn,p) ≤ 
 – α

d
(
f (p),p

)
.

Hence {xn} is bounded, so are {T(tn)xn} and {f (xn)}. We get that

d
(
xn,T(tn)xn

)
= d

(
αnf (xn)⊕ ( – αn)T(tn)xn,T(tn)xn

)
≤ αnd

(
f (xn),T(tn)xn

)
+ ( – αn)d

(
T(tn)xn,T(tn)xn

)
≤ αnd

(
f (xn),T(tn)xn

) →  as n→ ∞.
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Since {T(t)} is u.a.r. and limn→∞ tn = ∞, then for all h > ,

lim
n→∞d

(
T(h)

(
T(tn)xn

)
,T(tn)xn

) ≤ lim
n→∞ sup

x∈B
d
(
T(h)

(
T(tn)x

)
,T(tn)x

)
= ,

where B is any bounded subset of C containing {xn}. Hence

d
(
xn,T(h)xn

) ≤ d
(
xn,T(tn)xn

)
+ d

(
T(tn)xn,T(h)

(
T(tn)xn

))
+ d

(
T(h)

(
T(tn)xn

)
,T(h)xn

)
≤ d

(
xn,T(tn)xn

)
+ d

(
T(tn)xn,T(h)

(
T(tn)xn

)) →  as n → ∞. (.)

We will show that {xn} contains a subsequence converging strongly to x̃ such that x̃ =
PF(T)f (x̃), which is equivalent to the following variational inequality:

〈––→x̃f x̃, –→xx̃〉 ≥ , x ∈F . (.)

Since {xn} is bounded, by Lemma ., there exists a subsequence {xnj} of {xn} which
�-converges to a point x̃, denoted by {xj}. We claim that x̃ ∈F . Since every CAT() space
has Opial’s property, for any h≥ , if T(h)x̃ �= x̃, we have

lim sup
j→∞

d
(
xj,T(h)x̃

) ≤ lim sup
j→∞

{
d
(
xj,T(h)xj

)
+ d

(
T(h)xj,T(h)x̃

)}

≤ lim sup
j→∞

{
d
(
xj,T(h)xj

)
+ d(xj, x̃)

}

= lim sup
j→∞

d(xj, x̃)

< lim sup
j→∞

d
(
xj,T(h)x̃

)
.

This is a contradiction, andhence x̃ ∈F . Sowehave the claim. It follows fromLemma.(i)
that

d(xj, x̃) = 〈–→xjx̃, –→xjx̃〉
≤ αj

〈––––→
f (xj)x̃,

–→
xjx̃

〉
+ ( – αj)

〈––––––→
T(tj)xjx̃,

–→
xjx̃

〉
≤ αj

〈––––→
f (xj)x̃,

–→
xjx̃

〉
+ ( – αj)d

(
T(tj)xj, x̃

)
d(xj, x̃)

≤ αj
〈––––→
f (xj)x̃,

–→
xjx̃

〉
+ ( – αj)d(xj, x̃).

It follows that

d(xj, x̃) ≤ 〈––––→
f (xj)x̃,

–→
xjx̃

〉
=

〈–––––––→
f (xj)f (x̃),

–→
xjx̃

〉
+

〈––––→
f (x̃)x̃,

–→
xjx̃

〉
≤ d

(
f (xj), f (x̃)

)
d(xj, x̃) +

〈––––→
f (x̃)x̃,

–→
xjx̃

〉
≤ αd(xj, x̃) +

〈––––→
f (x̃)x̃,

–→
xjx̃

〉
,
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and thus

d(xj, x̃) ≤ 
 – α

〈––––→
f (x̃)x̃,

–→
xjx̃

〉
. (.)

Since {xj} �-converges to x̃, by Lemma ., we have

lim sup
n→∞

〈––––→
f (x̃)x̃,

–→
xjx̃

〉 ≤ .

It follows from (.) that {xj} converges strongly to x̃. Next, we show that x̃ solves the
variational inequality (.). Applying Lemma ., for any q ∈F ,

d(xj,q) = d(αjf (xj)⊕ ( – αj)T(tj)xj,q
)

≤ αjd(f (xj),q) + ( – αj)d(T(tj)xj,q) – αj( – αj)d(f (xj),T(tj)xj)
≤ αjd(f (xj),q) + ( – αj)d(xj,q) – αj( – αj)d(f (xj),T(tj)xj).

It implies that

d(xj,q) ≤ d(f (xj),q) – ( – αj)d(f (xj),T(tj)xj).
Taking the limit through j → ∞, we can get that

d(x̃,q) ≤ d(f (x̃),q) – d(f (x̃), x̃).
Hence

 ≤ 

[
d(x̃, x̃) + d(f (x̃),q) – d(x̃,q) – d(f (x̃), x̃)] = 〈––––→

x̃f (x̃),
–→
qx̃

〉
, ∀q ∈F .

That is, x̃ solves the inequality (.). Finally, we show that the sequence {xn} converges to
x̃. Assume that xni → x̂, where i→ ∞. By the same argument, we get that x̂ ∈F and solves
the variational inequality (.), i.e.,

〈––→x̃f x̃, –→̃xx̂〉 ≤ , (.)

and

〈––→x̂f x̂, –→̂xx̃〉 ≤ . (.)

Adding up (.) and (.), we get that

 ≥ 〈––––→
x̃f (x̃),

–→̃
xx̂

〉
–

〈––––→
x̂f (x̂),

–→̃
xx̂

〉

=
〈––––→
x̃f (x̂),

–→̃
xx̂

〉
+

〈––––––→
f (x̂)f (x̃),

–→̃
xx̂

〉
– 〈–→̂xx̃, –→̃xx̂〉 – 〈––––→

x̃f (x̂),
–→̃
xx̂

〉

= 〈–→̃xx̂, –→̃xx̂〉 – 〈––––––→
f (x̂)f (x̃),

–→̂
xx̃

〉

≥ 〈–→̃xx̂, –→̃xx̂〉 – d
(
f (x̂), f (x̃)

)
d(x̂, x̃)
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≥ d(x̃, x̂) – αd(x̂, x̃)d(x̂, x̃)

≥ d(x̃, x̂) – αd(x̂, x̃)

≥ ( – α)d(x̃, x̂).

Since  < α < , we have that d(x̃, x̂) = , and so x̃ = x̂. Hence the sequence xn converges
strongly to x̃, which is the unique solution to the variational inequality (.). This com-
pletes the proof. �

If f ≡ u, then the following result can be obtained directly from Theorem ..

Corollary . Let C be a closed convex subset of a completeCAT() space X, and let {T(t)}
be a one-parameter continuous semigroup of nonexpansive mappings on C satisfyingF �= ∅
and uniformly asymptotically regular (in short, u.a.r.) on C, that is, for all h ≥  and any
bounded subset B of C,

lim
t→∞ sup

x∈B
d
(
T(h)

(
T(t)x

)
,T(t)x

)
= .

Let u be any element in C. Suppose tn ∈ [,∞), αn ∈ (, ) such that limn→∞ tn = ∞ and
limn→∞ αn =  and let {xn} be given by

xn = αnu⊕ ( – αn)T(tn)xn.

Then {xn} converges strongly as n → ∞ to x̃ such that x̃ = PF x̃, which is equivalent to the
following variational inequality:

〈–→̃xu, –→xx̃〉 ≥ , x ∈F . (.)

Theorem . Let C be a closed convex subset of a complete CAT() space X, and let {T(t)}
be a one-parameter continuous semigroup of nonexpansive mappings on C satisfyingF �= ∅
and uniformly asymptotically regular (in short, u.a.r.) on C, that is, for all h ≥  and any
bounded subset B of C,

lim
t→∞ sup

x∈B
d
(
T(h)

(
T(t)x

)
,T(t)x

)
= .

Let f be a contraction on C with coefficient  < α < . Suppose that tn ∈ [,∞), αn ∈ (, ),
x ∈ C, and {xn} is given by

xn+ = αnf (xn)⊕ ( – αn)T(tn)xn, ∀n≥ , (.)

where {αn} ⊂ (, ) satisfies the following conditions:
(i) limn→∞ αn = ;
(ii)

∑∞
n= αn = ∞ and

(iii) limn→∞ tn = ∞.
Then {xn} converges strongly as n → ∞ to x̃ such that x̃ = PF f (x̃), which is equivalent to
the variational inequality (.).
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Proof We first show that the sequence {xn} is bounded. For any p ∈F , we have that

d(xn+,p) = d
(
αnf (xn)⊕ ( – αn)T(tn)xn,p

)
≤ αnd

(
f (xn),p

)
+ ( – αn)d

(
T(tn)xn,p

)
≤ αn

(
d
(
f (xn), f (p)

)
+ d

(
f (p),p

))
+ ( – αn)d

(
T(tn)xn,p

)

≤ max

{
d(xn,p),


 – α

d
(
f (p),p

)}
.

By induction, we have

d(xn,p) ≤ max

{
d(x,p),


 – α

d
(
f (p),p

)}

for all n ∈ N. Hence {xn} is bounded, so are {T(tn)xn} and {f (xn)}. Using the assumption
that limn→∞ αn = , we get that

d
(
xn+,T(tn)xn

) ≤ αnd
(
f (xn),T(tn)xn

) →  as n→ ∞.

Since {T(t)} is u.a.r. and limn→∞ tn = ∞, then for all h ≥ ,

lim
n→∞d

(
T(h)

(
T(tn)xn

)
,T(tn)xn

) ≤ lim
n→∞ sup

x∈B
d
(
T(h)

(
T(tn)x

)
,T(tn)x

)
= ,

where B is any bounded subset of C containing {xn}. Hence

d
(
xn+,T(h)xn+

)
≤ d

(
xn+,T(tn)xn

)
+ d

(
T(tn)xn,T(h)

(
T(tn)xn

))
+ d

(
T(h)

(
T(tn)xn

)
,T(h)xn+

)
≤ d

(
xn+,T(tn)xn

)
+ d

(
T(tn)xn,T(h)

(
T(tn)xn

)) →  as n→ ∞. (.)

Let {zm} be a sequence in C such that

zm = αmf (zm)⊕ ( – αm)T(tm)zm.

It follows fromTheorem . that {zm} converges strongly asm → ∞ to a fixed point x̃ ∈F ,
which solves the variational inequality (.). Now, we claim that

lim sup
n→∞

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉 ≤ .

It follows from Lemma .(i) that

d(zm,xn+) = 〈–––––→zmxn+, –––––→zmxn+〉
≤ αm

〈––––––––→
f (zm)xn+, –––––→zmxn+

〉
+ ( – αm)

〈–––––––––––→
T(tm)zmxn+, –––––→zmxn+

〉
= αm

〈––––––––→
f (zm)f (x̃), –––––→zmxn+

〉
+ αm

〈––––→
f (x̃)x̃, –––––→zmxn+

〉
+ αm〈––→x̃zm, –––––→zmxn+〉
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+ αm〈–––––→zmxn+, –––––→zmxn+〉 + ( – αm)
〈–––––––––––––––––→
T(tm)zmT(tm)xn+, –––––→zmxn+

〉
+ ( – αm)

〈–––––––––––––→
T(tm)xn+xn+, –––––→zmxn+

〉
≤ αmαd(zm, x̃)d(zm,xn+) + αm

〈––––→
f (x̃)x̃, –––––→zmxn+

〉
+ αmd(x̃, zm)d(zm,xn+)

+ αmd(zm,xn+) + ( – αm)d(zm,xn+)

+ ( – αm)d
(
T(tm)xn+,xn+

)
d(zm,xn+)

≤ αmαd(zm, x̃)M + αm
〈––––→
f (x̃)x̃, –––––→zmxn+

〉
+ αmd(x̃, zm)M + αmd(zm,xn+)

+ ( – αm)d(zm,xn+) + ( – αm)d
(
T(tm)xn+,xn+

)
M

≤ d(zm,xn+) + αmαd(zm, x̃)M + αmd(x̃, zm)M + d
(
T(tm)xn+,xn+

)
M

+ αm
〈––––→
f (x̃)x̃, –––––→zmxn+

〉
,

whereM ≥ supm,n≥{d(zm,xn)}. This implies that

〈––––→
f (x̃)x̃, –––––→xn+zm

〉 ≤ ( + α)d(zm, x̃)M +
d(T(tm)xn+,xn+)

αm
M. (.)

Taking the upper limit as n → ∞ first, and thenm → ∞, inequality (.) yields that

lim sup
m→∞

lim sup
n→∞

〈––––→
f (x̃)x̃, –––––→xn+zm

〉 ≤ . (.)

Since

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
=

〈––––→
f (x̃)x̃, –––––→xn+zm

〉
+

〈––––→
f (x̃)x̃, zmx̃

〉
≤ 〈––––→

f (x̃)x̃, –––––→xn+zm
〉
+ d

(
f (x̃), x̃

)
d(zm, x̃).

Thus, by taking the upper limit as n → ∞ first, and then m → ∞ the last inequality, it
follows from zm → x̃ and (.) that

lim sup
n→∞

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉 ≤ .

Finally, we prove that xn → x̃ as n → ∞. For any n ∈ N, we set yn = αnx̃⊕ ( – αn)T(tn)xn.
It follows from Lemma . and Lemma .(i), (ii) that

d(xn+, x̃) ≤ d(yn, x̃) + 〈–––––→xn+yn,
––––→
xn+x̃〉

≤ (
αnd(x̃, x̃) + ( – αn)d

(
T(tn)xn, x̃

))
+ 

[
αn

〈––––––→
f (xn)yn,

––––→
xn+x̃

〉
+ ( – αn)

〈––––––––→
T(tn)xnyn,

––––→
xn+x̃

〉]
≤ ( – αn)d(xn, x̃) + 

[
αnαn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ αn( – αn)

〈–––––––––––→
f (xn)T(tn)xn,

––––→
xn+x̃

〉
+ ( – αn)αn

〈–––––––→
T(tn)xnx̃,

––––→
xn+x̃

〉
+ ( – αn)( – αn)

〈––––––––––––––→
T(tn)xnT(tn)xn,

––––→
xn+x̃

〉]
≤ ( – αn)d(xn, x̃) + 

[
αnαn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ αn( – αn)

〈–––––––––––→
f (xn)T(tn)xn,

––––→
xn+x̃

〉
+ ( – αn)αn

〈–––––––→
T(tn)xnx̃,

––––→
xn+x̃

〉
+ ( – αn)d

(
T(tn)xn,T(tn)xn

)
d(xn+x̃)

]
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= ( – αn)d(xn, x̃) + 
[
α
n
〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ αn( – αn)

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉]
= ( – αn)d(xn, x̃) + αn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
= ( – αn)d(xn, x̃) + αn

〈––––––––→
f (xn)f (x̃),

––––→
xn+x̃

〉
+ αn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
≤ ( – αn)d(xn, x̃) + αnαd(xn, x̃)d(xn+, x̃) + αn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
≤ ( – αn)d(xn, x̃) + αnα

(
d(xn, x̃) + d(xn+, x̃)

)
+ αn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
,

which implies that

d(xn+, x̃) ≤  – ( – α)αn + α
n

 – ααn
d(xn, x̃) +

αn

 – ααn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

≤  – ( – α)αn

 – ααn
d(xn, x̃) +

αn

 – ααn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+ α

nM,

whereM ≥ supn≥{d(xn, x̃)}. It then follows that

d(xn+, x̃) ≤
(
 – α′

n
)
d(xn, x̃) + α′

nβ
′
n,

where

α′
n =

( – α)αn

 – ααn
and β ′

n =
( – ααn)αn

( – α)
M +


( – α)

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
.

Applying Lemma ., we can conclude that xn → x̃. This completes the proof. �

If f ≡ u, then the following corollary can be obtained directly from Theorem ..

Corollary . Let C be a closed convex subset of a completeCAT() space X, and let {T(t)}
be a one-parameter continuous semigroup of nonexpansive mappings on C satisfyingF �= ∅
and uniformly asymptotically regular (in short, u.a.r.) on C, that is, for all h ≥  and any
bounded subset B of C,

lim
t→∞ sup

x∈B
d
(
T(h)

(
T(t)x

)
,T(t)x

)
= .

Suppose that tn ∈ [,∞), αn ∈ (, ), x ∈ C and {xn} is given by

xn+ = αnu⊕ ( – αn)T(tn)xn, ∀n≥ , (.)

where {αn} ⊂ (, ) satisfies the following conditions:
(i) limn→∞ αn = ;
(ii)

∑∞
n= αn = ∞ and

(iii) limn→∞ tn = ∞.
Then {xn} converges strongly as n → ∞ to x̃ such that x̃ = PF x̃, which is equivalent to the
variational inequality (.).
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