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1 Introduction
Fixed point theory has emerged as an effective and powerful tool for studying a wide class
of problemswhich arise in economics, finance, image reconstruction, ecology, transporta-
tion, network, elasticity and optimization; see [–] and the references therein. The com-
putation of solutions is important in the study of many real world problems. The well-
known convex feasibility problem which captures applications in various disciplines such
as image restoration and radiation therapy treatment planning is to find a point in the in-
tersection of common fixed point sets of a family of nonlinear mappings; see, for example,
[–] and the references therein.
The aim of this paper is to investigate a common solution problem of a family of non-

expansive mappings and an accretive operator based on a viscosity iterative method. The
organization of this article is as follows. In Section , we provide some necessary prelim-
inaries. In Section , a viscosity iterative method is discussed. Strong convergence theo-
rems of common solutions are established in a reflexive and strictly convex Banach space
E which enjoys weakly continuous duality mappings.

2 Preliminaries
Throughout this paper, we assume that E is a real Banach space. Let C be a nonempty,
closed and convex subset of E, and let T : C → C be a mapping. A point x ∈ C is a fixed
point of T provided Tx = x. Denote by F(T) the set of fixed points of T ; that is, F(T) = {x ∈
C : Tx = x}.
Recall that T : C → C is nonexpansive iff

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.
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T : C → C is a contraction iff there exists a constant α ∈ (, ) such that

∥∥f (x) – f (y)
∥∥ ≤ α‖x – y‖, ∀x, y ∈ C.

We use �C to denote the collection of all contractions on C. That is, �C := {f |f : C →
C a contraction}.
The Picard iterative algorithm is an efficient algorithm to study contractions. However,

the Picard iterative algorithm fails to converge to fixed points of nonexpansive mappings
even that their fixed point sets are not empty. One classical way to study nonexpansive
mappings is to use contractions to approximate a nonexpansive mapping. More precisely,
take t ∈ (, ) and define a mapping Tt : C → C by

Ttx = tf (u) + ( – t)Tx, ∀x ∈ C,

where u ∈ C is a fixed element and f is a contraction on C with the constant α. It is easy
to see that Tt is a contraction with the constant α. Indeed, we have the following:

‖Ttx – Tty‖ ≤ t
∥∥f (x) – f (y)

∥∥ + ( – t)‖Tx – Ty‖
≤ tα‖x – y‖ + ( – t)‖x – y‖
=

[
 – t( – α)

]‖x – y‖.

Banach’s contraction mapping principle guarantees that Tt has a unique fixed point. We
denote the unique fixed point by xt . Reich [] proved that if E is a uniformly smooth
Banach space, then xt strongly converges to a fixed point of T , and the limit defines the
(unique) sunny nonexpansive retraction from �C onto F(T). Recently, Xu [] further
proved that the above results still hold in reflexive Banach spaces which have weakly con-
tinuous duality mappings.
Recall that the normalMann iterative algorithmwas introduced byMann in . Since

then the construction of fixed points for nonexpansive mappings via the normal Mann
iterative algorithm has been extensively investigated by many authors.
The normal Mann iterative algorithm generates a sequence {xn} in the following man-

ner:

∀x ∈ C, xn+ = ( – αn)xn + αnTxn, ∀n≥ ,

where the sequence {αn} is in the interval (, ). IfT is a nonexpansivemappingwith a fixed
point and the control sequence {αn} is chosen so that

∑∞
n= αn( – αn) = ∞, then the se-

quence {xn} generated by the normalMann iterative algorithm converges weakly to a fixed
point of T (this is also valid in a uniformly convex Banach space with the Fréchet differ-
entiable norm). Since the Mann iterative algorithm only has weak convergence in infinite
dimension spaces, many authors tried to modify the normal Mann iteration algorithm to
have strong convergence for nonexpansive mappings.
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Kim and Xu [] considered the following iterative algorithm.

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C arbitrarily chosen,

yn = βnxn + ( – βn)Txn,

xn+ = αnu + ( – αn)yn, n≥ ,

whereT is a nonexpansivemapping ofC into itself, u ∈ C is a given point, {αn} and {βn} are
two real number sequences in (, ). They proved that the sequence {xn} generated by the
above iterative algorithm strongly converges to a fixed point of the mapping T provided
that the control sequences {αn} and {βn} satisfy appropriate conditions.
Recently, many authors have studied the following convex feasibility problem (CFP):

x ∈ ⋂N
i=Ci, whereN ≥  is an integer, and each Ci is assumed to be the fixed point set of a

nonexpansive mapping Ti, i = , , . . . ,N . There is a considerable investigation on CFP in
the setting of Hilbert spaces which captures applications in various disciplines such as im-
age restoration [], computer tomography [] and radiation therapy treatment planning
[].
In this paper, we consider the mappingWn defined by

Un,n+ = I,

Un,n = γnTnUn,n+ + ( – γn)I,

Un,n– = γn–Tn–Un,n + ( – γn–)I,

...

Un,k = γkTkUn,k+ + ( – γk)I,

Un,k– = γk–Tk–Un,k + ( – γk–)I,

...

Un, = γTUn, + ( – γ)I,

Wn =Un, = γTUn, + ( – γ)I,

(.)

where {γ}, {γ}, . . . are real numbers such that  ≤ γn ≤  and T,T, . . . are nonexpansive
mappings of C into itself. Nonexpansivity of each Ti ensures the nonexpansivity ofWn.
We have the following lemmas which are important to prove our main results.

Lemma . [] Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let T,T, . . . be nonexpansive mappings of C into itself such that

⋂∞
n= F(Tn) 	= ∅

and let γ,γ, . . . be real numbers such that  < γn ≤ b < , where b is some real number, for
any n≥ . Then, for every x ∈ C and k ∈ N , the limit limn→∞ Un,kx exists.

Using Lemma ., one can define the mappingW of C into itself as follows.

Wx = lim
n→∞Wnx = lim

n→∞Un,x, ∀x ∈ C. (.)

Such a mapping W is called the W -mapping generated by T,T, . . . and γ,γ, . . . .
Throughout this paper, we will assume that  < γn ≤ b <  for all n≥ .
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Lemma . [] Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let T,T, . . . be nonexpansive mappings of C into itself such that

⋂∞
n= F(Tn) 	= ∅

and let γ,γ, . . . be real numbers such that  < γn ≤ b <  for any n ≥ . Then F(W ) =⋂∞
n= F(Tn).

Let I denote the identity operator on E. An operator A⊂ E×E with domainD(A) = {z ∈
E : Az 	= ∅} and range R(A) =

⋃{Az : z ∈ D(A)} is said to be accretive if for each xi ∈ D(A)
and yi ∈ Axi, i = , , there exists j(x – x) ∈ J(x – x) such that

〈
y – y, j(x – x)

〉 ≥ .

An accretive operator A is said to be m-accretive if R(I + rA) = E for all r > . In a real
Hilbert space, an operator A is m-accretive if and only if A is maximal monotone. In this
paper, we use A–() to denote the set of zero points of A. Interest in accretive operators,
which is an important class of nonlinear operators, stems mainly from their firm connec-
tion with equations of evolution.
For an accretive operator A, we can define a nonexpansive single-valued mapping Jr :

R(I + rA) → D(A) by Jr = (I + rA)– for each r > , which is called the resolvent of A. One
of classical methods of studying the problem  ∈ Ax, where A ⊂ E × E is an accretive
operator, is the following:

x ∈ E, xn+ = Jrnxn, ∀n≥ ,

where Jrn = (I + rnA)– and {rn} is a sequence of positive real numbers. Recently, differ-
ent regularization iterative methods have been employed to treat zero points of accretive
operators in the framework of Banach spaces; see [–] and the references therein.
In this paper, we investigate common fixed point problems of a family of nonexpansive

mappings generated in (.) and a zero point problem of an accretive operator based on a
viscosity approximation method. Strong convergence theorems of common fixed points
are established in a Banach space. In order to prove ourmain results, we need the following
definitions and lemmas.
Recall that ifC andD are nonempty subsets of a Banach space E such thatC is nonempty

closed convex andD⊂ C, then amapQ : C →D is sunny provided thatQ(x+ t(x–Q(x))) =
Q(x) for all x ∈ C and t ≥  whenever x+ t(x–Q(x)) ∈ C. A sunny nonexpansive retraction
is a sunny retraction, which is also nonexpansive. Sunny nonexpansive retractions play an
important role in our argument. They are characterized as follows: If E is a smooth Banach
space, then Q : C → D is a sunny nonexpansive retraction if and only if the following
inequality holds:

〈
x –Qx, J(y –Qx)

〉 ≤  for all x ∈ C and y ∈ D.

Chen and Zhu [] showed that if E is a reflexive Banach space and has a weakly con-
tinuous duality, then there is a sunny nonexpansive retraction from �C onto F(T) and it
can be constructed as follows.

Lemma . [] Let E be a reflexive Banach space which has a weakly continuous duality
mapping Jϕ(x). Let C be closed convex subset of E and let T : C → C be a nonexpansive

http://www.fixedpointtheoryandapplications.com/content/2013/1/172
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mapping. Let f : C → C be a contractive mapping with F(f ) 	= ∅. For any t ∈ (, ), let {xt}
be defined by xt = tf (xt) + ( – t)Txt , where T is a nonexpansive mapping. Then T has a
fixed point if and only if {xt} remains bounded as t → + and, in this case, {xt} converges,
as t → +, strongly to a fixed point of T .

Lemma . Under the condition of Lemma ., we define the mapping Q :�C → F(T) by

Q(f ) := lim
t→

xt , f ∈ �C . (.)

Then the mapping Q is a sunny nonexpansive retraction from �C onto F(T).

Proof From Theorem . of [], for all t ∈ (, ) and p ∈ F(T), we have

〈
xt – f (xt), Jϕ(xt – p)

〉 ≤ .

Letting t → , we have

〈
(I – f )Q(f ), Jϕ

(
Q(f ) – p

)〉 ≤ .

Since Jϕ(x) = ϕ(‖x‖)
‖x‖ J(x) for any x 	= , we have

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ .

This completes the proof. �

Recall that a gauge is a continuous strictly increasing function ϕ : [,∞) → [,∞) such
that ϕ() =  and ϕ(t) → ∞ as t → ∞. The duality mapping Jϕ : X → X* associated to a
gauge ϕ is defined by

Jϕ(x) =
{
x* ∈ X* :

〈
x,x*

〉
= ‖x‖ϕ(‖x‖),∥∥x*∥∥ = ϕ

(‖x‖)}, ∀x ∈ X.

Following Browder [], we say that a Banach space E has a weakly continuous duality
mapping if there exists a gauge ϕ for which the duality mapping Jϕ(x) is single-valued and
weak-to-weak* sequentially continuous (i.e., if {xn} is a sequence in E weakly convergent
to a point x, then the sequence Jϕ(xn) converges weakly* to Jϕ). It is known that lp has a
weakly continuous duality mapping with a gauge function ϕ(t) = tp– for all  < p < ∞. Set

�(t) =
∫ t


ϕ(τ )dτ , ∀t ≥ .

Then

Jϕ(x) = ∂�
(‖x‖), ∀x ∈ X,

where ∂ denotes the sub-differential in the sense of convex analysis.
The first part of the next lemma is an immediate consequence of the sub-differential

inequality and the proof of the second part can be found in [].
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Lemma . Assume that a Banach space E has a weakly continuous duality mapping Jϕ
with a gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds:

�
(‖x + y‖) ≤ �

(‖x‖) + 〈
y, Jϕ(x + y)

〉
.

In particular, for all x, y ∈ E

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
.

(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E.
Then the following identity holds:

lim sup
n→∞

�
(‖xn – y‖) = lim sup

n→∞
�

(‖xn – x‖) +�
(‖y – x‖), ∀x, y ∈ E.

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ =
( – βn)yn + βnxn for all integers n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
(i)

∑∞
n= γn = ∞;

(ii) lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| <∞.
Then limn→∞ αn = .

The following lemma can be obtained from Chang et al. []. For the sake of complete-
ness, we still give the proof.

Lemma . Let C be a nonempty closed convex subset of a strictly convex Banach space
E, let {Ti : C → C} be a family of infinitely nonexpansive mappings with

⋂∞
i= F(Ti) 	= ∅, let

{γn} be a real sequence such that  < γn ≤ b <  for each n ≥ . If K is any bounded subset
of C, then limn→∞ supx∈K ‖Wx –Wnx‖ = .

Proof Let p ∈ ⋂∞
i= F(Ti). Since K is a bounded subset ofC, there exists anM >  such that

supx∈K ‖x – p‖ ≤ M. It follows that

‖Wn+x –Wnx‖ =
∥∥γTUn+,x + ( – γ)x – γTUn,x – ( – γ)x

∥∥
≤ γ‖Un+,x –Un,x‖
= γ

∥∥γTUn+,x + ( – γ)x – γTUn,x – ( – γ)x
∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/172
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≤ γγ‖Un+,x –Un,x‖
...

≤
n∏
i=

γi‖Un+,n+x –Un,n+x‖

≤
n+∏
i=

γi
(‖Tn+x – p‖ + ‖p – x‖)

≤ 
n+∏
i=

γiM.

Since  < γn ≤ b < , for any given ε > , there exists a positive integer n such that

bn+ ≤ ε( – b)
M

.

For any positive integers m > n > n, we find that

‖Wmx –Wnx‖ ≤
m–∑
j=n

‖Wjx –Wjx‖

≤ M
m–∑
j=n

j+∏
i=

γi

≤ M
m–∑
j=n

bj+

≤ Mbn+

 – b
≤ ε, ∀x ∈ K .

Letting m → ∞, we find that

‖Wx –Wnx‖ ≤ ε, ∀n≥ n.

This implies that limn→∞ supx∈K ‖Wx –Wnx‖ = . �

3 Main results
Theorem. Let E be a reflexive and strictly convex Banach space E which enjoys a weakly
continuous duality map Jϕ(x) with gauge ϕ and let A be an m-accretive operator in E with
the domain D(A). Assume that D(A) is convex. Let Ti be a nonexpansive mapping from
C =:D(A) into itself for i ∈ Z

+. Let f ∈ �C with the coefficient ( < α < ) and Jr = (I + rA)–

for some r > .Assume that � := F(JrW ) = F(Jr)∩F(W ) 	= ∅,where W is a mapping defined
by (.). Let {xn} be a sequence generated in the following iterative algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = βnxn + ( – βn)JrWnxn,

xn+ = αnf (yn) + ( – αn)yn, n≥ ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/172
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where Wn is generated in (.), {αn} and {βn} are real number sequences in (, ) satisfying
the following restrictions:
(a)

∑∞
n= αn = ∞, limn→∞ αn = ;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} strongly converges to Q(f ) ∈ �, where Q :�C → � is defined by (.).

Proof First we prove that sequences {xn} and {yn} are bounded. Fixing p ∈ �, we see that

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖JrWnxn – p‖
≤ ‖xn – p‖.

It follows that

‖xn+ – p‖ =
∥∥αn

(
f (yn) – p

)
+ ( – αn)(yn – p)

∥∥
≤ αn

∥∥f (yn) – p
∥∥ + ( – αn)‖yn – p‖

≤ [
 – αn( – α)

]‖xn – p‖ + αn
∥∥f (p) – p

∥∥
≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – α

}
.

This in turn implies that

‖xn – p‖ ≤ max

{
‖x – p‖, ‖p – f (p)‖

 – α

}
,

which gives that the sequence {xn} is bounded, so is {yn}.
Next, we prove that ‖xn+ – xn‖ →  as n→ ∞. Putting ln = xn+–βnxn

–βn
, we have

xn+ = ( – βn)ln + βnxn. (.)

In the light of

ln+ – ln =
αn+f (yn+) + ( – αn+)yn+ – βn+xn+

 – βn+
–

αnf (yn) + ( – αn)yn – βnxn
 – βn

=
αn+(f (yn+) – yn+)

 – βn+
–

αn(f (yn) – yn)
 – βn

+ JrWn+xn+ – JrWn+xn + JrWn+xn – JrWnxn, (.)

we obtain that

‖ln+ – ln‖ ≤ αn+

 – βn+

∥∥f (yn+) – yn+
∥∥ +

αn

 – βn

∥∥yn – f (yn)
∥∥

+ ‖xn+ – xn‖ + ‖JrWn+xn – JrWnxn‖
≤ αn+

 – βn+

∥∥f (yn+) – yn+
∥∥ +

αn

 – βn

∥∥yn – f (yn)
∥∥

+ ‖xn+ – xn‖ + ‖Wn+xn –Wnxn‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/172
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Since Ti and Un,i are nonexpansive, we have

‖Wn+xn –Wnxn‖ = ‖γTUn+,xn – γTUn,xn‖
≤ γ‖Un+,xn –Un,xn‖
= γ‖γTUu+,xn – γTUn,xn‖
≤ γγ‖Uu+,xn –Un,xn‖
≤ · · ·
≤ γγ · · ·γn‖Un+,n+xn –Un,n+xn‖

≤ M

n∏
i=

γi, (.)

whereM ≥  is an appropriate constant such that

‖Un+,n+xn –Un,n+xn‖ ≤ M

for all n ≥ . Substituting (.) into (.), we have

‖ln+ – ln‖ – ‖xn+ – xn‖ ≤ αn+

 – βn+

∥∥f (yn+) – yn+
∥∥ +

αn

 – βn

∥∥yn – f (yn)
∥∥ +M

n∏
i=

γi.

In view of conditions (a) and (b), we get that

lim sup
n→∞

(‖ln+ – ln‖ – ‖xn+ – xn‖
) ≤ .

We can obtain from Lemma . that limn→∞ ‖ln – xn‖ =  easily. On the other hand, we
see from (.) that

xn+ – xn = ( – βn)(ln – xn).

This implies that

lim
n→∞‖xn+ – xn‖ = . (.)

Next, we prove that limn→∞ ‖JrWxn – xn‖ = . In view of

xn+ – yn = αn
(
f (yn) – yn

)
,

we obtain that

lim
n→∞‖xn+ – yn‖ = . (.)

On the other hand, we have

‖yn – xn‖ ≤ ‖xn – xn+‖ + ‖xn+ – yn‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/172
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In view of (.) and (.), we have

lim
n→∞‖yn – xn‖ = . (.)

Notice that

‖JrWnxn – xn‖ ≤ ‖xn – yn‖ + ‖yn – JrWnxn‖
≤ ‖xn – yn‖ + βn‖xn – JrWnxn‖.

This implies that

( – βn)‖JrWnxn – xn‖ ≤ ‖xn – yn‖.

From condition (b) and (.), we obtain that

lim
n→∞‖JrWnxn – xn‖ = . (.)

On the other hand, we have

‖JrWxn – xn‖ ≤ ‖JrWxn – JrWnxn‖ + ‖JrWnxn – xn‖
≤ ‖Wxn –Wnxn‖ + ‖JrWnxn – xn‖.

In view of Lemma ., we find that

lim
n→∞‖Wxn –Wnxn‖ = .

This in turn implies that

lim
n→∞‖JrWxn – xn‖ = . (.)

Next, we show xn →Q(f ) as n→ ∞. To show it, we first prove that

lim sup
n→∞

〈
(I – f )Q(f ), Jϕ

(
Q(f ) – xn

)〉 ≤ . (.)

In view of Lemma ., we have the sunny nonexpansive retraction Q : �C → �. Take a
subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
(I – f )Q(f ), Jϕ

(
Q(f ) – xn

)〉
= lim

k→∞
〈
(I – f )Q(f ), Jϕ

(
Q(f ) – xnk

)〉
. (.)

Since E is reflexive, we may further assume that xnk ⇀ x̄ for some x̄ ∈ C. Since Jϕ is weakly
continuous, we obtain from Lemma . that

lim sup
n→∞

�
(‖xnk – x‖) = lim sup

n→∞
�

(‖xnk – x̄‖) +�
(‖x – x̄‖), ∀x ∈ E.

http://www.fixedpointtheoryandapplications.com/content/2013/1/172
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Put

g(x) = lim sup
k→∞

�
(‖xnk – x‖), ∀x ∈ E.

It follows that

g(x) = g(x̄) +�
(‖x – x̄‖), ∀x ∈ E.

With the aid of (.), we arrive at

g(JrWx̄) = lim sup
k→∞

�
(‖xnk – JrWx̄‖) = lim sup

k→∞
�

(‖JrWxnk – JrWx̄‖)

≤ lim sup
k→∞

�
(‖xnk – x̄‖)

= g(x̄). (.)

Notice that

g(JrWx̄) = g(x̄) +�
(‖JrWx̄ – x̄‖). (.)

From (.) and (.), we find that

�
(‖JrWx̄ – x̄‖) ≤ .

This implies that JrWx̄ = x̄. And hence x̄ ∈ F(JrW ). That is, x̄ ∈ �. Since Q is the sunny
nonexpansive retraction from �C onto F , we have from (.)

lim sup
n→∞

〈
(I – f )Q(f ), Jϕ

(
Q(f ) – xn

)〉
=

〈
(I – f )Q(f ), Jϕ

(
Q(f ) – x̄

)〉 ≤ .

This shows that (.) holds. It follows from Lemma . that

�
∥∥xn+ –Q(f )

∥∥
= �

(∥∥αn
(
f (xn) – f

(
Q(f )

))
+ αn

(
f
(
Q(f )

)
–Q(f )

)
+ ( – αn)

(
yn –Q(f )

)∥∥)
≤ �

(
αn

∥∥f (xn) – f
(
Q(f )

)∥∥ + ( – αn)
∥∥yn –Q(f )

∥∥)
+ αn

〈
f
(
Q(f )

)
–Q(f ), Jϕ

(
xn+ –Q(f )

)〉
≤ �

((
 – αn( – α)

)∥∥xn –Q(f )
∥∥)

+ αn
〈
f
(
Q(f )

)
–Q(f ), Jϕ

(
xn+ –Q(f )

)〉
≤ (

 – αn( – α)
)
�

(∥∥xn –Q(f )
∥∥)

+ αn
〈
f
(
Q(f )

)
–Q(f ), Jϕ

(
xn+ –Q(f )

)〉
.

We find that ‖xn –Q(f )‖ →  as n → ∞ from Lemma .. That is, xn → Q(f ). This com-
pletes the proof. �
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Remark . Taking Ti = I , the identity mapping, ∀i ≥ , we see that Wn = I . Then the
strict convexity of E in Theorem . may not be needed.

Corollary . Let E be a reflexive Banach space E which enjoys a weakly continuous du-
ality map Jϕ(x) with gauge ϕ and A be an m-accretive operator in E with the domain D(A).
Assume that D(A) is convex. Let f ∈ �D(A) with the coefficient ( < α < ) and Jr = (I + rA)–

for some r > . Assume that A–() 	= ∅. Let {xn} be a sequence generated in the following
iterative algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ A–(),

yn = βnxn + ( – βn)Jrxn,

xn+ = αnf (yn) + ( – αn)yn, n≥ ,

where {αn} and {βn} are real number sequences in (, ) satisfying the following restrictions:
(a)

∑∞
n= αn = ∞, limn→∞ αn = ;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} strongly converges to Q(f ) ∈ A–(),where Q :�D(A) → A–() is defined by (.).

If f (x) = u, where u is a fixed element in D(A), then Theorem . is reduced to the fol-
lowing.

Corollary . Let E be a reflexive and strictly convex Banach space E which enjoys a
weakly continuous duality map Jϕ(x) with gauge ϕ and A be an m-accretive operator in
E with the domain D(A). Assume that D(A) is convex. Let Ti be a nonexpansive map-
ping from C =: D(A) into itself for i ∈ Z

+. Let Jr = (I + rA)– for some r > . Assume that
� := F(JrW ) = F(Jr) ∩ F(W ) 	= ∅, where W is a mapping defined by (.). Let {xn} be a se-
quence generated in the following iterative algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = βnxn + ( – βn)JrWnxn,

xn+ = αnu + ( – αn)yn, n≥ ,

where Wn is generated in (.), {αn} and {βn} are real number sequences in (, ) satisfying
the following restrictions:
(a)

∑∞
n= αn = ∞, limn→∞ αn = ;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} strongly converges to Q(u) ∈ �, where Q :�C → � is defined by (.).

If A = I , then Theorem . is reduced to the following.

Corollary . Let E be a reflexive and strictly convexBanach space E which enjoys aweakly
continuous duality map Jϕ(x) with gauge ϕ and let C be a closed and convex subset of E.
Let Ti be a nonexpansive mapping from C into itself for i ∈ Z

+. Let f ∈ �C with the coeffi-
cient ( < α < ). Assume that � :=

⋂∞
i= F(Ti) 	= ∅. Let {xn} be a sequence generated in the

http://www.fixedpointtheoryandapplications.com/content/2013/1/172


Cheng and Wu Fixed Point Theory and Applications 2013, 2013:172 Page 13 of 14
http://www.fixedpointtheoryandapplications.com/content/2013/1/172

following iterative algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = βnxn + ( – βn)Wnxn,

xn+ = αnf (yn) + ( – αn)yn, n≥ ,

where Wn is generated in (.), {αn} and {βn} are real number sequences in (, ) satisfying
the following restrictions:
(a)

∑∞
n= αn = ∞, limn→∞ αn = ;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} strongly converges to Q(f ) ∈ �, where Q :�C → � is defined by (.).
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