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Abstract
The aim of this article is to introduce new hybrid iterative schemes, namely
Jungck-Kirk-SP and Jungck-Kirk-CR iterative schemes, and prove convergence and
stability results for these iterative schemes using certain quasi-contractive operators.
Numerical examples showing the comparison of convergence rate and applications
of newly introduced iterative schemes are also provided. The obtained results
improve, generalize and extend the works of Olatinwo (Acta Math. Univ. Comen.
LXXVII(2):299-304, 2008; Fasc. Math. 40:37-43, 2008; Mat. Vesn. 61(4):247-256, 2009;
Acta Math. Acad. Paedagog. Nyházi. 25(1):105-118, 2009; Acta Univ. Apulensis
26:225-236, 2011), Chugh and Kumar (Int. J. Contemp. Math. Sci. 7(24):1165-1184,
2012; Int. J. Comput. Appl. 36(12):40-46, 2011), Bosede (Bull. Math. Anal. Appl.
2(3):65-73, 2010), Oleleru and Akewe (Fasc. Math. 47:47-61, 2011) and many others in
the literature.
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1 Introduction
In the recent years, fixed and common points of operators have been approximated by
using different iterative schemes (see [–]). Let X be a Banach space, Y an arbitrary
set and S,T : Y → X such that T(Y ) ⊆ S(Y ). For x ∈ Y , consider the following iterative
scheme:

Sxn+ = Txn, n = , , . . . . (.)

This scheme is called Jungck iterative scheme and was essentially introduced by Jungck
[] in . It reduces to the Picard iterative scheme when S = Id (identity mapping) and
Y = X.
For αn ∈ [, ], Singh et al. [] defined the Jungck-Mann iterative scheme as follows:

Sxn+ = ( – αn)Sxn + αnTxn. (.)
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For αn,βn,γn ∈ [, ], Olatinwo defined the Jungck-Ishikawa [] and Jungck-Noor []
iterative schemes as follows:

Sxn+ = ( – αn)Sxn + αnTyn,

Syn = ( – βn)Sxn + βnTxn
(.)

and

Sxn+ = ( – αn)Sxn + αnTyn,

Syn = ( – βn)Sxn + βnTzn,

Szn = ( – γn)Sxn + γnTxn,

(.)

respectively.
Chugh and Kumar [] defined the Jungck-SP iterative scheme as

Sxn+ = ( – αn)Syn + αnTyn,

Syn = ( – βn)Szn + βnTzn,

Szn = ( – γn)Sxn + γnTxn,

(.)

where {αn}, {βn} and {γn} are sequences of positive numbers in [, ].

Remark . If X = Y and S = Id (identity mapping), then Jungck-SP (.), Jungck-Noor
(.), Jungck-Ishikawa (.) and the Jungck-Mann (.) iterative schemes, respectively, be-
come the SP [], Noor [], Ishikawa [] and Mann [] iterative schemes.
In , Olatinwo [] introduced the Kirk-Mann and Kirk-Ishikawa iterative schemes

as follows.
(a) Kirk-Mann iterative scheme:

xn+ =
k∑
i=

αn,iTixn,
k∑
i=

αn,i = ,n = , , , . . . , (.)

where αn,i ≥ , αn, �= , αn,i ∈ [, ] and k is a fixed integer.
(b) Kirk-Ishikawa iterative scheme:

xn+ = αn,xn +
k∑
i=

αn,iTiyn,
k∑
i=

αn,i = ,

yn =
s∑

j=

βn,jT jxn,
s∑

j=

βn,j = ,n = , , , . . . ,

(.)

where k ≥ s, αn,i ≥ , αn, �= , βn,j ≥ , βn, �= , αn,i,βn,j ∈ [, ] and k, s are fixed
integers.

Chugh and Kumar [] introduced the following Jungck-Kirk-Noor iterative scheme:

Sxn+ = αn,Sxn +
r∑
i=

αn,iTiyn,
k∑
i=

αn,i = ,
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Syn = βn,Sxn +
s∑
j=

βn,jT jzn,
s∑

j=

βn,j = , (.)

Szn = γn,kSxn +
t∑

k=

γn,kTkxn,
t∑

k=

γn,k = ,n = , , , . . . ,

r ≥ s≥ t, αn,i ≥ , αn, �= , βn,j ≥ , βn, �= , γn,l ≥ , γn, �= , αn,i,βn,j,γn,l ∈ [, ], where r,
s and t are fixed integers.
Very recently, Hussain et al. [] defined the Jungck-CR iterative scheme as follows:

Sxn+ = ( – αn)Syn + αnTyn,

Syn = ( – βn)Txn + βnTzn,

Szn = ( – γn)Sxn + γnTxn,

(.)

where {αn}, {βn} and {γn} are sequences of positive numbers in [, ].
Putting S = Id (identity mapping) and αn =  in the Junck-CR iterative scheme, we get

the Agarwal et al. iterative scheme [].
Jungck [] used iterative scheme (.) to approximate the common fixed points of the

mappings S and T satisfying the following Jungck-contraction:

d(Tx,Ty) ≤ αd(Sx,Sy),  ≤ α < . (.)

Singh et al. [, ] established some stability results for Jungck and Jungck-Mann it-
erative schemes for both contractive conditions (.) and (.): For some αn =  and
 ≤ L,

d(Tx,Ty) ≤ ad(Sx,Sy) + Ld(Sx,Tx). (.)

Olatinwo and Imoru [] studied the generalized Zamfirescu operators for the pair
(S,T), satisfying the following condition: For each pair of points x, y in Y , at least one
of the following is true:

(i) d(Tx,Ty) ≤ ad(Sx,Sy),

(ii) d(Tx,Ty) ≤ b
[
d(Sx,Tx) + d(Sy,Ty)

]
, (.)

(iii) d(Tx,Ty) ≤ c
[
d(Sx,Ty) + d(Sy,Tx)

]
,

where a, b, c are nonnegative constants satisfying  ≤ a ≤ ,  ≤ b, c≤ 
 .

Any mapping satisfying (.)(ii) is called a Kannan mapping, while the mapping satis-
fying (.)(iii) is called a Chatterjea operator.
The contractive condition (.) implies

d(Tx,Ty) ≤ δd(Sx,Tx) + δd(Sx,Sy), ∀x, y ∈ X, (.)

where δ =max{a, b
–b ,

c
–c } (see Berinde []).
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Ranganathan [] used the followingmore general contractive condition than (.) and
(.) to prove some fixed point theorems:

(Tx,Ty) ≤ cmax
{
d(Sx,Sy),d(Sx,Tx),d(Sy,Ty),d(Sx,Ty),d(Sy,Tx)

}
, (.)

∀x, y ∈ X and some c ∈ [, ).
Note that (.) and (.) are independent of each other but more general than

(.).
Hussain et al. [] and Olatinwo [], respectively, used the following more general

contractive conditions than (.) to prove the stability and strong convergence results
for various iterative schemes: There exists a ∈ [, ) and a monotone increasing function
ϕ : R+ → R+ with ϕ() =  such that

‖Tx – Ty‖ ≤ φ
(‖Sx – Tx‖) + a‖Sx – Sy‖, (.)

‖Tx – Ty‖ ≤ φ(‖Sx – Tx‖) +ψ(‖Sx – Sy‖)
 + L‖Sx – Tx‖ . (.)

Recently, Bosede [] used the following more general contractive condition than (.)
to prove the convergence results for the Jungck-Ishikawa iteration process:

‖Tx – Ty‖ ≤ eL‖Sx–Tx‖{δ(‖Sx – Tx‖) + δ‖Sx – Sy‖}. (.)

Definition . [, ] Let f and g be two selfmaps onX. A point x inX is called () a fixed
point of f if f (x) = x; () a coincidence point of a pair (f , g) if fx = gx; () a common fixed
point of a pair (f , g) if x = fx = gx. If w = fx = gx for some x in X, then w is called a point of
coincidence of f and g . A pair (f , g) is said to be weakly compatible if f and g commute at
their coincidence points.
The stability theory has extensively been studied by various authors [, , , , ,

, ] due to its increasing importance in computational mathematics, especially due to
revolution in computer programming.

We use the following definition and lemmas to prove our results.

Definition . [] Let S,T : X → X be operators such thatT(X)⊆ S(X) and p = Sz = Tz, a
point of coincidence of S andT . Let {Sxn}∞n= ⊂ X be the sequence generated by an iterative
procedure

Sxn+ = f (T ,xn), n = , , . . . , (.)

where x ∈ X is the initial approximation and f is some function. Suppose {Sxn}∞n=
converges to p. Let {Syn}∞n= ⊂ X be an arbitrary sequence and set εn = d(Syn, f (T , yn)),
n = , , . . . . Then the iterative procedure (.) is said to be (S,T)-stable or stable if and
only if limn→∞ εn =  implies limn→∞ Syn = p.

Definition . [, ] Let {un} and {vn} be two iteration procedures that converge to the
same fixed point p on a normed space X such that the error estimates

‖un – p‖ ≤ an

http://www.fixedpointtheoryandapplications.com/content/2013/1/173
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and

‖vn – p‖ ≤ bn,

are available, where {an} and {bn} are two sequences of positive numbers (converging
to zero). If {an} converges faster than {bn}, then we say that {un} converges faster to p
than {vn}.

Definition . [, ] Suppose that {an} and {bn} are two real convergent sequences with
limits a and b, respectively. Then {an} is said to converge faster than {bn} if

lim
n→∞

∣∣∣∣an – a
bn – b

∣∣∣∣.
Definition . [] Any function ψ : R+ → R+ is called a comparison function if it satisfies
the following properties:
() ψ is monotonic increasing;
() limn→∞ ψn(t) = , t ≥ .
Note that a comparison function always satisfies (i) ψ(t) < t, t ∈ R+, (ii) ψ() = .

Lemma . [] Let ψ : R+ → R+ be a subadditive, comparison function and let {εn}∞n= be
a sequence of positive numbers such that limn→∞ εn = , then for any sequence of positive
numbers {un}∞n= satisfying

un+ ≤
m∑
k=

δkψ
k(un) + εn, n = , , , . . . ,

where δ, δ, . . . , δm ∈ [, ] with  ≤ ∑m
k= δk ≤ , we have limn→∞ un = .

Now, we define the Jungck-Kirk-SP and Jungck-Kirk-CR iterative schemes as follows:
Let r ≥ s ≥ t, αn,i ≥ , αn, �= , βn,j ≥ , βn, �= , γn,k ≥ , γn, �= , αn,i,βn,j,γn,k ∈ [, ],

with
∑r

i= αn,i =
∑s

j= βn,j =
∑t

k= γn,k =  where r, s and t are fixed integers. Thenwe define
the Jungck-Kirk-SP iterative scheme as follows:

Sxn+ = αn,Syn +
r∑
i=

αn,iTiyn,

Syn = βn,Szn +
s∑
j=

βn,jT jzn, (.)

Szn = γn,Sxn +
t∑

k=

γn,kTkxn, n = , , , . . . ,

and the Jungck-Kirk-CR iterative scheme as follows:

Sxn+ = αn,Syn +
r∑
i=

αn,iTiyn,
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Syn = βn,Txn +
s∑
j=

βn,jT jzn, (.)

Szn = γn,Sxn +
t∑

k=

γn,kTkxn, n = , , , . . . .

Remark . Putting r = s = t =  in Jungck-Kirk-type iterative schemes (i.e., JKCR, JKSP,
JKN, JKI, JKM), we get the corresponding Jungck-type iterative schemes (i.e., JCR, JKP, JN,
JI, JM).
Also, we shall use the following contractive condition: Let ψ : R+ → R+ be a comparison

function such that

∥∥Tix – p
∥∥ ≤ ψ i(‖Sx – p‖), ∀x ∈ X and ∀i ∈N , (.)

where p is a point of coincidence of S, T , i.e., p = Sz = Tz and Ti, ψ i denote the ith iterate
of T and ψ , respectively.

The following example shows that (.) is more general than Jungck contraction (.).

Example . Let X = Y = [, ]. Define T and S by

T(x) =

{
, x ∈ [, )

 , x = 

}
, Sx = x, ψ(t) =



t.

It is clear that T and S satisfy (.) but not Jungck-contraction (.).
If (S,T) are Kannan operators, then from (.)(ii) with i = , y = z (a coincidence point

of S, T ), we get

‖Tx – Tz‖ ≤ a‖Sx – Tx‖ ≤ a
{‖Sx – Tz‖ + ‖Tz – Tx‖},

which further implies

‖Tx – Tz‖ ≤ a
 – a

(‖Sx – Tz‖) i.e. ‖Tx – p‖ ≤ a
 – a

(‖Sx – p‖).
Hence every Kannan operator satisfies (.) with ψ(t) = a

–a t, ∀t ∈ R+.
In a similar manner, it can be shown that Chatterjea operators satisfy (.) with ψ(t) =
b

–b t, ∀t ∈ R+.
Therefore, we conclude that generalized Zamfirescu operators satisfy (.).
Also, if ψ(t) = δt, ∀t ∈ R+, then (.) reduces to (.) as well as (.), with i = , x = z,

(a coincidence point of S, T ).
The condition (.) is more general than (.) as well as (.) and (.), with i = ,

x = z, ψ(t) = at, ∀t ∈ R+.
Moreover, (.) reduces to (.) as follows: Let y = z, then from (.), we have

‖Tx – p‖ ≤ cmax
(‖Sx – p‖,‖Sx – Tx‖,‖p – p‖,‖Sx – p‖,‖p – Tx‖)

≤ cmax
(‖Sx – p‖,‖Sx – p‖ + ‖Tx – p‖,‖p – Tx‖)

http://www.fixedpointtheoryandapplications.com/content/2013/1/173
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≤ c
(‖Sx – p‖ + ‖Tx – p‖)

≤ c
 – c

‖Sx – p‖.

Hence every mapping satisfying (.) becomes a mapping satisfying (.) with i = ,

ψ(t) =
c

 – c
, ∀t ∈ R+.

2 Main results
Lemma . Let ψ : R+ → R+ be a subadditive, comparison function, then for any sequence
of positive numbers {un}∞n= satisfying

un+ ≤
m∑
k=

δkψ
k(un), n = , , , . . . , (.)

where δ, δ, . . . , δm ∈ [, ] with  ≤ ∑m
k= δk ≤ , we have limn→∞ un = .

Proof Let ψ̄(un) =
∑m

k= δkψ
k(un). Now, we know that a linear combination of comparison

functions is also a comparison function, hence ψ̄ is a comparison function and it satisfies
ψ̄(t) < t for all t ∈ R+. Hence, ψ̄(un) < un. Therefore, from (.), we have un+ < un. So,
{un}∞n= is a decreasing sequence of positive numbers bounded below by . Hence {un}∞n=
will converge to , i.e., limn→∞ un = . �

Theorem . Let (X,‖ · ‖) be a normed linear space, let S,T : X → X be operators satis-
fying (.) such that T(X) ⊆ S(X). Assume that S(X) or T(X) is a complete subspace of X,
ψ : R+ → R+ is a continuous sublinear comparison function and p is a point of coincidence
of S and T , i.e., p = Sz = Tz. Then, for x ∈ X, the Jungck-Kirk-SP iteration process {Sxn}∞n=
defined by (.) converges to p and is (S,T)-stable.Also, p will be the unique common fixed
point of S, T provided S and T are weakly compatible.

Proof If ψ is sublinear, then ψ i (iterate of ψ ) is also sublinear (see []). Now, first we
prove the convergence of the Jungck-Kirk-SP iterative scheme.
Using Jungck-Kirk-SP iterative scheme (.) and contractive condition (.), we have

‖Sxn+ – p‖ ≤ αn,‖Syn – p‖ +
r∑
i=

αn,i
∥∥Tiyn – p

∥∥

≤ αn,‖Syn – p‖ +
r∑
i=

αn,iψ
i(‖Syn – p‖) = r∑

i=

αn,iψ
i(‖Syn – p‖). (.)

Similarly, we have the following estimates:

‖Syn – p‖ ≤
s∑

j=

βn,jψ
j(‖Szn – p‖) (.)

and

‖Szn – p‖ ≤
t∑

k=

γn,kψ
k(‖Sxn – p‖). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/173
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It follows from (.), (.) and (.) that

‖Sxn+ – p‖ ≤
r∑

i=

αn,i

s∑
j=

βn,j

t∑
k=

γn,kψ
i+j+k(‖Sxn – p‖). (.)

Using Lemma ., (.) yields limn→∞ Sxn = p.
Thus, the Jungck-Kirk-SP iterative scheme converges strongly to p.
Next we prove that the Jungck-Kirk-SP iterative scheme is (S,T)-stable.
Suppose that {Syn}∞n= ⊂ X is an arbitrary sequence, εn = ‖Syn+ – αn,Sbn –

∑k
i= αn,i ×

Tibn‖, n = , , , . . . , where Sbn = βn,Scn +
∑s

j= βn,jT jScn, cn = γn,Syn +
∑t

k= γn,kTkyn.
First, let limn→∞ Syn = p. Then, we show that limn→∞ εn =  as follows:

εn =

∥∥∥∥∥Syn+ – αn,Sbn –
r∑
i=

αn,iTibn

∥∥∥∥∥ ≤ ‖Syn+ – p‖ +
∥∥∥∥∥p – αn,Sbn –

r∑
i=

αn,iTibn

∥∥∥∥∥
= ‖Syn+ – p‖ +

∥∥∥∥∥
r∑
i=

αn,iTiz + αn,Sz – αn,Sbn –
r∑
i=

αn,iTibn

∥∥∥∥∥
= ‖Syn+ – p‖ +

∥∥∥∥∥
k∑
i=

αn,i
(
Tiz – Tibn

)
+ αn,(Sz – Sbn)

∥∥∥∥∥
≤ ‖Syn+ – p‖ +

k∑
i=

αn,i
∥∥Tiz – Tibn

∥∥ + αn,‖Sbn – p‖

= ‖Syn+ – p‖ +
r∑
i=

αn,iψ
i(‖p – Sbn‖

)
+ αn,‖Sbn – p‖

= ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i(‖p – Sbn‖

)

= ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

(∥∥∥∥∥
s∑
j=

βn,jT jz + βn,Sz – βn,Scn –
s∑
j=

βn,jaTjcn

∥∥∥∥∥
)

= ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

(∥∥∥∥∥
s∑
j=

βn,j
(
Tjz – Tjcn

)
+ βn,(Sz – Scn)

∥∥∥∥∥
)

≤ ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

( s∑
j=

βn,j
∥∥Tjz – Tjcn

∥∥ + βn,‖p – Scn‖
)

≤ ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j(‖p – Scn‖

)
+ βn,

(‖p – Scn‖
))

= ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j(‖p – Scn‖

))

= ‖Syn+ – p‖

+
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j

(∥∥∥∥∥
t∑

k=

γn,kTkz + γn,Sz – γn,Syn –
t∑

k=

γn,kTkyn

∥∥∥∥∥
))

http://www.fixedpointtheoryandapplications.com/content/2013/1/173
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= ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j

( t∑
k=

γn,k
∥∥Tkz – Tkyn

∥∥ + γn,(Sz – Syn)

))

= ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j

( t∑
k=

γn,kψ
k(‖p – Syn‖

)
+ γn,(Sz – Syn)

))

= ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j

( t∑
k=

γn,kψ
k(‖p – Syn‖

)))

= ‖Syn+ – p‖ +
r∑

i=

αn,i

s∑
j=

βn,j

t∑
k=

γn,kψ
i+j+k(‖Syn – p‖). (.)

Using Lemma ., (.) yields εn =  as n→ ∞.
Conversely, we establish that limn→∞ Syn = p as follows:

‖Syn+ – p‖ ≤
∥∥∥∥∥Syn+ – αn,Sbn –

r∑
i=

αn,iTibn

∥∥∥∥∥
+

∥∥∥∥∥αn,Sbn +
r∑
i=

αn,iTibn – p

∥∥∥∥∥
= εn +

∥∥∥∥∥αn,Sbn +
r∑
i=

αn,iTibn –
r∑
i=

αn,iTiz – αn,Sz

∥∥∥∥∥
= εn +

∥∥∥∥∥
r∑
i=

αn,i
(
Tibn – Tiz

)
+ αn,(Sbn – Sz)

∥∥∥∥∥
≤ εn +

r∑
i=

αn,i
∥∥Tibn – Tiz

∥∥ + αn,‖Sbn – p‖

≤ εn +
r∑
i=

αn,iψ
i(‖p – Sbn‖

)
+ αn,‖Sbn – p‖

= εn +
r∑

i=

αn,iψ
i

(∥∥∥∥∥
s∑
j=

βn,jT jz + βn,Sz –
s∑
j=

βn,jT jcn – βn,Scn

∥∥∥∥∥
)

= εn +
r∑

i=

αn,iψ
i

(∥∥∥∥∥
s∑
j=

βn,j
(
Tjz – Tjcn

)
+ βn,(Sz – Scn)

∥∥∥∥∥
)

= εn +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j(‖p – Scn‖

)
+ βn,‖Scn – p‖

)

= εn +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j(‖p – Scn‖

))

= εn +
r∑

i=

αn,iψ
i

s∑
j=

βn,jψ
j

(∥∥∥∥∥
t∑

k=

γn,k
(
Tkz – Tkyn

)
+ γn,

(
Sz – Syn

)∥∥∥∥∥
)

= εn +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j

( t∑
k=

γn,kψ
k(‖p – Syn‖

)))
. (.)
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Using again Lemma ., (.) yields limn→∞ Syn = p.
Now, we prove p is the unique common fixed point of S and T provided S, T are weakly

compatible. Let there exist another point of coincidence say p*. Then there exists q* ∈ X
such that Sq* = Tq* = p*. But from (.), we have

 <
∥∥p* – p

∥∥ ≤ ∥∥Tiq* – p
∥∥ ≤ ψ

(∥∥Sq* – p
∥∥)

<
∥∥p* – p

∥∥,
which implies p = p*.
Now, as S and T are weakly compatible and p = Tq = Sq, so Tp = TTq = TSq = STq and

hence Tp = Sp. Therefore Tp is a point of coincidence of S, T and since the point of coin-
cidence is unique, then p = Tp. Thus Tp = Sp = p and therefore p is the unique common
fixed point of S and T . �

Remark . Since the Jungck-Kirk-Mann iteration scheme is a special case of the Jungck-
Kirk-SP iteration scheme, the convergence and stability result similar to Theorem . also
holds for the Jungck-Kirk-Mann scheme.

Theorem . Let (X,‖ · ‖) be a normed linear space, let S,T : X → X be operators sat-
isfying (.) such that T(X) ⊆ S(X). Assume that S(X) or T(X) is a complete subspace of
X, ψ : R+ → R+ is a continuous sublinear comparison function and p is a point of coinci-
dence of S and T . Then, for x → X, the Jungck-Kirk-CR iteration process {Sxn}∞n= defined
by (.) converges to p and is (S,T)-stable. Also, p will be the unique common fixed point
of S, T provided S and T are weakly compatible.

Proof Using Jungck-Kirk-CR iterative scheme (.), we have

‖Sxn+ – p‖ ≤ αn,‖Syn – p‖ +
r∑
i=

αn,i
∥∥Tiyn – p

∥∥

= αn,‖Syn – p‖ +
r∑
i=

αn,iψ
i(‖Syn – p‖)

=
r∑

i=

αn,iψ
i(‖Syn – p‖). (.)

In a similar manner, we have the following estimates:

‖Syn – p‖ ≤ βn,‖Txn – p‖ +
s∑
j=

βn,j
∥∥Tjzn – p

∥∥

= βn,ψ
(‖Sxn – p‖) + s∑

j=

βn,jψ
j(‖Szn – p‖) (.)

and

‖Szn – p‖ ≤
t∑

k=

γn,kψ
k(‖Sxn – p‖). (.)
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It follows from (.), (.) and (.) that

‖Sxn+ – p‖

≤
r∑

i=

αn,iψ
i

(
βn,ψ

(‖Sxn – p‖) + s∑
j=

βn,jψ
j

( t∑
k=

γn,kψ
k(‖Sxn – p‖)

))
. (.)

Let

ψ̄ = βn,ψ +
s∑
j=

βn,j

t∑
k=

γn,kψ
k+j. (.)

Then, obviously, being the linear combination of comparison functions, ψ̃ is also a com-
parison function and hence (.) yields

‖Sxn+ – p‖ ≤
r∑
i=

αn,iψ
i(ψ̄(‖Sxn – p‖)). (.)

Since
∑k

i= αn,i = , hence using Lemma ., (.) yields limn→∞ Sxn = p.
Thus, the Jungck-Kirk-CR iterative scheme converges strongly to p.
Next we prove that the Jungck-Kirk-CR iterative scheme is (S,T)-stable.
Suppose that {Syn}∞n= ⊂ X is an arbitrary sequence, εn = ‖Syn+ – αn,Sbn –

∑r
i= αn,i ×

Tibn‖, n = , , , . . . , where Sbn = βn,Tyn+
∑s

j= βn,jT jcn, Scn = γn,Syn+
∑t

k= γn,kTkyn and
limn→∞ εn = . We shall establish that limn→∞ Syn = p as follows:

‖Syn+ – p‖ ≤
∥∥∥∥∥Syn+ – αn,Sbn –

r∑
i=

αn,iTibn

∥∥∥∥∥
+

∥∥∥∥∥αn,Sbn +
r∑
i=

αn,iTibn – p

∥∥∥∥∥
= εn +

∥∥∥∥∥αn,Sbn +
r∑
i=

αn,iTibn –
r∑
i=

αn,iTiz – αn,Sz

∥∥∥∥∥
= εn +

∥∥∥∥∥
r∑
i=

αn,i
(
Tibn – Tiz

)
+ αn,(Sbn – Sz)

∥∥∥∥∥
≤ εn +

r∑
i=

αn,i
∥∥Tibn – Tiz

∥∥ + αn,‖Sbn – p‖

= εn +
r∑
i=

αn,iψ
i(‖p – Sbn‖

)
+ αn,‖Sbn – p‖

= εn +
r∑

i=

αn,iψ
i

(∥∥∥∥∥
s∑
j=

βn,jT jz + βn,Sz – βn,Tyn –
s∑
j=

βn,jT jcn

∥∥∥∥∥
)

= εn +
r∑

i=

αn,iψ
i

(∥∥∥∥∥
s∑
j=

βn,j
(
Tjz – Tjcn

)
+ βn,(Sz – Tyn)

∥∥∥∥∥
)
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= εn +
r∑

i=

αn,iψ
i

(∥∥∥∥∥
s∑
j=

βn,jψ
j(p – Scn) + βn,ψ(Sz – Syn)

∥∥∥∥∥
)

= εn +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j

(∥∥∥∥∥
t∑

k=

γn,k
(
Tkz – Tkyn

)

+ γn,(Sz – Syn)

∥∥∥∥∥
)
+ βn,ψ

(‖Syn – Sz‖)
)

= εn +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j

(∥∥∥∥∥
t∑

k=

γn,kψ
k(Sz – Syn)

+ γn,(Sz – Syn)

∥∥∥∥∥
)
+ βn,ψ

(‖Syn – p‖)
)

≤ εn +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j

( t∑
k=

γn,kψ
k(‖Sz – Syn‖

))

+ βn,ψ
(‖Syn – p‖)

)
. (.)

Then using (.) and (.), we get

‖Syn+ – p‖ ≤ εn +
r∑

i=

αn,iψ
i(ψ̄(‖Syn – p‖)). (.)

Using Lemma ., from (.) we obtain limn→∞ Syn = p.
Conversely, let limn→∞ Syn = p. Then we shall show that limn→∞ εn =  as follows:

εn =

∥∥∥∥∥Syn+ – αn,Sbn –
r∑
i=

αn,iTibn

∥∥∥∥∥
≤ ‖Syn+ – p‖ +

∥∥∥∥∥p – αn,Sbn –
r∑
i=

αn,iTibn

∥∥∥∥∥
= ‖Syn+ – p‖ +

∥∥∥∥∥
r∑
i=

αn,iTiz + αn,Sz – αn,Sbn –
r∑
i=

αn,iTibn

∥∥∥∥∥
= ‖Syn+ – p‖ +

∥∥∥∥∥
r∑
i=

αn,i
(
Tiz – Tibn

)
+ αn,(Sz – Sbn)

∥∥∥∥∥
≤ ‖Syn+ – p‖ +

r∑
i=

αn,i
∥∥Tiz – Tibn

∥∥ + αn,‖Sbn – p‖

≤ ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i(‖p – Sbn‖

)
+ αn,‖Sbn – p‖

= ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

(∥∥∥∥∥
s∑
j=

βn,jT jz + βn,Sz – βn,Tyn –
s∑
j=

βn,jT jcn

∥∥∥∥∥
)

= ‖Syn+ – p‖ +
( k∑

i=

αn,iψ
i

(∥∥∥∥∥
s∑
j=

βn,j
(
Tjz – Tjcn

)
+ βn,(Sz – Tyn)

∥∥∥∥∥
))
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≤ ‖Syn+ – p‖ +
( k∑

i=

αn,iψ
i

(∥∥∥∥∥
s∑
j=

βn,jψ
j(Sz – Scn) + βn,ψ(Sz – Syn)

∥∥∥∥∥
))

= ‖Syn+ – p‖ +
k∑
i=

αn,iψ
i

( s∑
j=

βn,jψ
j

(∥∥∥∥∥
t∑

k=

γn,kTkz + γn,Sz

–
t∑

k=

γn,kTkyn – γn,Syn

∥∥∥∥∥
)
+ βn,ψ

(‖Syn – p‖)
)

= ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j

(∥∥∥∥∥
t∑

k=

γn,k
(
Tkz – Tkyn

)

+ γn,(Sz – Syn)

∥∥∥∥∥
)
+ βn,ψ

(‖Syn – p‖)
)

= ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i

( s∑
j=

βn,jψ
j

( t∑
k=

γn,kψ
k(‖Sz – Syn‖

)

+ γn,‖Sz – Syn‖
)
+ βn,ψ

(‖Syn – p‖)
)
. (.)

Using (.) and (.), we get

εn ≤ ‖Syn+ – p‖ +
r∑

i=

αn,iψ
i(ψ̄(‖Sxn – p‖)). (.)

Lemma . implies that limn→∞ εn = .
Thus, the Jungck-Kirk-CR iterative scheme is (S,T)-stable.
The uniqueness of a common fixed point can be proved in the same lines as in Theo-

rem .. �

The following example shows the validity of our Theorems . and ..

Example . Let X = [, ], T(x) = 
 (


 + x), S(x) =  – x, αn, =  – αn, – αn,, βn, =  –

βn, – βn,, γn, =  – γn, – γn,, αn, = βn, = γn, = αn, = βn, = γn, = √
n+ and ψ(t) = t

 .
It is clear that T and S are weakly compatible operators satisfying (.) with a unique
common fixed point .. Convergence of the Junck-Kirk-CR iterative scheme as well as
the Junck-Kirk-SP iterative scheme to . is shown in Example ..

3 Results on direct comparison
Various authors [, , , , , , , –] have worked on convergence speed of itera-
tive schemes. In [] Berinde showed that Picard iteration is faster thanMann iteration for
quasi-contractive operators. In [], Qing and Rhoades by taking an example showed that
Ishikawa iteration is faster thanMann iteration for a certain class of quasi-contractive op-
erators. Chugh and Kumar [] showed that the SP iterative scheme with error terms con-
verges faster than Ishikawa and Noor iterative schemes for accretive type mappings. Very
recently, Hussain et al. [] showed that Jungck-CR and Jungck-SP iterative schemes have
a better convergence rate as compared to other Jungck-type iterative schemes existing in
the literature.
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Theorem. Let (X,‖·‖) be a normed linear space, let S,T : X → X be operators satisfying
(.) such that T(X) ⊆ S(X). Assume that S(X) or T(X) is a complete subspace of X, ψ :
R+ → R+ is a continuous sublinear comparison function and p is a point of coincidence of
S, T (i.e., Sz = Tz = p). If limn→∞ αn =  then for x ∈ X,
() Jungck-Kirk-Mann (JKM) iterative scheme is faster than Jungck-Mann (JM) iterative

scheme;
() Jungck-Kirk-Ishikawa (JKI) iterative scheme is faster than Jungck-Ishikawa (JI)

iterative scheme;
() Jungck-Kirk-Noor (JKN) iterative scheme is faster than Jungck-Noor (JN) iterative

scheme;
() Jungck-Kirk-SP (JKSP) iterative scheme is faster than Jungck-SP (JSP) iterative

scheme;
() Jungck-Kirk-CR (JKCR) iterative scheme is faster than Jungck-CR (JCR) iterative

scheme.

Proof For a Jungck-type iterative scheme, we have the following estimates:

‖JMn+ – p‖ ≥ ( – αn)‖Sxn – p‖ – αn
(‖Txn – p‖)

≥ ( – αn)‖Sxn – p‖ – αnψ
(‖Sxn – p‖)

≥ ( – αn)‖Sxn – p‖ – αn
(‖Sxn – p‖) (

using ψ(t) < t,∀t ∈ R+)
≥ ( – αn)‖Sxn – p‖
· · ·

≥
n∏
l=

( – αl)‖Sx – p‖,

‖JIn+ – p‖ ≥ ( – αn)‖Sxn – p‖ – αnψ
(‖Syn – p‖)

≥ ( – αn)‖Sxn – p‖ – αn
(‖Syn – p‖)

≥ ( – αn)‖Sxn – p‖ – αn
(‖Sxn – p‖)

≥ ( – αn)‖Sxn – p‖
· · ·

≥
n∏
l=

( – αl)‖Sx – p‖,

‖JNn+ – p‖ ≥ ( – αn)‖Sxn – p‖ – αnψ
(‖Syn – p‖)

≥ ( – αn)‖Sxn – p‖ – αn
(‖Syn – p‖)

≥ ( – αn)‖Sxn – p‖ – αn
(‖Szn – p‖)

≥ ( – αn)‖Sxn – p‖
· · ·

≥
n∏
l=

( – αl)‖Sx – p‖,
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‖JSPn+ – p‖ ≥ [ – αn]‖Syn – p‖
≥ [ – αn][ – βn][ – γn]‖Sxn – p‖
≥ [ – αn]‖Sxn – p‖
· · ·

≥
n∏
l=

( – αl)‖Sx – p‖

and

‖JCRn+ – p‖ ≤ ( – αn)‖Syn – p‖ + αnψ
(‖Syn – p‖)

≤ ( – αn)
[
( – βn)‖Txn – p‖ + βn

(‖Tzn – p‖)]
+ αnψ

(
( – βn)‖Txn – p‖ + βn

(‖Tzn – p‖))
≤ ( – αn)( – βn)ψ

(‖Sxn – p‖) + ( – αn)βnψ
(‖Szn – p‖)

+ αn( – βn)ψ(‖Sxn – p‖) + αnβnψ
(‖Szn – p‖)

≤ ( – αn)( – βn)ψ
(‖Sxn – p‖) + ( – αn)βnψ

(
( – γn)‖Sxn – p‖

+ γn
(‖Txn – p‖)) + αn( – βn)ψ(‖Sxn – p‖)

+ αnβnψ
(( – γn)‖Sxn – p‖ + γn

(‖Txn – p‖))
≤ ( – αn)( – βn)ψ

(‖Sxn – p‖) + ( – αn)βn( – γn)ψ
(‖Sxn – p‖)

+ ( – αn)βnγnψ
(‖Sxn – p‖) + αn( – βn)ψ(‖Sxn – p‖)

+ αnβn( – γn)ψ(‖Sxn – p‖)
+ αnβnγnψ

(‖Sxn – p‖)
Also, for Jungck-Kirk-type iterative schemes, we have the following estimates:

‖JKMn+ – p‖ ≤
r∑

i=

αn,iψ
i(‖Sxn – p‖)

≤ ψ
(‖Sxn – p‖)

(
using ψ i ≤ ψ and

r∑
i=

αn,i = 

)

· · ·
≤ ψn(‖Sx – p‖),

‖JKIn+ – p‖ ≤ αn,‖Sxn – p‖ +
r∑
i=

αn,i

s∑
j=

βn,jψ
i+j(‖Sxn – p‖)

≤
r∑

i=

αn,iψ
i(‖Sxn – p‖)

(
using ψ i+j ≤ ψ i and

s∑
j=

βn,j = 

)

≤ ψ
(‖Sxn – p‖)

· · ·
≤ ψn(‖Sx – p‖),
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‖JKNn+ – p‖ ≤ αn,‖Sxn – p‖ +
r∑
i=

αn,iψ
i

(
βn,

(‖Sxn – p‖) + s∑
j=

βn,jψ
j(‖Szn – p‖)

)

≤ αn,‖Sxn – p‖

+
r∑
i=

αn,iψ
i

(
βn,

(‖Sxn – p‖) + s∑
j=

βn,jψ
j

( t∑
k=

γn,kψ
k(‖Sxn – p‖)

))

≤
r∑
i=

αn,iψ
i(‖Sxn – p‖)

(
using ψ l ≤ ψ for l = k, j and

s∑
j=

βn,j =
t∑

k=

γn,k = 

)

≤ ψ
(‖Sxn – p‖)

· · ·
≤ ψn(‖Sx – p‖),

‖JKSPn+ – p‖ ≤
( r∑

i=

αn,i

)( s∑
j=

βn,j

)( t∑
k=

γn,k

)
ψ i+j+k(‖Sxn – p‖)

≤ ψ
(‖Sxn – p‖)(
using ψ i+j+k ≤ ψ and

( r∑
i=

αn,i

)( s∑
j=

βn,j

)( t∑
k=

γn,k

)
= 

)

· · ·
≤ ψn+(‖Sx – p‖)

and

‖JKCRn+ – p‖ ≤
r∑
i=

αn,iψ
i

(
βn,ψ

(‖Sxn – p‖) + s∑
j=

βn,jψ
j

( t∑
k=

αn,kψ
k(‖Szn – p‖)

))

(using (.)).

Using the above estimates, we have

‖JKMn+ – p‖
‖JMn+ – p‖ ≤ ψn+(‖Sx – p‖)∏n

l=( – αl)‖Sx – p‖ .

Let

pn =
ψn+(‖Sx – p‖)∏n

l=( – αl)‖Sx – p‖ .

Then

pn+
pn

=
ψn+(‖Sx – p‖)

ψn+(‖Sx – p‖)( – αn+)
.
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But ψn+(t) < ψn+(t), t ∈ R+. Hence

ψn+(‖Sx – p‖)
ψn+(‖Sx – p‖) = δ (say) < .

Therefore, limn→∞ pn+
pn = limn→∞ δ

–αn+
= δ < . So, by ratio test

∑
pn is convergent.

Hence limn→∞ pn = , which further implies limn→∞ ‖JKMn+–p‖
‖JMn+–p‖ = , i.e., the JKM itera-

tive scheme converges faster than the JM iterative scheme in view of Definition ..
Now, since the estimates for JKI, JKN and JKSP are similar to that of JKM, also estimates

of JI, JN and JSP are similar to that of JM, therefore using a very similar argument, it can be
easily shown that JKI, JKN, JKSP iterative schemes converge faster than JI, JN, JSP iterative
schemes.
Now we compare JCR and JKCR iterative schemes.
From estimates of JCR and JKCR iterative schemes, we have

‖JCRn+ – p‖ ≤ δ

and

‖JKCRn+ – p‖ ≤ δ,

where

δ = ( – αn)( – βn)ψ
(‖Sxn – p‖) + ( – αn)βn( – γn)ψ

(‖Sxn – p‖)
+ ( – αn)βnγnψ

(‖Sxn – p‖) + αn( – βn)ψ(‖Sxn – p‖)
+ αnβn( – γn)ψ(‖Sxn – p‖) + αnβnγnψ

(‖Sxn – p‖)

and

δ =
r∑
i=

αn,iψ
i

(
βn,ψ

(‖Sxn – p‖) +
( s∑

j=

βn,jψ
j

( t∑
k=

αn,kψ
k(‖Sxn – p‖)

)))

(using (.)).

Using ψ j < ψk , for j > k, it can be easily observed that δ < δ.
Therefore, in view of Berinde’s Definition ., Jungck-Kirk-CR have better convergence

rate as compared to the Jungck-CR iterative scheme. �

Example . Let S, T and X be the same as in Example .. Then convergence speed
comparison of Jungck-Kirk-type iterative schemes with corresponding Jungck-type itera-
tive schemes is shown in Table  with initial approximation x = . and r = s = t = .

Remark . Although direct comparison among Jungck-Kirk-type iterative schemes is
not possible in view of Rhoades Definition ., yet the following example shows that newly
introduced iterative schemes have better convergence rate.
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Table 1 Comparison of Jungck-Kirk-type iterative schemes with corresponding Jungck-type
iterative schemes

n JKCR JCR JKSP JSP JKN JN JKI KI JKM KM

0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
1 0.521094 0.53125 0.521094 0.49375 0.521094 0.34375 0.44375 0.325 0.65 0.4
2 0.50014 0.495457 0.499961 0.499636 0.502443 0.423889 0.487565 0.41029 0.481598 0.461237
3 0.499999 0.500867 0.5 0.499962 0.500531 0.458379 0.496449 0.449456 0.49949 0.481794
4 0.5 0.499806 0.5 0.499995 0.500153 0.475493 0.498805 0.46964 0.499933 0.49043
5 0.5 0.500048 0.5 0.499999 0.500052 0.484795 0.499548 0.480889 0.499986 0.494574
6 0.5 0.499987 0.5 0.5 0.50002 0.490185 0.499814 0.487527 0.499996 0.496749
7 0.5 0.500004 0.5 0.5 0.500008 0.493463 0.499918 0.491619 0.499999 0.497968
8 0.5 0.499999 0.5 0.5 0.500004 0.495534 0.499962 0.494233 0.5 0.498687
9 0.5 0.5 0.5 0.5 0.500002 0.496883 0.499981 0.495951 0.5 0.499127
10 0.5 0.5 0.5 0.5 0.500001 0.497785 0.49999 0.497108 0.5 0.499406
11 0.5 0.5 0.5 0.5 0.5 0.498401 0.499995 0.497903 0.5 0.499588
12 0.5 0.5 0.5 0.5 0.5 0.49883 0.499997 0.498459 0.5 0.499709
13 0.5 0.5 0.5 0.5 0.5 0.499133 0.499999 0.498855 0.5 0.499792
14 0.5 0.5 0.5 0.5 0.5 0.499351 0.499999 0.49914 0.5 0.499849
15 0.5 0.5 0.5 0.5 0.5 0.499509 0.5 0.499348 0.5 0.499889
16 0.5 0.5 0.5 0.5 0.5 - 0.5 - 0.5 -
- - - - - - - - - - -
36 0.5 0.5 0.5 0.5 0.5 0.499995 0.5 0.499993 0.5 0.499999
37 0.5 0.5 0.5 0.5 0.5 0.499996 0.5 0.499994 0.5 0.499999
38 0.5 0.5 0.5 0.5 0.5 0.499996 0.5 0.499995 0.5 0.499999
39 0.5 0.5 0.5 0.5 0.5 0.499997 0.5 0.499996 0.5 0.5
40 0.5 0.5 0.5 0.5 0.5 0.499997 0.5 0.499996 0.5 0.5
- - - - - - - - - - -
48 0.5 0.5 0.5 0.5 0.5 0.499999 0.5 0.499999 0.5 0.5
49 0.5 0.5 0.5 0.5 0.5 0.499999 0.5 0.499999 0.5 0.5
50 0.5 0.5 0.5 0.5 0.5 0.499999 0.5 0.499999 0.5 0.5
51 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.499999 0.5 0.5
52 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.499999 0.5 0.5
53 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
54 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Example . Let X = [, ], S : X → X = x
 , T : X → X = x

 , αn,j = βn,j = γn,j = , j = , , ,
n = , , . . . ,n for some n ∈ N and αn, = βn, = γn, = αn, = βn, = γn, = √

n , αn, = βn, =
γn, =  – √

n , n > n. It is clear that T and S are operators satisfying (.) with a unique
common fixed point . Also, it is easy to see that Example . satisfies all the conditions
of Theorems . and ..

Proof For JM, JI, JN, JCR, JSP, JKM, JKI, JKN, JKCR and JKSP, iterative schemes with initial
approximation x �= , we have the following equations:

JMn =
n∏

i=n

(


–

√
i

)
x,

JIn =
n∏

i=n

(


–

√
i
–

i

)
x,

JNn =
n∏

i=n

(
 –

√
i
–

i
–


i 

)
x,

JCRn =
n∏

i=n

(


–



√
i
–

i
+


i 

)
x,
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JSPn =
n∏

i=n

(
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√
i
+

i
–


i 

)
x,

JKMn =
n∏

i=n

(



+



√
i

)
x,

JKIn =
n∏

i=n

(



+



√
i
+


i

)
x,

JKNn =
n∏

i=n

(


,
+




√
i
+

i

+

i 

)
x,

JKCRn =
n∏

i=n

(


,
+




√
i
+

i

+

i 

)
x

and

JKSPn =
n∏

i=n

(


,
+




√
i
+


i

+

i 

)
x,

respectively.
First we compare Jungck-Kirk-type iterative schemes with their corresponding Jungck-

type iterative schemes.
For n = , consider

∣∣∣∣ JKMn+

JMn+

∣∣∣∣ =
∣∣∣∣
∏n

i=(

 +



√
i )x∏n

i=(

 –

√
i )x

∣∣∣∣ =
∣∣∣∣∣

n∏
i=

[
 –

( 
 –



√
i )

(  –
√
i )

]∣∣∣∣∣ =
∣∣∣∣∣

n∏
i=

[
 –

(
√
i – )

(
√
i – )

]∣∣∣∣∣.
It is easy to see that

 ≤ lim
n→∞

n∏
i=

[
 –

(
√
i – )

(
√
i – )

]
≤ lim

n→∞

n∏
i=

(
 –


i

)
= lim

n→∞

n

= .

Hence, limn→∞ | JKMn+
JMn+

| = .
Similarly,

∣∣∣∣ JKInJIn
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√
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]
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implies limn→∞ | JKInJIn
| = .
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Again, similarly,
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Again, similarly,
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Again, similarly,
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with
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Therefore, by Definition ., Jungck-Kirk-type iterative schemes converge faster than
corresponding Jungck-type iterative schemes to the common fixed point  of T and S.
Now, we compare Jungck-Kirk-type iterative schemes with each other.
For n = , we have
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Similarly, for n = ,
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Also, for n = ,
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Similarly, for n = ,
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Hence, in view of Definition ., we observe that the decreasing order of Jungck-Kirk-
type iterative schemes is as follows:
JKSP, JKCR, JKN, JKI and JKM iterative scheme. �

4 Applications
In this section, with the help of computer programs in C++, we explain how and why
the newly introduced Jungck-Kirk-type iterative schemes can be applied to solve different
types of problems. The outcome is listed in the form of Tables ,  and , by taking r = s =
t = , for all iterative schemes.
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Table 2 Goat problem

Number
of
iterations

Jungck-Kirk-Mann Jungck-Kirk-Ishikawa Jungck-Kirk-Noor Jungck-Kirk-CR Jungck-Kirk-SP

n Txn Sxn xn+1 Txn Sxn xn+1 Txn Sxn xn+1 Txn Sxn xn+1 Txn Sxn xn+1
0 1.568685 1.568685 0.223278 1.568685 1.568685 0.456892 1.568685 1.568685 0.492505 1.568685 1.568685 1.885776 1.568685 1.568685 1.879253
1 1.720615 1.720615 1.473891 1.736372 1.736372 1.473055 1.728006 1.728006 1.468275 0.9895 0.9895 1.001579 0.978659 0.978659 1.014704
2 0.953808 0.953808 0.924859 0.954403 0.954403 0.925895 0.957829 0.957829 0.928822 1.388138 1.388138 1.270059 1.375728 1.375728 1.257049
– - - - - - - - - - - - - - - -
56 1.235762 1.235762 1.158618 1.235762 1.235762 1.158618 1.235762 1.235762 1.158618 1.235764 1.235764 1.15862 1.235763 1.235763 1.15862
57 1.235764 1.235764 1.15862 1.235764 1.235764 1.15862 1.235764 1.235764 1.15862 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619
58 1.235762 1.235762 1.158619 1.235762 1.235762 1.158619 1.235762 1.235762 1.158619 1.235764 1.235764 1.15862 1.235764 1.235764 1.15862
59 1.235764 1.235764 1.15862 1.235764 1.235764 1.15862 1.235764 1.235764 1.15862 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619
60 1.235762 1.235762 1.158619 1.235762 1.235762 1.158619 1.235762 1.235762 1.158619 1.235763 1.235763 1.15862 1.235763 1.235763 1.158619
61 1.235764 1.235764 1.15862 1.235764 1.235764 1.15862 1.235764 1.235764 1.15862 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619
62 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619
63 1.235763 1.235763 1.15862 1.235763 1.235763 1.15862 1.235763 1.235763 1.15862 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619
64 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619
65 1.235763 1.235763 1.15862 1.235763 1.235763 1.15862 1.235763 1.235763 1.15862 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619
66 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619
67 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619
68 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619 1.235763 1.235763 1.158619
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Table 3 Solution of equation

Number
of
iterations

Jungck-Kirk-Mann Jungck-Kirk-Ishikawa Jungck-Kirk-Noor Jungck-Kirk-CR Jungck-Kirk-SP

n Txn Sxn xn+1 Txn Sxn xn+1 Txn Sxn xn+1 Txn Sxn xn+1 Txn Sxn xn+1
0 0.8 0.8 0.8 0.8 0.8 0.251845 0.8 0.8 0.879634 0.8 0.8 0.750212 0.8 0.8 0.490599
1 0.8 0.8 0.612962 0.251845 0.251845 0.369233 0.879634 0.879634 0.700824 0.750212 0.750212 0.44583 0.490599 0.490599 0.495894
2 0.612962 0.612962 0.511105 0.369233 0.369233 0.410876 0.700824 0.700824 0.517399 0.44583 0.44583 0.412812 0.495894 0.495894 0.460743
3 0.511105 0.511105 0.458584 0.410876 0.410876 0.412387 0.517399 0.517399 0.440228 0.412812 0.412812 0.412391 0.460743 0.460743 0.431079
4 0.458584 0.458584 0.43267 0.412387 0.412387 0.412391 0.440228 0.440228 0.418184 0.412391 0.412391 0.412391 0.431079 0.431079 0.417575
5 0.43267 0.43267 0.420663 0.412391 0.412391 0.412391 0.418184 0.418184 0.413388 0.412391 0.412391 0.412391 0.417575 0.417575 0.413452
6 0.420663 0.420663 0.415511 0.412391 0.412391 0.412391 0.413388 0.413388 0.412536 0.412391 0.412391 0.412391 0.413452 0.413452 0.412555
7 0.415511 0.415511 0.413478 0.412391 0.412391 0.412391 0.412536 0.412536 0.412409 0.412391 0.412391 0.412391 0.412555 0.412555 0.412411
8 0.413478 0.413478 0.412741 0.412391 0.412391 0.412391 0.412409 0.412409 0.412393 0.412391 0.412391 0.412391 0.412411 0.412411 0.412393
9 0.412741 0.412741 0.412496 0.412391 0.412391 0.412391 0.412393 0.412393 0.412391 0.412391 0.412391 0.412391 0.412393 0.412393 0.412391
10 0.412496 0.412496 0.41242 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391
11 0.41242 0.41242 0.412399 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391
12 0.412399 0.412399 0.412393 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391
13 0.412393 0.412393 0.412392 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391
14 0.412392 0.412392 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391
15 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391
16 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391 0.412391
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Table 4 Oscillating function

Number
of
iterations

Jungck-Kirk-Mann Jungck-Kirk-Ishikawa Jungck-Kirk-Noor Jungck-Kirk-CR Jungck-Kirk-SP

n Txn Sxn xn+1 Txn Sxn xn+1 Txn Sxn xn+1 Txn Sxn xn+1 Txn Sxn xn+1
0 0.25 0.25 2 0.25 0.25 2 0.25 0.25 2 0.25 0.25 0.707107 0.25 0.25 1.189207
1 0.25 0.25 1.916621 0.25 0.25 1.837722 0.25 0.25 1.7634 2 2 1.152313 0.707107 0.707107 1.006249
2 0.272225 0.272225 1.792281 0.296101 0.296101 1.611392 0.321587 0.321587 1.458178 0.753111 0.753111 0.994516 0.987617 0.987617 1.000077
3 0.311306 0.311306 1.64864 0.385121 0.385121 1.378543 0.470304 0.470304 1.196768 1.011059 1.011059 1.000139 0.999846 0.999846 1
4 0.367916 0.367916 1.499982 0.52621 0.52621 1.18467 0.698201 0.698201 1.057246 0.999722 0.999722 1 1 1 1
5 0.444455 0.444455 1.357403 0.712533 0.712533 1.065618 0.894639 0.894639 1.013039 1 1 1 1 1 1
6 0.542728 0.542728 1.230991 0.880636 0.880636 1.017436 0.974423 0.974423 1.002468 1 1 1 1 1 1
7 0.659918 0.659918 1.130418 0.966019 0.966019 1.003771 0.995081 0.995081 1.000388 1 1 1 1 1 1
8 0.782567 0.782567 1.062306 0.9925 0.9925 1.000694 0.999224 0.999224 1.000051 1 1 1 1 1 1
9 0.886136 0.886136 1.025036 0.998613 0.998613 1.00011 0.999899 0.999899 1.000005 1 1 1 1 1 1
10 0.951748 0.951748 1.008718 0.999779 0.999779 1.000015 0.999989 0.999989 1 1 1 1 1 1 1
11 0.982789 0.982789 1.002744 0.99997 0.99997 1.000002 0.999999 0.999999 1 1 1 1 1 1 1
12 0.994535 0.994535 1.000803 0.999996 0.999996 1 1 1 1 1 1 1 1 1 1
13 0.998396 0.998396 1.000222 1 1 1 1 1 1 1 1 1 1 1 1
14 0.999556 0.999556 1.000058 1 1 1 1 1 1 1 1 1 1 1 1
15 0.999884 0.999884 1.000015 1 1 1 1 1 1 1 1 1 1 1 1
16 0.999971 0.999971 1.000003 1 1 1 1 1 1 1 1 1 1 1 1
17 0.999993 0.999993 1.000001 1 1 1 1 1 1 1 1 1 1 1 1
18 0.999998 0.999998 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 1 Goat problem.

Goat problem
A farmer has a fenced circular pasture of radius a and wants to tie a goat to the fence with
a rope of length b (see Figure ) so as to allow the goat to graze half the pasture. How long
should the rope be to accomplish this?
The length of the rope bmust be longer than a and shorter than

√
a, i.e., a < b <

√
a.

Using polar coordinates, we find the grazing area

= 
[



·
∫ sin–( b

a )


a sin θ dθ +




·
∫ π



sin–( b
a )

b dθ

]

=
∫ sin–( b

a )


a sin θ dθ +

∫ π


sin–( b
a )

b dθ .

We want this to equal half the pasture area, which is πa
 , so we get the equation

∫ sin–( b
a )


a sin θ dθ +

∫ π


sin–( b
a )

b dθ =
πa


.

Multiplying both sides by 
a and integrating, we get

(
 – 

b

a

)
sin–

(
b
a

)
–
b
a

√
 –

b

a
+

πb

a
= π .

After putting x = b
a , we get the simplified equation (–x) sin–( x )–x

√
 – x +πx = π

and we are looking for the solution x, with  < x <
√
.

Now, we rearrange the above equation as Sx = Tx, with S, T defined on [, ] as

Sx =  sin–
(
x


)
and Tx =

π + x
√
 – x – πx + x sin–( x )


.

By taking the initial approximation x = , αn, = βn, = γn, = αn, = βn, = γn, = 
(+n) ,

αn, =  – αn, – αn,βn, =  – βn, – βn, and γn, =  – γn, – γn,, the comparison of conver-
gence of Jungck-Kirk-type iterative schemes to the point of coincidence . of S, T ,
is listed in Table . So the rope length b should be approximately .a.

Solution of equation e(1–x)
2
– x – 1 = 0

To solve this equation, we rearrange it as Sx = Tx, with S, T defined on [, ] defined by
Sx = x and Tx = e(–x) – .
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With the initial approximation x = ., αn, = βn, = γn, = αn, = βn, = γn, = 
√+n

, αn, =
–αn, –αn,βn, = –βn, –βn, and γn, = –γn, –γn,, the comparison of convergence of
Jungck-Kirk-type iterative schemes to the common fixed point . of S, T , is listed
in Table .

Oscillating function 1/x2

In order to solve this function by Jungck-type iterative schemes, we write it in the form
Sx = Tx, where the functions T , S are defined on R+ as Tx = /x and Sx = x, respectively.
By taking the initial approximation x =  and αn = βn = γn = 

√n+
, the obtained results

are listed in Table .
For detailed study, these programs are again executed after changing the parameters and

some observations are made as given below.

5 Observations
Goat problem
. Taking initial guess x = . (near coincidence point), Jungck-Kirk-Mann, Jungck-Kirk-
Ishikawa, Jungck-Kirk-Noor and Jungck-Kirk-CR iterative schemes converge in  itera-
tions, while the Jungck-Kirk-SP iterative scheme converges in  iterations.
. Taking αn, = βn, = γn, = αn, = βn, = γn, = 

(+n) and x = , we observe that Jungck-
Kirk-Mann, Kirk-Ishikawa and Jungck-Kirk-Noor iterative schemes converge in  it-
erations, while the Jungck-Kirk-CR iterative scheme converges in  iterations and the
Jungck-Kirk-SP iterative scheme converges in  iterations.

Equation e(1–x)
2
– x – 1 = 0

. Taking initial guess x = . (somewhat nearer to the common fixed point), the Jungck-
Kirk-Mann iterative scheme converges in  iterations, the Jungck-Kirk-Ishikawa iterative
scheme converges in  iterations, the Jungck-Kirk-Noor iterative scheme converges in 
iterations and the Jungck-Kirk-CR iterative scheme converges in  iterations, while the
Jungck-Kirk-SP iterative scheme converges in  iterations.
. Taking αn, = βn, = γn, = αn, = βn, = γn, = 

√+n
and x = ., we observe that the

Jungck-Kirk-Mann iterative scheme converges in  iterations, the Jungck-Kirk-Ishikawa it-
erative scheme converges in  iterations, the Jungck-Kirk-Noor iterative scheme converges
in  iterations and Jungck-Kirk-CR as well as Jungck-Kirk-SP iterative schemes converge
in  iterations.

Oscillating function 1/x2

. Taking initial guess x = . (near to the common fixed point), the Jungck-Kirk-Mann it-
erative scheme converges in  iterations, the Jungck-Kirk-Ishikawa iterative scheme con-
verges in  iterations, the Jungck-Kirk-Noor iterative scheme converges in  iterations
and the Jungck-Kirk-CR iterative scheme converges in  iterations, while the Jungck-Kirk-
SP iterative scheme converges in  iterations.
. Taking αn, = βn, = γn, = αn, = βn, = γn, = 

√+n
and x = , we observe that Jungck-

Kirk-Mann, Jungck-Kirk-Ishikawa and Jungck-Kirk-Noor iterative schemes converge in 
iterations, while the Jungck-Kirk-CR Noor iterative scheme converges in  iterations and
the Jungck-Kirk-SP iterative scheme converges in  iterations.
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6 Conclusions
Goat problem
. Decreasing order of convergence rate of Jungck-Kirk-type iterative schemes is as follows:
Jungck-Kirk-SP, Jungck-Kirk-CR, and Jungck-Kirk-Noor iterative scheme,where Jungck-

Kirk-Noor shows equivalence with Jungck-Kirk-Ishikawa and Jungck-Kirk-Mann iterative
schemes.
. For initial guess somewhat near to the point of coincidence, the number of itera-

tions increases in case of Jungck-Kirk-SP and Jungck-Kirk-CR iterative schemes, while the
number of iterations decreases in case of Jungck-Kirk-Noor, Jungck-Kirk-Ishikawa and
Jungck-Kirk-Mann iterative schemes.
. The speed of iterative schemes depends on αn,i, βn,i and γn,i. On decreasing the value

of these parameters, Jungck-Kirk-SP and Jungck-Kirk-CR iterative schemes show an in-
crease, while Jungck-Kirk-Noor, Jungck-Kirk-Ishikawa and Jungck-Kirk-Mann iterative
schemes show a decrease in the number of iterations to converge.

Equation e(1–x)
2
– x – 1 = 0

. Decreasing order of convergence rate of Jungck-Kirk-type iterative schemes is as follows:
Jungck-Kirk-CR, Jungck-Kirk-Ishikawa, Jungck-Kirk-SP and Jungck-Kirk-Mann itera-

tive scheme, while Jungck-Kirk-Noor shows equivalence with the Jungck-Kirk-SP iterative
scheme.
. For initial guess somewhat near to the common fixed point, the number of iterations

decreases in case of Jungck-Kirk-Ishikawa and Jungck-Kirk-Mann iterative schemes, while
Jungck-Kirk-SP, Jungck-Kirk-CR and Jungck-Kirk-Noor iterative schemes show no change
in the number of iterations to converge.
. The speed of iterative schemes depends on αn,i, βn,i and γn,i. On decreasing the

value of these parameters, Jungck-Kirk-Ishikawa and Jungck-Kirk-CR iterative schemes
show an increase, while Jungck-Kirk-Noor, Jungck-Kirk-SP and Jungck-Kirk-Mann itera-
tive schemes show a decrease in the number of iterations to converge.

Oscillating function 1/x2

. Decreasing order of convergence rate of Jungck-Kirk-type iterative schemes is as follows:
Jungck-Kirk-SP, Jungck-Kirk-CR, Jungck-Kirk-Noor iterative scheme, Jungck-Kirk-

Ishikawa and Jungck-Kirk-Mann iterative scheme.
. For initial guess nearer to the common fixed point, the number of iterations de-

creases in case of Jungck-Kirk-Noor, Jungck-Kirk-Ishikawa and Jungck-Kirk-Mann iter-
ative schemes, while Jungck-Kirk-SP as well as Jungck-Kirk-CR iterative schemes show no
change in the number of iterations to converge.
. The speed of iterative schemes depends on αn,i, βn,i and γn,i. On decreasing the value of

these parameters, Jungck-Kirk-Noor, Jungck-Kirk-Ishikawa and Jungck-Kirk-Mann itera-
tive schemes show a decrease while Jungck-Kirk-SP and Jungck-Kirk-CR iterative schemes
show no change in the number of iterations to converge.

Open problem
It is still an open problem to compare Jungck-Kirk-type iterative schemes with each other
in view of RhoadesDefinition . and also to study the same using nonself contractive-type
operators.
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