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Abstract
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results.
MSC: 47H10; 54H25; 54E50

Keywords: G-metric space; weakly commuting mapping pairs; weakly compatible
mapping pairs; common fixed point

1 Introduction and preliminaries
The metric fixed point theory is very important and useful in mathematics. It can be ap-
plied in various areas, for instance, approximation theory, optimization and variational
inequalities. Many authors have introduced the generalizations of metric spaces, for ex-
ample, Gähler [, ] (called -metric spaces) and Dhage [, ] (called D-metric spaces).
In , Mustafa and Sims [] found that most of the claims concerning the fundamental
topological properties of D-metric spaces are incorrect. Therefore, they [] introduced a
new structure of generalized metric spaces, which are called G-metric spaces, as a gener-
alization of metric spaces, to develop and introduce a new fixed point theory for various
mappings in this new structure. Later, several fixed point and common fixed point theo-
rems in G-metric spaces were obtained by [–].
The purpose of this paper is to use the concept of weakly commuting mappings and

weakly compatible mappings to discuss some new common fixed point problem for six
self-mappings inG-metric spaces. The results presented in this paper extend and improve
the corresponding results of Abbas et al. [], Mustafa and Sims [], Abbas and Rhoades
[], Mustafa et al. [], Mustafa et al. [], Abbas et al. [], Chugh and Kadian [], Manro
et al. [], Vats et al. [].
We now recall some definitions and properties in G-metric spaces.

Definition . [] Let X be a nonempty set and let G : X × X × X → R+ be a function
satisfying the following properties:

(G) G(x, y, z) =  if x = y = z;
(G)  <G(x,x, y) for all x, y ∈ Xwith x �= y;
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(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with z �= y;
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · , symmetry in all three variables;
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X .

Then the function G is called a generalized metric, or, more specifically, a G-metric on
X, and the pair (X,G) is called a G-metric space.

Definition . [] Let (X,G) be aG-metric space and let (xn) be a sequence of points ofX.
A point x ∈ X is said to be the limit of the sequence (xn) if limn,m→+∞ G(x,xn,xm) = , and
we say that the sequence (xn) is G-convergent to x or (xn) G-convergent to x.

Thus, xn → x in a G-metric space (X,G) if, for any ε > , there exists k ∈ N such that
G(x,xn,xm) < ε for allm,n≥ k.

Proposition . [] Let (X,G) be a G-metric space, then the following are equivalent:
. (xn) is G-convergent to x.
. G(xn,xn,x) →  as n→ +∞.
. G(xn,x,x)→  as n→ +∞.
. G(xn,xm,x)→  as n,m → +∞.

Definition . [] Let (X,G) be a G-metric space. A sequence (xn) is called G-Cauchy
if, for every ε > , there is k ∈ N such that G(xn,xm,xl) < ε for all m,n, l ≥ k; that is,
G(xn,xm,xl) →  as n,m, l → +∞.

Proposition . [] Let (X,G) be a G-metric space. Then the following are equivalent:
. The sequence (xn) is G-Cauchy.
. For every ε > , there is k ∈ N such that G(xn,xm,xm) < ε for allm,n≥ k.

Definition . [] Let (X,G) and (X ′,G′) be G-metric spaces and let f : (X,G) → (X ′,G′)
be a function. Then f is said to beG-continuous at a point a ∈ X if and only if, for every ε >
, there is δ >  such that x, y ∈ X andG(a,x, y) < δ imply G′(f (a), f (x), f (y)) < ε. A function
f is G-continuous at X if only if it is G-continuous at a ∈ X.

Proposition . [] Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly
continuous in all three of its variables.

Definition . [] A G-metric space (X,G) is G-complete if every G-Cauchy sequence in
(X,G) is G-convergent in X.

Definition . [] Two self-mappings f and g of a G-metric space (X,G) are said to be
weakly commuting if G(fgx, gfx, gfx) ≤ G(fx, gx, gx) for all x in X.

Definition . [] Let f and g be two self-mappings from a G-metric space (X,G) into
itself. Then the mappings f and g are said to be weakly compatible if G(fgx, gfx, gfx) = 
whenever G(fx, gx, gx) = .

Proposition . [] Let (X,G) be a G-metric space. Then, for all x, y, z, a in X, it follows
that:

(i) If G(x,x, y) = , then x = y = z;
(ii) G(x, y, z) ≤ G(x,x, y) +G(x,x, z);
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(iii) G(x, y, y) ≤ G(y,x,x);
(iv) G(x, y, z) ≤ G(x,a, z) +G(a, y, z);
(v) G(x, y, z) ≤ 

 (G(x, y,a) +G(x,a, z) +G(a, y, z));
(vi) G(x, y, z) ≤ (G(x,a,a) +G(y,a,a) +G(z,a,a)).

2 Common fixed point theorems
Theorem . Let (X,G) be a complete G-metric space, and let f , g , h, A, B and C be six
mappings of X into itself satisfying the following conditions:

(i) f (X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);
(ii) ∀x, y, z ∈ X ,

G(fx, gy,hz) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Ax,By,Cz),G(Ax, fx, fx),
G(By, gy, gy),G(Cz,hz,hz),
G(Ax, gy, gy),G(Ax,hz,hz),
G(By, fx, fx),G(By,hz,hz),
G(Cz, fx, fx),G(Cz, gy, gy)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(.)

or

G(fx, gy,hz) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Ax,By,Cz),G(Ax,Ax, fx),
G(By,By, gy),G(Cz,Cz,hz),
G(Ax,Ax, gy),G(Ax,Ax,hz),
G(By,By, fx),G(By,By,hz),
G(Cz,Cz, fx),G(Cz,Cz, gy)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, (.)

where k ∈ [,  ). If one of the following conditions is satisfied:
(a) Either f or A is G-continuous, the pair (f ,A) is weakly commuting, the pairs

(g,B) and (h,C) are weakly compatible;
(b) Either g or B is G-continuous, the pair (g,B) is weakly commuting, the pairs

(f ,A) and (h,C) are weakly compatible;
(c) Either h or C is G-continuous, the pair (h,C) is weakly commuting, the pairs

(f ,A) and (g,B) are weakly compatible.
Then

(I) one of the pairs (f ,A), (g,B) and (h,C) has a coincidence point in X ;
(II) the mappings f , g , h, A, B and C have a unique common fixed point in X .

Proof Suppose that mappings f , g , h, A, B and C satisfy condition (.).
Let x in X be an arbitrary point since f (X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X). There

exist the sequences {xn} and {yn} in X such that

yn = fxn = Bxn+, yn+ = gxn+ = Cxn+, yn+ = hxn+ = Axn+

for all n = , , , . . . .
If there exists n ∈ N such that yn = yn+, then the conclusion (I) of Theorem . holds.

In fact, if there exists p ∈ N such that yp+ = yp+, then fu = Au, where u = xp+. Hence
the pair (f ,A) has a coincidence point u ∈ X. If yp = yp+, then gu = Bu, where u = xp+.
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Therefore, the pair (g,B) has a coincidence point u ∈ X. If yp+ = yp+, then hu = Cu,
where u = xp+. And so the pair (h,C) has a coincidence point u ∈ X.
On the other hand, if there exists n ∈ N such that yn = yn+ = yn+, then yn = yn for

any n≥ n. This implies that {yn} is a G-Cauchy sequence.
Actually, if there exists p ∈ N such that yp = yp+ = yp+, then applying the contractive

condition (.) with x = yp+, y = yp+ and z = yp+, we get

G(yp+, yp+, yp+)

=G(fxp+, gxp+,hxp+)

≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Axp+,Bxp+,Cxp+),G(Axp+, fxp+, fxp+),
G(Bxp+, gxp+, gxp+),G(Cxp+,hxp+,hxp+),
G(Axp+, gxp+, gxp+),G(Axp+,hxp+,hxp+),
G(Bxp+, fxp+, fxp+),G(Bxp+,hxp+,hxp+),
G(Cxp+, fxp+, fxp+),G(Cxp+, gxp+, gxp+)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(yp+, yp, yp+),G(yp+, yp+, yp+),
G(yp, yp+, yp+),G(yp+, yp+, yp+),
G(yp+, yp+, yp+),G(yp+, yp+, yp+),
G(yp, yp+, yp+),G(yp, yp+, yp+),

G(yp+, yp+, yp+),G(yp+, yp+, yp+)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

≤ kmax
{
G(yp+, yp+, yp+),G(yp, yp+, yp+),G(yp+, yp+, yp+)

}
= kG(yp+, yp+, yp+).

If yp+ �= yp+, then from condition (G) and Proposition .(iii), we get

 <G(yn+, yn+, yn+) ≤ kG(yn+, yn+, yn+) ≤ kG(yn+, yn+, yn+),

which implies that k ≥ 
 , that is a contradiction, since  ≤ k < 

 . So, we find yn = yp for
any n ≥ p. This implies that {yn} is a G-Cauchy sequence. The same conclusion holds if
yp+ = yp+ = yp+, or yp+ = yp+ = yp+ for some p ∈N.
Assume for the rest of the paper that yn �= ym for any n �=m. Applying again (.) with

x = yn, y = yn+ and z = yn+ and using conditions (G) and (G), we get that

G(yn, yn+, yn+)

=G(fxn, gxn+,hxn+)

≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Axn,Bxn+,Cxn+),G(Axn, fxn, fxn),
G(Bxn+, gxn+, gxn+),G(Cxn+,hxn+,hxn+),
G(Axn, gxn+, gxn+),G(Axn,hxn+,hxn+),
G(Bxn+, fxn, fxn),G(Bxn+,hxn+,hxn+),
G(Cxn+, fxn, fxn),G(Cxn+, gxn+, gxn+)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(yn–, yn, yn+),G(yn–, yn, yn),
G(yn, yn+, yn+),G(yn+, yn+, yn+),
G(yn–, yn+, yn+),G(yn–, yn+, yn+),

G(yn, yn, yn),G(yn, yn+, yn+),
G(yn+, yn, yn),G(yn+, yn+, yn+)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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≤ kmax

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
G(yn–, yn, yn+),G(yn–, yn, yn+),G(yn–, yn, yn+),

G(yn, yn+, yn+),G(yn–, yn, yn+),
G(yn–, yn+, yn+) +G(yn+, yn+, yn+),
,G(yn, yn+, yn+),G(yn–, yn, yn+), 

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ kmax

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
G(yn–, yn, yn+),G(yn–, yn, yn+),G(yn–, yn, yn+),

G(yn, yn+, yn+),G(yn–, yn, yn+),
G(yn–, yn, yn+) +G(yn, yn+, yn+),
,G(yn, yn+, yn+),G(yn–, yn, yn+), 

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= kmax

{
G(yn–, yn, yn+),G(yn, yn+, yn+),
G(yn–, yn, yn+) +G(yn, yn+, yn+)

}

= k
[
G(yn–, yn, yn+) +G(yn, yn+, yn+)

]
.

From k ∈ [,  ) we obtain

G(yn, yn+, yn+)≤ λG(yn–, yn, yn+), (.)

where λ = k
–k ∈ [, ). Similarly it can be shown that

G(yn+, yn+, yn+)≤ λG(yn, yn+, yn+) (.)

and

G(yn+, yn+, yn+)≤ λG(yn, yn+, yn+). (.)

It follows from (.), (.) and (.) that, for all n ∈N,

G(yn, yn+, yn+) ≤ λG(yn–, yn, yn+)≤ λG(yn–, yn–, yn) ≤ · · · ≤ λnG(y, y, y).

Therefore, for all n,m ∈N, n <m, by (G) and (G), we have

G(yn, ym, ym) ≤ G(yn, yn+, yn+) +G(yn+, yn+, yn+) +G(yn+, yn+, yn+)

+ · · · +G(ym–, ym, ym)

≤ G(yn, yn+, yn+) +G(yn+, yn+, yn+) + · · · +G(ym–, ym, ym+)

≤ (
λn + λn+ + λn+ + · · · + λm–)G(y, y, y)

≤ λn

 – λ
G(y, y, y) → , as n→ ∞.

Hence {yn} is aG-Cauchy sequence inX. SinceX is a completeG-metric space, there exists
a point u ∈ X such that yn → u (n→ ∞).
Since the sequences {fxn} = {Bxn+}, {gxn+} = {Cxn+} and {hxn–} = {Axn} are all

subsequences of {yn}, then they all converge to u

yn = fxn = Bxn+ → u, yn+ = gxn+ = Cxn+ → u,

yn– = hxn– = Axn → u (n→ ∞).
(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/174
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Now we prove that u is a common fixed point of f , g , h, A, B and C under condition (a).
First, we suppose that A is continuous, the pair (f ,A) is weakly commuting, the pairs

(g,B) and (h,C) are weakly compatible.
Step . We prove that u = fu = Au.
By (.) and a weakly commuting of mapping pair (f ,A), we have

G(fAxn,Afxn,Afxn) ≤ G(fxn,Axn,Axn)→  (n→ ∞). (.)

Since A is continuous, then Axn → Au (n → ∞), Afxn → Au (n → ∞). By (.) we
know that fAxn → Au (n→ ∞).
From condition (.) we know

G(fAxn, gxn+,hxn+)

≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Axn,Bxn+,Cxn+),G(Axn, fAxn, fAxn),
G(Bxn+, gxn+, gxn+),G(Cxn+,hxn+,hxn+),
G(Axn, gxn+, gxn+),G(Axn,hxn+,hxn+),
G(Bxn+, fAxn, fAxn),G(Bxn+,hxn+,hxn+),
G(Cxn+, fxn, fxn),G(Cxn+, gxn+, gxn+)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Letting n → ∞ and using Proposition .(iii), we have

G(Au,u,u) ≤ kmax

{
G(Au,u,u),G(Au,Au,Au),G(u,u,u),G(u,u,u),G(Au,u,u),
G(Au,u,u),G(u,Au,Au),G(u,u,u),G(u,Au,Au),G(u,u,u)

}

= kmax
{
G(Au,u,u),G(u,Au,Au)

}
≤ kG(Au,u,u),

which implies that G(Au,u,u) = , and so Au = u since  ≤ k < 
 .

Again, by use of condition (.), we have

G(fu, gxn+,hxn+)≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Au,Bxn+,Cxn+),G(Au, fu, fu),
G(Bxn+, gxn+, gxn+),G(Cxn+,hxn+,hxn+),

G(Au, gxn+, gxn+),G(Au,hxn+,hxn+),
G(Bxn+, fu, fu),G(Bxn+,hxn+,hxn+),
G(Cxn+, fu, fu),G(Cxn+, gxn+, gxn+)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Letting n → ∞, using (.), u = Au and Proposition .(iii), we obtain

G(fu,u,u) ≤ kmax

{
G(u,u,u),G(u, fu, fu),G(u,u,u),G(u,u,u),G(u,u,u),
G(u,u,u),G(u, fu, fu),G(u,u,u),G(u, fu, fu),G(u,u,u)

}

= kG(u, fu, fu) ≤ kG(fu,u,u).

This implies that G(fu,u,u) =  and so fu = u. Thus we have u = Au = fu.
Step . We prove that u = gu = Bu.

http://www.fixedpointtheoryandapplications.com/content/2013/1/174
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Since f (X) ⊂ B(X) and u = fu ∈ f (X), there is a point v ∈ X such that u = fu = Bv. Again,
by use of condition (.), we have

G(fu, gv,hxn+)≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Au,Bv,Cxn+),G(Au, fu, fu),
G(Bv, gv, gv),G(Cxn+,hxn+,hxn+),
G(Au, gv, gv),G(Au,hxn+,hxn+),
G(Bv, fu, fu),G(Bv,hxn+,hxn+),
G(Cxn+, fu, fu),G(Cxn+, gv, gv)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Letting n → ∞, using u = Au = fu = Bv and Proposition .(iii), we have

G(u, gv,u) ≤ kmax

{
G(u,u,u),G(u,u,u),G(u, gv, gv),G(u,u,u),G(u, gv, gv),
G(u,u,u),G(u,u,u),G(u,u,u),G(u,u,u),G(u, gv, gv)

}

= kG(u, gv, gv)≤ kG(u, gv,u),

which implies that G(u, gv,u) = , and so gv = u = Bv.
Since the pair (g,B) is weakly compatible, we have

gu = gBv = Bgv = Bu.

Again, by use of condition (.), we have

G(fu, gu,hxn+)≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Au,Bu,Cxn+),G(Au, fu, fu),
G(Bu, gu, gu),G(Cxn+,hxn+,hxn+),
G(Au, gu, gu),G(Au,hxn+,hxn+),
G(Bu, fu, fu),G(Bu,hxn+,hxn+),
G(Cxn+, fu, fu),G(Cxn+, gu, gu)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Letting n → ∞, using u = Au = fu and gu = Bu and Proposition .(iii), we have

G(u, gu,u) ≤ kmax

{
G(u, gu,u),G(u,u,u),G(gu, gu, gu),G(u,u,u),G(u, gu, gu),
G(u,u,u),G(gu,u,u),G(gu,u,u),G(u,u,u),G(u, gu, gu)

}

= kmax
{
G(u, gu,u),G(u, gu, gu)

} ≤ kG(u, gu,u).

This implies that G(u, gu,u) = , and so u = gu = Bu.
Step . We prove that u = hu = Cu.
Since g(X) ⊂ C(X) and u = gu ∈ g(X), there is a pointw ∈ X such that u = gu = Cw. Again,

by use of condition (.), we have

G(fu, gu,hw) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Au,Bu,Cw),G(Au, fu, fu),
G(Bu, gu, gu),G(Cw,hw,hw),
G(Au, gu, gu),G(Au,hw,hw),
G(Bu, fu, fu),G(Bu,hw,hw),
G(Cw, fu, fu),G(Cw, gu, gu)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.
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Using u = Au = fu, u = gu = Bu = Cw and Proposition .(iii), we obtain

G(u,u,hw) ≤ kmax

{
G(u,u,u),G(u,u,u),G(u,u,u),G(u,hw,hw),G(u,u,u),

G(u,hw,hw),G(u,u,u),G(u,hw,hw),G(u,u,u),G(u,u,u)

}

= kG(u,hw,hw) ≤ kG(u,u,hw).

Hence G(u,u,hw) = , and so hw = u = Cw.
Since the pair (h,C) is weakly compatible, we have

hu = hCw = Chw = Cu.

Again, by use of condition (.), we have

G(fu, gu,hu) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Au,Bu,Cu),G(Au, fu, fu),
G(Bu, gu, gu),G(Cu,hu,hu),
G(Au, gu, gu),G(Au,hu,hu),
G(Bu, fu, fu),G(Bu,hu,hu),
G(Cu, fu, fu),G(Cu, gu, gu)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Using u = Au = fu, u = gu = Bu, Cu = hu and Proposition .(iii), we have

G(u,u,hu)≤ kmax
{
G(u,u,hu),G(u,hu,hu)

} ≤ kG(u,u,hu).

Thus G(u,u,hu) = , and so u = hu = Cu.
Therefore u is the common fixed point of f , g , h, A, B and C when A is continuous and

the pair (f ,A) is weakly commuting, the pairs (g,B) and (h,C) are weakly compatible.
Next, we suppose that f is continuous, the pair (f ,A) is weakly commuting, the pairs

(g,B) and (h,C) are weakly compatible.
Step . We prove that u = fu.
By (.) and a weakly commuting mapping pair (f ,A), we have

G(fAxn,Afxn,Afxn) ≤ G(fxn,Axn,Axn)→  (n→ ∞). (.)

Since f is continuous, then f xn → fu (n→ ∞), fAxn → fu (n→ ∞). By (.) we know
Afxn → fu (n→ ∞).
From condition (.) we know

G
(
f xn, gxn+,hxn+

)

≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Afxn,Bxn+,Cxn+),G(Afxn, f xn, f xn),
G(Bxn+, gxn+, gxn+),G(Cxn+,hxn+,hxn+),
G(Afxn, gxn+, gxn+),G(Afxn,hxn+,hxn+),
G(Bxn+, f xn, f xn),G(Bxn+,hxn+,hxn+),
G(Cxn+, f xn, f xn),G(Cxn+, gxn+, gxn+)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.
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Letting n → ∞ and noting Proposition .(iii), we have

G(fu,u,u) ≤ kmax

{
G(fu,u,u),G(fu, fu, fu),G(u,u,u),G(u,u,u),G(fu,u,u),
G(fu,u,u),G(u, fu, fu),G(u,u,u),G(u, fu, fu),G(u,u,u)

}

= kmax
{
G(fu,u,u),G(u, fu, fu)

}
≤ kG(fu,u,u),

which implies that G(fu,u,u) = , and so fu = u.
Step . We prove that u = gu = Bu.
Since f (X) ⊂ B(X) and u = fu ∈ f (X), there is a point z ∈ X such that u = fu = Bz. Again,

by use of condition (.), we have

G
(
f xn, gz,hxn+

) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Afxn,Bz,Cxn+),G(Afxn, f xn, f xn),
G(Bz, gz, gz),G(Cxn+,hxn+,hxn+),
G(Afxn, gz, gz),G(Afxn,hxn+,hxn+),
G(Bz, f xn, f xn),G(Bz,hxn+,hxn+),
G(Cxn+, f xn, f xn),G(Cxn+, gz, gz)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Letting n → ∞, using u = fu = Bz and Proposition .(iii), we have

G(u, gz,u) ≤ kmax

{
G(u,u,u),G(u,u,u),G(u, gz, gz),G(u,u,u),G(u, gz, gz),
G(u,u,u),G(u,u,u),G(u,u,u),G(u,u,u),G(u, gz, gz)

}

= kG(u, gz, gz) ≤ kG(u, gu,u).

This implies that G(u, gz,u) = , and so gz = u = Bz.
Since the pair (g,B) is weakly compatible, we have

gu = gBz = Bgz = Bu.

Again, by use of condition (.), we have

G(fxn, gu,hxn+) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Axn,Bu,Cxn+),G(Axn, fxn, fxn),
G(Bu, gu, gu),G(Cxn+,hxn+,hxn+),
G(Axn, gu, gu),G(Axn,hxn+,hxn+),
G(Bu, fxn, fxn),G(Bu,hxn+,hxn+),
G(Cxn+, fxn, fxn),G(Cxn+, gu, gu)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Letting n → ∞, using u = fu, gu = Bu and Proposition .(iii), we have

G(u, gu,u) ≤ kmax

{
G(u, gu,u),G(u,u,u),G(gu, gu, gu),G(u,u,u),G(u, gu, gu),
G(u,u,u),G(gu,u,u),G(gu,u,u),G(u,u,u),G(u, gu, gu)

}

= kmax
{
G(u, gu,u),G(u, gu, gu)

} ≤ kG(u, gu,u).

Therefore, G(u, gu,u) = , and so gu = u = Bu.
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Step . We prove that u = hu = Cu.
Since g(X)⊂ C(X) and u = gu ∈ g(X), there is a point t ∈ X such that u = gu = Ct. Again,

by use of condition (.), we have

G(fxn, gu,ht) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Axn,Bu,Ct),G(Axn, fxn, fxn),
G(Bu, gu, gu),G(Ct,ht,ht),

G(Axn, gu, gu),G(Axn,ht,ht),
G(Bu, fxn, fxn),G(Bu,ht,ht),
G(Ct, fxn, fxn),G(Ct, gu, gu)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Letting n → ∞, using u = gu = Bu = Ct and Proposition .(iii), we obtain

G(u,u,ht) ≤ kmax

{
G(u,u,u),G(u,u,u),G(u,u,u),G(u,ht,ht),G(u,u,u),
G(u,ht,ht),G(u,u,u),G(u,ht,ht),G(u,u,u),G(u,u,u)

}

= kG(u,ht,ht) ≤ kG(u,u,ht).

Thus G(u,u,ht) = , and so ht = u = Ct.
Since the pair (h,C) is weakly compatible, we have

hu = hCt = Cht = Cu.

Again, by use of condition (.), we have

G(fxn, gu,hu) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Axn,Bu,Cu),G(Axn, fxn, fxn),
G(Bu, gu, gu),G(Cu,hu,hu),

G(Axn, gu, gu),G(Axn,hu,hu),
G(Bu, fxn, fxn),G(Bu,hu,hu),
G(Cu, fxn, fxn),G(Cu, gu, gu)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Letting n → ∞, using u = fu = gu = Bu, Cu = hu and Proposition .(iii), we have

G(u,u,hu) ≤ kmax

{
G(u,u,hu),G(u,u,u),G(u,u,u),G(hu,hu,hu),G(u,u,u),
G(u,hu,hu),G(u,u,u),G(u,hu,hu),G(hu,u,u),G(hu,u,u)

}

= kmax
{
G(u,u,hu),G(u,hu,hu)

} ≤ kG(u,u,hu),

which implies that G(u,u,hu) = , and so hu = u = Cu.
Step . We prove that u = Au.
Since h(X) ⊂ A(X) and u = hu ∈ h(X), there is a point p ∈ X such that u = hu = Ap. Again,

by use of condition (.), we have

G(fp, gu,hu) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Ap,Bu,Cu),G(Ap, fp, fp),
G(Bu, gu, gu),G(Cu,hu,hu),
G(Ap, gu, gu),G(Ap,hu,hu),
G(Bu, fp, fp),G(Bu,hu,hu),
G(Cu, fp, fp),G(Cu, gu, gu)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.
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Using u = gu = Bu, u = hu = Cu and Proposition .(iii), we obtain

G(fp,u,u) ≤ kG(u, fp, fp) ≤ αG(fp,u,u).

Hence G(fp,u,u) = , and so fp = u = Ap.
Since the pair (f ,A) is weakly compatible, we have

fu = fAp = Afp = Au = u.

Therefore u is the common fixed point of f , g , h, A, B and C when S is continuous and
the pair (f ,A) is weakly commuting, the pairs (g,B) and (h,C) are weakly compatible.
Similarly we can prove the result that u is a common fixed point of f , g , h, A, B and C

under the condition of (b) or (c).
Finally, we prove the uniqueness of a common fixed point u.
Let u and q be two common fixed points of f , g , h, A, B and C. By use of condition (.),

we have

G(q,u,u) = G(fq, gu,hu)

≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Aq,Bu,Cu),G(Aq, fq, fq),
G(Bu, gu, gu),G(Cu,hu,hu),
G(Aq, gu, gu),G(Aq,hu,hu),
G(Bu, fq, fq),G(Bu,hu,hu),
G(Cu, fq, fq),G(Cu, gu, gu)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= kmax
{
G(q,u,u),G(u,q,q)

}
≤ kG(q,u,u).

This implies that G(q,u,u) = , and so q = u. Thus the common fixed point is unique.
The proof using (.) is similar. This completes the proof. �

Now we introduce an example to support Theorem ..

Example . Let X = [, ] and let (X,G) be a G-metric space defined by G(x, y, z) =
|x – y| + |y – z| + |z – x| for all x, y, z in X. Let f , g , h, A, B and C be self-mappings de-
fined by

fx =

⎧⎨
⎩, x ∈ [,  ],


 , x ∈ (  , ],

gx =

⎧⎨
⎩


 , x ∈ [,  ],

 , x ∈ (  , ],

hx =

⎧⎨
⎩


 , x ∈ [,  ],

 , x ∈ (  , ],

Ax = x, Bx =

⎧⎪⎪⎨
⎪⎪⎩
, x ∈ [,  ],

 , x ∈ (  , ),

, x = ,

Cx =

⎧⎪⎪⎨
⎪⎪⎩
, x ∈ [,  ],

 , x ∈ (  , ),

 , x = .

Note that A is G-continuous in X, and f , g , h, B and C are not G-continuous in X.
(i) Clearly we can get f (X)⊂ B(X), g(X)⊂ C(X), h(X) ⊂ A(X).
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Actually, because fX = {  , }, BX = {,  , }, gX = {  ,  },CX = {,  ,  }, hX = {  ,  },AX =
X = [, ], so we know f (X)⊂ B(X), g(X)⊂ C(X) and h(X) ⊂ A(X).
(ii) By the definition of the mappings of f and A, for all x ∈ [, ], G(fAx,Afx,Afx) =

G(fx, fx, fx) =  ≤ G(fx,Ax,Ax), so we can get the pair (f ,A) is weakly commuting.
By the definition of the mappings of g and B, only for x ∈ (  , ), gx = Bx = 

 , at this
time gBx = T(  ) =


 = B(  ) = Bgx, so gBx = Bgx, so we can obtain the pair (g,B) is weakly

compatible. Similarly we can prove the pair (h,C) is also weakly compatible.
(iii) Nowwe prove themappings f , g , h,A, B andC satisfy condition (.) of Theorem .

with k = 


M(x, y, z) =max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Ax,By,Cz),G(Ax, fx, fx),
G(By, gy, gy),G(Cz,hz,hz),
G(Ax, gy, gy),G(Ax,hz,hz),
G(By, fx, fx),G(By,hz,hz),
G(Cz, fx, fx),G(Cz, gy, gy)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Case . If x, y, z ∈ [,  ], then

G(fx, gy,hz) =G
(
,


,



)
=


,

G(Ax, fx, fx) =G(x, , ) = |x – | ≥ .

Thus we have

G(fx, gy,hz) =


<



×  ≤ 

G(Ax, fx, fx) ≤ 


M(x, y, z).

Case . If x, y ∈ [,  ], z ∈ (  , ], then

G(fx, gy,hz) =G
(
,


,



)
=


,

G(Ax, fx, fx) =G(x, , ) = |x – | ≥ .

Hence we get

G(fx, gy,hz) =


<



×  ≤ 

G(Ax, fx, fx) ≤ 


M(x, y, z).

Case . If x, z ∈ [,  ], y ∈ (  , ], then

G(fx, gy,hz) =G
(
,


,



)
=


,

G(Ax, fx, fx) =G(x, , ) = |x – | ≥ .

Therefore we obtain

G(fx, gy,hz) =


<



×  ≤ 

G(Ax, fx, fx) ≤ 


M(x, y, z).
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Case . If y, z ∈ [,  ], x ∈ (  , ], then

G(fx, gy,hz) =G
(


,


,



)
=




,

G(By, gy, gy) =G
(
,


,



)
=


.

Thus we have

G(fx, gy,hz) =



<



× 

=


G(By, gy, gy) ≤ 


M(x, y, z).

Case . If x ∈ [,  ], y, z ∈ (  , ], then

G(fx, gy,hz) =G
(
,


,



)
=


,

G(Ax, fx, fx) =G(x, , ) = |x – | ≥ .

Hence we obtain

G(fx, gy,hz) =


<



×  ≤ 

G(Ax, fx, fx) ≤ 


M(x, y, z).

Case . If y ∈ [,  ], x, z ∈ (  , ], then

G(fx, gy,hz) =G
(


,


,



)
=




,

G(By, gy, gy) =G
(
,


,



)
=


.

So we have

G(fx, gy,hz) =



<



× 

=


G(By, gy, gy) ≤ 


M(x, y, z).

Case . If z ∈ [,  ], x, y ∈ (  , ], then

G(fx, gy,hz) =G
(


,


,



)
=




,

G(Cz,hz,hz) =G
(
,


,



)
=


.

Thus we get

G(fx, gy,hz) =



<



× 

=


G(Cz,hz,hz) ≤ 


M(x, y, z).

Case . If x, y, z ∈ (  , ], then

G(fx, gy,hz) =G
(


,


,



)
=  ≤ 


M(x, y, z).
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Then in all the above cases, the mappings f , g , h, A, B and C satisfy condition (.) of
Theorem . with k = 

 . So that all the conditions of Theorem . are satisfied. Moreover,

 is the unique common fixed point for all of the mappings f , g , h, A, B and C.

In Theorem ., if we take A = B = C = I (I is identity mapping, the same below), then
we have the following corollary.

Corollary . Let (X,G) be a complete G-metric space and let f , g and h be threemappings
of X into itself satisfying the following conditions:

G(fx, gy,hz)

≤ kmax

{
G(x, y, z),G(x, fx, fx),G(y, gy, gy),G(z,hz,hz),G(x, gy, gy),
G(x,hz,hz),G(y, fx, fx),G(y,hz,hz),G(z, fx, fx),G(z, gy, gy)

}
(.)

or

G(fx, gy,hz) ≤ kmax

{
G(x, y, z),G(x,x, fx),G(y, y, gy),G(z, z,hz),G(x,x, gy),
G(x,x,hz),G(y, y, fx),G(y, y,hz),G(z, z, fx),G(z, z, gy)

}
(.)

∀x, y, z ∈ X, where k ∈ [,  ). Then f , g and h have a unique common fixed point in X.

Remark . Corollary . generalizes and extends the corresponding results in Abbas et
al. [, Theorem .].

Also, if we take f = g = h and A = B = C = I in Theorem ., then we get the following.

Corollary . Let (X,G) be a complete G-metric space and let f be a mapping of X into
itself satisfying the following conditions:

G(fx, fy, fz) ≤ kmax

{
G(x, y, z),G(x, fx, fx),G(y, fy, fy),G(z, fz, fz),G(x, fy, fy),
G(x, fz, fz),G(y, fx, fx),G(y, fz, fz),G(z, fx, fx),G(z, fy, fy)

}
(.)

or

G(fx, fy, fz) ≤ kmax

{
G(x, y, z),G(x,x, fx),G(y, y, fy),G(z, z, fz),G(x,x, fy),
G(x,x, fz),G(y, y, fx),G(y, y, fz),G(z, z, fx),G(z, z, fy)

}
(.)

∀x, y, z ∈ X, where k ∈ [,  ). Then f has a unique fixed point in X.

Remark . Corollary . generalizes and extends the corresponding results in Mustafa
and Sims [, Theorem .].

Remark . Theorem ., Corollaries . and . in this paper also improve and general-
ize the corresponding results of Abbas and Rhoades [, Theorems . and .], Mustafa et
al. [, Theorems ., ., . and Corollary .], Mustafa et al. [, Theorem .], Abbas
et al. [, Theorem ., Corollaries .-.] and Chugh and Kadian [, Theorem .].
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Remark . In Theorem ., we have taken: () f = g = h; () A = B = C; () g = h and
B = C; () g = h, B = C = I , several new results can be obtained.

Theorem . Let (X,G) be a complete G-metric space and let f , g , h, A, B and C be six
mappings of X into itself satisfying the following conditions:

(i) f (X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);
(ii) The pairs (f ,A), (g,B) and (h,C) are commuting mappings;
(iii) ∀x, y, z ∈ X ,

G
(
f mx, gmy,hmz

) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Ax,By,Cz),G(Ax, f mx, f mx),
G(By, gmy, gmy),G(Cz,hmz,hmz),
G(Ax, gmy, gmy),G(Ax,hmz,hmz),
G(By, f mx, f mx),G(By,hmz,hmz),
G(Cz, f mx, f mx),G(Cz, gmy, gmy)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(.)

or

G
(
f mx, gmy,hmz

) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Ax,By,Cz),G(Ax,Ax, f mx),
G(By,By, gmy),G(Cz,Cz,hmz),
G(Ax,Ax, gmy),G(Ax,Ax,hmz),
G(By,By, f mx),G(By,By,hmz),
G(Cz,Cz, f mx),G(Cz,Cz, gmy)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, (.)

where α ∈ [,  ),m ∈N, then f , g , h, A, B and C have a unique common fixed point
in X .

Proof Suppose that mappings f , g , h, A, B and C satisfy condition (.). Since f mX ⊂
f m–X ⊂ · · · ⊂ fX, fX ⊂ BX, so that f mX ⊂ BX. Similar, we can show that gmX ⊂ CX and
hmX ⊂ AX. From Theorem ., we see that f m, gm, hm, A, B and C have a unique common
fixed point u.
It follows from (.) that

G
(
f mfu, gmu,hmu

) ≤ αmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Afu,Bu,Cu),G(Afu, f mfu, f mfu),
G(Bu, gmu, gmu),G(Cu,hmu,hmu),
G(Afu, gmu, gmu),G(Afu,hmu,hmu),
G(Bu, f mfu, f mfu),G(Bu,hmu,hmu),
G(Cu, f mfu, f mfu),G(Cu, gmu, gmu)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

By condition (ii) we haveAfu = fAu = fu, note that fu = f (f mu) = f m+u = f m(fu), and Propo-
sition .(iii), we obtain

G(fu,u,u) ≤ kmax

{
G(fu,u,u),G(fu, fu, fu),G(u,u,u),G(u,u,u),G(fu,u,u),
G(fu,u,u),G(u, fu, fu),G(u,u,u),G(u, fu, fu),G(u,u,u)

}

= kmax
{
G(fu,u,u),G(u, fu, fu)

}
≤ kG(fu,u,u),

which implies that G(fu,u,u) = , and so fu = u.
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By the same argument, we can prove gu = u and hu = u. Thus we have u = fu = gu =
hu = Au = Bu = Cu, so that f , g , h, A, B and C have a common fixed point u in X. Let v be
any other common fixed point of f , g , h, A, B and C, then by use of condition (.) and
Proposition .(iii), we have

G(u,u, v) = G
(
f mu, gmu,hmv

)

≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Au,Bu,Cv),G(Au, f mu, f mu),
G(Bu, gmu, gmu),G(Cv,hmv,hmv),
G(Au, gmu, gmu),G(Au,hmv,hmv),
G(Bu, f mu, f mu),G(Bu,hmv,hmv),
G(Cv, f mu, f mu),G(Cv, gmu, gmu)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= kmax

{
G(u,u, v),G(u,u,u),G(u,u,u),G(v, v, v),G(u,u,u),
G(u, v, v),G(u,u,u),G(u, v, v),G(v,u,u),G(v,u,u)

}

= kmax
{
G(u,u, v),G(u, v, v)

}
≤ kG(u,u, v).

This implies that G(u,u, v) = , and so u = v. Thus common fixed point is unique.
The proof using (.) is similar. This completes the proof. �

In Theorem ., if we take A = B = C = I , then we have the following corollary.

Corollary . Let (X,G) be a complete G-metric space and let f , g and h be three map-
pings of X into itself satisfying the following conditions:

G
(
f mx, gmy,hmz

) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(x, y, z),G(x, f mx, f mx),
G(y, gmy, gmy),G(z,hmz,hmz),
G(x, gmy, gmy),G(x,hmz,hmz),
G(y, f mx, f mx),G(y,hmz,hmz),
G(z, f mx, f mx),G(z, gmy, gmy)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(.)

or

G
(
f mx, gmy,hmz

) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(x, y, z),G(x,x, f mx),
G(y, y, gmy),G(z, z,hmz),
G(x,x, gmy),G(x,x,hmz),
G(y, y, f mx),G(y, y,hmz),
G(z, z, f mx),G(z, z, gmy)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(.)

∀x, y, z ∈ X, where k ∈ [,  ), m ∈ N, then f , g and h have a unique common fixed point
in X.

Remark . Corollary . generalizes and extends the corresponding results in Abbas
et al. [, Corollary .].

Also, if we take f = g = h and A = B = C = I in Theorem ., then we get the following.
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Corollary . Let (X,G) be a complete G-metric space and let f be a mapping of X into
itself satisfying the following conditions:

G
(
f mx, f my, f mz

) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(x, y, z),G(x, f mx, f mx),
G(y, f my, f my),G(z, f mz, f mz),
G(x, f my, f my),G(x, f mz, f mz),
G(y, f mx, f mx),G(y, f mz, f mz),
G(z, f mx, f mx),G(z, f my, f my)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(.)

or

G
(
f mx, f my, f mz

) ≤ kmax

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(x, y, z),G(x,x, f mx),
G(y, y, f my),G(z, z, f mz),
G(x,x, f my),G(x,x, f mz),
G(y, y, f mx),G(y, y, f mz),
G(z, z, f mx),G(z, z, f my)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(.)

∀x, y, z ∈ X, where k ∈ [,  ),m ∈N, then f has a unique fixed point in X.

Remark. Corollary . generalizes and extends the corresponding results inMustafa
and Sims [, Corollary .].

Remark . Theorem ., Corollaries . and . generalize and extend the corre-
sponding results in Mustafa et al. [, Corollaries . and .].

Remark . In Theorem ., we have taken: () f = g = h; () A = B = C; () g = h and
B = C; () g = h, B = C = I , several new results can be obtained.

Theorem . Let (X,G) be a complete G-metric space and let f , g , h, A, B and C be six
mappings of X into itself satisfying the following conditions:

(i) f (X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);
(ii) ∀x, y, z ∈ X ,

G(fx, gy,hz) ≤ aG(Ax,By,Cz) + aG(Ax, fx, fx)

+ aG(By, gy, gy) + aG(Cz,hz,hz)

+ aG(Ax, gy, gy) + aG(Ax,hz,hz) + aG(By, fx, fx)

+ aG(By,hz,hz) + aG(Cz, fx, fx) + aG(Cz, gy, gy) (.)

or

G(fx, gy,hz) ≤ aG(Ax,By,Cz) + aG(Ax,Ax, fx)

+ aG(By,By, gy) + aG(Cz,Cz,hz)

+ aG(Ax,Ax, gy) + aG(Ax,Ax,hz) + aG(By,By, fx)

+ aG(By,By,hz) + aG(Cz,Cz, fx) + aG(Cz,Cz, gy), (.)
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where ai ≥  (i = , , , . . . , ) and  ≤ ∑
i= ai <


 . If one of the following conditions

are satisfied:
(a) Either f or A is G-continuous, the pair (f ,A) is weakly commuting, the pairs

(g,B) and (h,C) are weakly compatible;
(b) Either g or B is G-continuous, the pair (g,B) is weakly commuting, the pairs

(f ,A) and (h,C) are weakly compatible;
(c) Either h or C is G-continuous, the pair (h,C) is weakly commuting, the pairs

(f ,A) and (g,B) are weakly compatible.
Then

(I) one of the pairs (f ,A), (g,B) and (h,C) has a coincidence point in X ;
(II) the mappings f , g , h, A, B and C have a unique common fixed point in X .

Proof Suppose that mappings f , g , h, A, B and C satisfy condition (.). For x, y, z ∈ X, let

M(x, y, z) =max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(Ax,By,Cz),G(Ax, fx, fx),
G(By, gy, gy),G(Cz,hz,hz),
G(Ax, gy, gy),G(Ax,hz,hz),
G(By, fx, fx),G(By,hz,hz),
G(Cz, fx, fx),G(Cz, gy, gy)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Then

aG(Ax,By,Cz) + aG(Ax, fx, fx) + aG(By, gy, gy) + aG(Cz,hz,hz)

+ aG(Ax, gy, gy) + aG(Ax,hz,hz) + aG(By, fx, fx)

+ aG(By,hz,hz) + aG(Cz, fx, fx) + aG(Cz, gy, gy)

≤
( ∑

i=

ai

)
M(x, y, z).

Therefore, it follows from (.) that

G(fx, gy,hz) ≤
( ∑

i=

ai

)
M(x, y, z).

Taking k =
∑

i= ai in Theorem ., the conclusion of Theorem . can be obtained from
Theorem . immediately.
The proof using (.) is similar. This completes the proof. �

Remark . Theorem . generalizes and extends the corresponding results inMustafa
et al. [, Theorem .], Mustafa et al. [, Theorem .].

Remark . In Theorem ., we have taken: () A = B = C = I ; () f = g = h; () A =
B = C; () g = h and B = C; () g = h, B = C = I , several new results can be obtained.

Corollary . Let (X,G) be a complete G-metric space and let f , g , h, A, B and C be six
mappings of X into itself satisfying the following conditions:
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(i) f (X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);
(ii) The pairs (f ,A), (g,B) and (h,C) are commuting mappings;
(iii) ∀x, y, z ∈ X ,

G
(
f mx, gmy,hmz

) ≤ aG(Ax,By,Cz) + aG
(
Ax, f mx, f mx

)
+ aG

(
By, gmy, gmy

)
+ aG

(
Cz,hmz,hmz

)
+ aG

(
Ax, gmy, gmy

)
+ aG

(
Ax,hmz,hmz

)
+ aG

(
By, f mx, f mx

)
+ aG

(
By,hmz,hmz

)
+ aG

(
Cz, f mx, f mx

)
+ aG

(
Cz, gmy, gmy

)
(.)

or

G
(
f mx, gmy,hmz

) ≤ aG(Ax,By,Cz) + aG
(
Ax,Ax, f mx

)
+ aG

(
By,By, gmy

)
+ adG

(
Cz,Bz,hmz

)
+ aG

(
Ax,Ax, gmy

)
+ aG

(
Ax,Ax,hmz

)
+ aG

(
By,By, f mx

)
+ aG

(
By,By,hmz

)
+ aG

(
Cz,Cz, f mx

)
+ aG

(
Cz,Cz, gmy

)
, (.)

where m ∈N, ai ≥  (i = , , , . . . , ) and  ≤ ∑
i= ai <


 . Then f , g , h, A, B and C

have a unique common fixed point in X .

Proof The proof follows from Theorem ., and from an argument similar to that used in
Theorem . �

Remark . In Theorem ., we have taken: ()A = B = C = I ; () f = g = h; ()A = B = C;
() g = h and B = C; () g = h, B = C = I , several new results can be obtained.

Remark . Theorems ., . and . in this paper also improve and generalize the
corresponding results of Manro et al. [], Vats et al. [].
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