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1 Introduction
In the last three decades, the theory of variational inequalities has been used as a tool to
study the Nash equilibrium problem for a finite or infinite number of players; see, for ex-
ample, [–] and the references therein. There are two ways to study the Nash equilibrium
problem by using variational inequality technique: () system of variational inequalities;
() variational inequalities defined over the product of sets. If the number of players is
finite, then the system of variational inequalities is equivalent to the variational inequality
defined over the product of sets; see, for example, [, ] and the references therein.
Very recently, Cai and Bu [] considered the following system of two variational inequal-

ities in the setting of Banach spaces.
Let C be a nonempty, closed and convex subset of a real Banach space X, let B,B : C →

X be two nonlinear mappings and μ and μ be two positive constants. The problem of
system of variational inequalities (SVI) [] is to find (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩〈μBy∗ + x∗ – y∗, J(x – x∗)〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗, J(x – y∗)〉 ≥ , ∀x ∈ C,
(.)

where J is the normalized duality mapping. The set of solutions of GSVI (.) is denoted
by GSVI(C,B,B). This system could be useful to study the Nash equilibrium problem
for two players. They proposed an iterative scheme to compute the approximate solutions
of such a system.
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In particular, if X = H , a real Hilbert space, then GSVI (.) reduces to the following
problem of a system of variational inequalities of finding (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩〈μBy∗ + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C,
(.)

where μ and μ are two positive constants. The set of solutions of problem (.) is still
denoted by GSVI(C,B,B).
In this paper, we introduce two-step relaxed extragradient method for solving SVI (.)

and the common fixed point problem of an infinite family {Sn} of nonexpansive mappings
of C into itself. Here, the two-step relaxed extragradient method is based on Korpele-
vich’s extragradient method [] and viscosity approximation method. We first suggest
and analyze an implicit iterative algorithm by the two-step relaxed extragradient method
in a uniformly convex and -uniformly smooth Banach space X, and then another explicit
iterative algorithm in a uniformly convex Banach space X with a uniformly Gâteaux dif-
ferentiable norm. On the other hand, we also propose and analyze a composite explicit
iterative algorithm by the two-step relaxed extragradient method for solving SVI (.) and
the common fixed point problem of {Sn} in a uniformly convex and -uniformly smooth
Banach space. The results presented in this paper improve, extend, supplement and de-
velop the corresponding results that have appeared very recently in the literature.

2 Preliminaries
Let X∗ be the dual of X. The normalized duality mapping J : X → X∗ is defined by

J(x) =
{
x∗ ∈ X∗ :

〈
x,x∗〉 = ‖x‖ = ∥∥x∗∥∥}, ∀x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing.
Let C be a nonempty closed convex subset of a real Banach space X. Amapping A : C →

X is said to be accretive if for each x, y ∈ C there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ ,

where J is the normalized duality mapping. A is said to be α-strongly accretive if for each
x, y ∈ C there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ α‖x – y‖

for some α ∈ (, ). It is said to be β-inverse-strongly-accretive if for each x, y ∈ C there
exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ β‖Ax –Ay‖

for some β > ; and finally A is said to be λ-strictly pseudocontractive if for each x, y ∈ C
there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≤ ‖x – y‖ – λ
∥∥x – y – (Ax –Ay)

∥∥

for some λ ∈ (, ).
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Let D be a subset of C and let Π be a mapping of C into D. Then Π is said to be sunny if

Π
[
Π (x) + t

(
x –Π (x)

)]
= Π (x),

wheneverΠ (x)+ t(x–Π (x)) ∈ C for x ∈ C and t ≥ . AmappingΠ ofC into itself is called
a retraction ifΠ = Π . If amappingΠ ofC into itself is a retraction, thenΠ (z) = z for every
z ∈ R(Π ), where R(Π ) is the range of Π . A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D.
It is well known that if X = H , a Hilbert space, then a sunny nonexpansive retraction

ΠC is coincident with the metric projection from X onto C; that is, ΠC = PC . If C is a
nonempty closed convex subset of a strictly convex and uniformly smooth Banach space
X and if T : C → C is a nonexpansive mapping with the fixed point set Fix(T) �= ∅, then
the set Fix(T) is a sunny nonexpansive retract of C.
The following lemma concerns the sunny nonexpansive retraction.

Lemma . (see []) Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let D be a nonempty subset of C. Let Π be a retraction of C onto D and let J be a
normalized duality mapping on X. Then the following are equivalent:

(i) Π is sunny and nonexpansive;
(ii) ‖Π (x) –Π (y)‖ ≤ 〈x – y, J(Π (x) –Π (y))〉, ∀x, y ∈ C;
(iii) 〈x –Π (x), J(y –Π (x))〉 ≤ , ∀x ∈ C, y ∈D.

Next, we present some more lemmas which are crucial for the proofs of our results.

Lemma . (see []) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ ≤ ( – αn)sn + αnβn + γn, ∀n≥ ,

where {αn}, {βn} and {γn} satisfy the conditions:
(i) {αn} ⊂ [, ] and

∑∞
n= αn = ∞;

(ii) lim supn→∞ βn ≤ ;
(iii) γn ≥ , ∀n≥ , and

∑∞
n= γn <∞.

Then lim supn→∞ sn = .

Lemma . (see []) In a smooth Banach space X, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
, ∀x, y ∈ X.

Lemma . (see []) Let {xn} and {zn} be bounded sequences in a Banach space X and
let {αn} be a sequence in [, ] which satisfies the following condition:

 < lim inf
n→∞ αn ≤ lim sup

n→∞
αn < .

Suppose xn+ = αnxn + ( – αn)zn, ∀n ≥  and lim supn→∞(‖zn+ – zn‖ – ‖xn+ – xn‖) ≤ .
Then limn→∞ ‖zn – xn‖ = .
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Lemma . (see []) Given a number r > . A real Banach space X is uniformly convex if
and only if there exists a continuous strictly increasing function g : [,∞) → [,∞), g() =
, such that

∥∥λx + ( – λ)y
∥∥ ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)g

(‖x – y‖)
for all λ ∈ [, ] and x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r.

Lemma . (see []) Let C be a nonempty closed convex subset of a Banach space X. Let
S,S, . . . be a sequence of mappings of C into itself. Suppose that

∑∞
n= sup{‖Snx – Sn–x‖ :

x ∈ C} < ∞. Then, for each y ∈ C, {Sny} converges strongly to some point of C. More-
over, let S be a mapping of C into itself defined by Sy = limn→∞ Sny for all y ∈ C. Then
limn→∞ sup{‖Sx – Snx‖ : x ∈ C} = .
Let C be a nonempty closed convex subset of a Banach space X and let T : C → C be a

nonexpansive mapping with Fix(T) �= ∅. As previously, let ΞC be a set of all contractions
on C. For t ∈ (, ) and f ∈ ΞC , let xt ∈ C be a unique fixed point of the contraction x �→
tf (x) + ( – t)Tx on C; that is,

xt = tf (xt) + ( – t)Txt .

Lemma. (see []) Let X be a uniformly smooth Banach space, or a reflexive and strictly
convex Banach space with a uniformly Gateaux differentiable norm. Let C be a nonempty
closed convex subset of X , let T : C → C be a nonexpansive mapping with Fix(T) �= ∅, and
f ∈ ΞC . Then the net {xt} defined by xt = tf (xt) + ( – t)Txt converges strongly to a point in
Fix(T). If we define amapping Q :ΞC → Fix(T) by Q(f ) := s– limt→ xt , ∀f ∈ ΞC , then Q(f )
solves the VIP:

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ , ∀f ∈ ΞC ,p ∈ Fix(T).

Lemma. (see []) Let C be a nonempty closed convex subset of a strictly convex Banach
space X. Let {Tn}∞n= be a sequence of nonexpansive mappings on C. Suppose

⋂∞
n= Fix(Tn)

is nonempty. Let {λn} be a sequence of positive numbers with
∑∞

n= λn = . Then a mapping
S on C defined by Sx =

∑∞
n= λnTnx for x ∈ C is well defined, nonexpansive and Fix(S) =⋂∞

n= Fix(Tn) holds.

Lemma . (see []) Let C be a nonempty closed convex subset of a smooth Banach space
X and let themapping Bi : C → X be λi-strictly pseudocontractive and αi-strongly accretive
with αi + λi ≥  for i = , . Then, for μi ∈ (, ], we have

∥∥(I –μiBi)x – (I –μiBi)y
∥∥ ≤

{√
 – αi

λi
+ ( –μi)

(
 +


λi

)}
‖x – y‖, ∀x, y ∈ C,

for i = , . In particular, if  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤ , then I – μiBi is nonexpansive for
i = , .

Lemma . (see []) Let C be a nonempty closed convex subset of a smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C and let the mapping
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Bi : C → X be λi-strictly pseudocontractive and αi-strongly accretive with αi + λi ≥  for
i = , . Let G : C → C be a mapping defined by

G(x) = ΠC
[
ΠC(x –μBx) –μBΠC(x –μBx)

]
, ∀x ∈ C.

If  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤ , then G : C → C is nonexpansive.

Lemma . (see []) Let C be a nonempty closed convex subset of a real -uniformly
smooth Banach space X. Let the mapping Bi : C → X be αi-inverse-strongly accretive. Then
we have

∥∥(I –μiBi)x – (I –μiBi)y
∥∥ ≤ ‖x – y‖ + μi

(
μiκ

 – αi
)‖x – y‖, ∀x, y ∈ C,

for i = , , where μi > . In particular, if  < μi ≤ αi
κ
, then I – μiBi is nonexpansive for

i = , .

Lemma . (see []) Let C be a nonempty closed convex subset of a real -uniformly
smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let
the mapping Bi : C → X be αi-inverse-strongly accretive for i = , . Let ψ : C → C be the
mapping defined by

ψ(x) = ΠC
[
ΠC(x –μBx) –μBΠC(x –μBx)

]
, ∀x ∈ C.

If  < μi ≤ αi
κ

for i = , , then ψ : C → C is nonexpansive.

Lemma . (see []) Let C be a nonempty closed convex subset of a smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C and let the mapping
Bi : C → X be λi-strictly pseudocontractive and αi-strongly accretive for i = , . For given
x∗, y∗ ∈ C, (x∗, y∗) is a solution of GSVI (.) if and only if x∗ = ΠC(y∗ – μBy∗), where
y∗ = ΠC(x∗ –μBx∗).

By Lemma ., we observe that

x∗ = ΠC
[
ΠC

(
x∗ –μBx∗) –μBΠC

(
x∗ –μBx∗)],

which implies that x∗ is a fixed point of the mapping G = ΠC(I –μB)ΠC(I –μB).

Proposition . (see []) Let X be a real smooth and uniform convex Banach space and
let r > .Then there exists a strictly increasing, continuous and convex function g : [, r] →
R, g() =  such that

g
(‖x – y‖) ≤ ‖x‖ – 

〈
x, J(y)

〉
+ ‖y‖, ∀x, y ∈ Br ,

where Br = {x ∈ X : ‖x‖ ≤ r}.
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3 Two-step relaxed extragradient algorithms
In this section, we first suggest and analyze an implicit iterative algorithm by the two-step
relaxed extragradient method in the setting of uniformly convex and -uniformly smooth
Banach spaces, and then another explicit iterative algorithm in the setting of uniformly
convex Banach spaces with a uniformly Gateaux differentiable norm.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex and
-uniformly smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from
X onto C. Let the mapping Bi : C → X be αi-inverse-strongly accretive for i = , . Let
f : C → C be a contraction with coefficient ρ ∈ (, ). Let {Sn}∞n= be an infinite family of
nonexpansive mappings of C into itself such that F =

⋂∞
i= Fix(Si) ∩ Ω �= ∅, where Ω is a

fixed point set of the mapping G. For arbitrarily given x ∈ C, let {xn} be a sequence gener-
ated by

⎧⎨
⎩yn = αnf (yn) + ( – αn)ΠC(I –μB)ΠC(I –μB)xn,

xn+ = βnxn + ( – βn)Snyn, ∀n≥ ,
(.)

where  < μi < αi
κ

for i = , . Suppose that {αn} and {βn} are sequences in (, ) satisfying
the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C and let S be a
mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C and suppose that Fix(S) =⋂∞

i= Fix(Si). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

Proof It is easy to see that scheme (.) can be rewritten as

⎧⎨
⎩yn = αnf (yn) + ( – αn)G(xn),

xn+ = βnxn + ( – βn)Snyn, ∀n≥ .
(.)

Take a fixed p ∈ F arbitrarily. Then by Lemma . we know that p = G(p). Moreover, by
Lemma . we have

‖yn – p‖ =
∥∥αn

(
f (yn) – p

)
+ ( – αn)

(
G(xn) – p

)∥∥
≤ αn

∥∥f (yn) – f (p)
∥∥ + αn

∥∥f (p) – p
∥∥ + ( – αn)

∥∥G(xn) – p
∥∥

≤ αnρ‖yn – p‖ + αn
∥∥f (p) – p

∥∥ + ( – αn)‖xn – p‖,

which hence implies that

‖yn – p‖ ≤
(
 –

 – ρ

 – αnρ
αn

)
‖xn – p‖ + 

 – αnρ
αn

∥∥f (p) – p
∥∥. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/176
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Thus, from (.) we have

‖xn+ – p‖
=

∥∥βn(xn – p) + ( – βn)(Snyn – p)
∥∥

≤ βn‖xn – p‖ + ( – βn)‖Snyn – p‖
≤ βn‖xn – p‖ + ( – βn)‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
{(

 –
 – ρ

 – αnρ
αn

)
‖xn – p‖ + 

 – αnρ
αn

∥∥f (p) – p
∥∥}

=
[
 –

( – βn)( – ρ)
 – αnρ

αn

]
‖xn – p‖ + ( – βn)( – ρ)

 – αnρ
αn

‖f (p) – p‖
 – ρ

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
.

It immediately follows that {xn} is bounded, and so are the sequences {yn}, {G(xn)} due to
(.) and the nonexpansivity of G.
Let us show that ‖xn+ – xn‖ →  as n→ ∞. As a matter of fact, from (.) we have

⎧⎨
⎩yn = αnf (yn) + ( – αn)G(xn),

yn– = αn–f (yn–) + ( – αn–)G(xn–), ∀n≥ .

Simple calculations show that

yn–yn– = αn
(
f (yn)– f (yn–)

)
+(αn–αn–)

(
f (yn–)–G(xn–)

)
+(–αn)

(
G(xn)–G(xn–)

)
.

It follows that

‖yn – yn–‖ ≤ αn
∥∥f (yn) – f (yn–)

∥∥ + |αn – αn–|
∥∥f (yn–) –G(xn–)

∥∥
+ ( – αn)

∥∥G(xn) –G(xn–)
∥∥

≤ αnρ‖yn – yn–‖ + |αn – αn–|
∥∥f (yn–) –G(xn–)

∥∥
+ ( – αn)‖xn – xn–‖,

which hence yields

‖yn – yn–‖ ≤
(
 –

 – ρ

 – αnρ
αn

)
‖xn – xn–‖ + |αn – αn–|

 – αnρ

∥∥f (yn–) –G(xn–)
∥∥. (.)

Thus we have from (.)

‖Snyn – Sn–yn–‖
≤ ‖Snyn – Snyn–‖ + ‖Snyn– – Sn–yn–‖
≤ ‖yn – yn–‖ + ‖Snyn– – Sn–yn–‖

≤
(
 –

 – ρ

 – αnρ
αn

)
‖xn – xn–‖ + |αn – αn–|

 – αnρ

∥∥f (yn–) –G(xn–)
∥∥
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+ ‖Snyn– – Sn–yn–‖

≤ ‖xn – xn–‖ + |αn – αn–|
 – αnρ

∥∥f (yn–) –G(xn–)
∥∥ + ‖Snyn– – Sn–yn–‖,

which implies that

‖Snyn – Sn–yn–‖ – ‖xn – xn–‖

≤ |αn – αn–|
 – αnρ

∥∥f (yn–) –G(xn–)
∥∥ + ‖Snyn– – Sn–yn–‖.

From condition (i) and the assumption on {Sn}, we have

lim sup
n→∞

(‖Snyn – Sn–yn–‖ – ‖xn – xn–‖
) ≤ .

It follows from Lemma . that

lim
n→∞‖Snyn – xn‖ = . (.)

Hence we obtain

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖Snyn – xn‖ = . (.)

Next we show that ‖xn –G(xn)‖ →  as n → ∞.
For simplicity, put q = ΠC(p –μBp), un = ΠC(xn –μBxn) and vn = ΠC(un –μBun).

Then vn =G(xn). From Lemma . we have

‖un – q‖ =
∥∥ΠC(xn –μBxn) –ΠC(p –μBp)

∥∥

≤ ∥∥xn – p –μ(Bxn – Bp)
∥∥

≤ ‖xn – p‖ – μ
(
α – κμ

)‖Bxn – Bp‖ (.)

and

‖vn – p‖ =
∥∥ΠC(un –μBun) –ΠC(q –μBq)

∥∥

≤ ∥∥un – q –μ(Bun – Bq)
∥∥

≤ ‖un – q‖ – μ
(
α – κμ

)‖Bun – Bq‖. (.)

Substituting (.) into (.), we obtain

‖vn – p‖ ≤ ‖xn – p‖ – μ
(
α – κμ

)‖Bxn – Bp‖

– μ
(
α – κμ

)‖Bun – Bq‖. (.)

According to Lemma ., we have from (.)

‖yn – p‖ =
∥∥αn

(
f (yn) – f (p)

)
+ ( – αn)(vn – p) + αn

(
f (p) – p

)∥∥

≤ ∥∥αn
(
f (yn) – f (p)

)
+ ( – αn)(vn – p)

∥∥ + αn
〈
f (p) – p, J(yn – p)

〉

http://www.fixedpointtheoryandapplications.com/content/2013/1/176
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≤ αn
∥∥f (yn) – f (p)

∥∥ + ( – αn)‖vn – p‖ + αn
〈
f (p) – p, J(yn – p)

〉
≤ αnρ‖yn – p‖ + ( – αn)‖vn – p‖ + αn

∥∥f (p) – p
∥∥‖yn – p‖,

which hence yields

‖yn – p‖ ≤
(
 –

 – ρ

 – αnρ
αn

)
‖vn – p‖ + αn

 – αnρ

∥∥f (p) – p
∥∥‖yn – p‖.

From this together with (.) and the convexity of ‖ · ‖ we have

‖xn+ – p‖

=
∥∥βn(xn – p) + ( – βn)(Snyn – p)

∥∥

≤ βn‖xn – p‖ + ( – βn)‖Snyn – p‖

≤ βn‖xn – p‖ + ( – βn)‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
{(

 –
 – ρ

 – αnρ
αn

)
‖vn – p‖ + αn

 – αnρ

∥∥f (p) – p
∥∥‖yn – p‖

}

≤ βn‖xn – p‖ + ( – βn)
(
 –

 – ρ

 – αnρ
αn

)
‖vn – p‖ + αnM

≤ βn‖xn – p‖ + ( – βn)
(
 –

 – ρ

 – αnρ
αn

)[‖xn – p‖

– μ
(
α – κμ

)‖Bxn – Bp‖ – μ
(
α – κμ

)‖Bun – Bq‖
]
+ αnM

=
(
 –

( – βn)( – ρ)
 – αnρ

αn

)
‖xn – p‖

– ( – βn)
(
 –

 – ρ

 – αnρ
αn

)[
μ

(
α – κμ

)‖Bxn – Bp‖

+μ
(
α – κμ

)‖Bun – Bq‖
]
+ αnM

≤ ‖xn – p‖ – ( – βn)
(
 –

 – ρ

 – αnρ
αn

)[
μ

(
α – κμ

)‖Bxn – Bp‖

+μ
(
α – κμ

)‖Bun – Bq‖
]
+ αnM, (.)

where supn≥{ (–βn)
–αnρ

‖f (p) – p‖‖yn – p‖} ≤ M for someM > . So, it follows that

( – βn)
(
 –

 – ρ

 – αnρ
αn

)

× [
μ

(
α – κμ

)‖Bxn – Bp‖ +μ
(
α – κμ

)‖Bun – Bq‖
]

≤ ‖xn – p‖ – ‖xn+ – p‖ + αnM

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αnM.

Since  < μi < αi
κ

for i = , , from conditions (i), (ii) and (.) we obtain

lim
n→∞‖Bxn – Bp‖ =  and lim

n→∞‖Bun – Bq‖ = . (.)
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Utilizing Proposition . and Lemma ., we have

‖un – q‖

=
∥∥ΠC(xn –μBxn) –ΠC(p –μBp)

∥∥

≤ 〈
xn –μBxn – (p –μBp), J(un – q)

〉
=

〈
xn – p, J(un – q)

〉
+μ

〈
Bp – Bxn, J(un – q)

〉
≤ 


[‖xn – p‖ + ‖un – q‖ – g

(∥∥xn – un – (p – q)
∥∥)]

+μ‖Bp – Bxn‖‖un – q‖,

which implies that

‖un – q‖ ≤ ‖xn – p‖ – g
(∥∥xn – un – (p – q)

∥∥)
+ μ‖Bp – Bxn‖‖un – q‖. (.)

In the same way, we derive

‖vn – p‖

=
∥∥ΠC(un –μBun) –ΠC(q –μBq)

∥∥

≤ 〈
un –μBun – (q –μBq), J(vn – p)

〉
=

〈
un – q, J(vn – p)

〉
+μ

〈
Bq – Bun, J(vn – p)

〉
≤ 


[‖un – q‖ + ‖vn – p‖ – g

(∥∥un – vn + (p – q)
∥∥)]

+μ‖Bq – Bun‖‖vn – p‖,

which implies that

‖vn – p‖ ≤ ‖un – q‖ – g
(∥∥un – vn + (p – q)

∥∥)
+ μ‖Bq – Bun‖‖vn – p‖. (.)

Substituting (.) into (.), we get

‖vn – p‖ ≤ ‖xn – p‖ – g
(∥∥xn – un – (p – q)

∥∥)
– g

(∥∥un – vn + (p – q)
∥∥)

+ μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖. (.)

From (.) and (.), we have

‖xn+ – p‖

≤ αnM + βn‖xn – p‖ + ( – βn)
(
 –

 – ρ

 – αnρ
αn

)[‖xn – p‖

– g
(∥∥xn – un – (p – q)

∥∥)
– g

(∥∥un – vn + (p – q)
∥∥)

+ μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖]
≤ αnM +

(
 –

( – βn)( – ρ)
 – αnρ

αn

)
‖xn – p‖

– ( – βn)
(
 –

 – ρ

 – αnρ
αn

)[
g

(∥∥xn – un – (p – q)
∥∥)

+ g
(∥∥un – vn + (p – q)

∥∥)]
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+ μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖

≤ αnM + ‖xn – p‖ – ( – βn)
(
 –

 – ρ

 – αnρ
αn

)[
g

(∥∥xn – un – (p – q)
∥∥)

+ g
(∥∥un – vn + (p – q)

∥∥)]
+ μ‖Bp – Bxn‖‖un – q‖

+ μ‖Bq – Bun‖‖vn – p‖,

which implies that

( – βn)
(
 –

 – ρ

 – αnρ
αn

)[
g

(∥∥xn – un – (p – q)
∥∥)

+ g
(∥∥un – vn + (p – q)

∥∥)]
≤ αnM + ‖xn – p‖ – ‖xn+ – p‖ + μ‖Bp – Bxn‖‖un – q‖

+ μ‖Bq – Bun‖‖vn – p‖
≤ αnM +

(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + μ‖Bp – Bxn‖‖un – q‖
+ μ‖Bq – Bun‖‖vn – p‖.

Utilizing conditions (i), (ii), from (.) and (.) we have

lim
n→∞ g

(∥∥xn – un – (p – q)
∥∥)

= , lim
n→∞ g

(∥∥un – vn + (p – q)
∥∥)

= . (.)

Utilizing the properties of g and g, we deduce that

lim
n→∞

∥∥xn – un – (p – q)
∥∥ = , lim

n→∞
∥∥un – vn + (p – q)

∥∥ = . (.)

From (.) we obtain

‖xn – vn‖ ≤ ∥∥xn – un – (p – q)
∥∥ +

∥∥un – vn + (p – q)
∥∥ →  as n→ ∞.

That is,

lim
n→∞

∥∥xn –G(xn)
∥∥ = . (.)

On the other hand, we observe that

yn –G(xn) = αn
(
f (yn) –G(xn)

)
.

Since αn →  as n→ ∞, we have

lim
n→∞

∥∥yn –G(xn)
∥∥ = . (.)

We note that

∥∥SnG(xn) –G(xn)
∥∥ ≤ ∥∥SnG(xn) – Snyn

∥∥ + ‖Snyn – xn‖ +
∥∥xn –G(xn)

∥∥
≤ ∥∥G(xn) – yn

∥∥ + ‖Snyn – xn‖ +
∥∥xn –G(xn)

∥∥.
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From (.), (.) and (.), we obtain that

lim
n→∞

∥∥SnG(xn) –G(xn)
∥∥ = . (.)

By (.) and Lemma ., we have

∥∥SG(xn) –G(xn)
∥∥ ≤ ∥∥SG(xn) – SnG(xn)

∥∥ +
∥∥SnG(xn) –G(xn)

∥∥
→  as n→ ∞. (.)

In terms of (.) and (.), we have

‖xn – Sxn‖ ≤ ∥∥xn –G(xn)
∥∥ +

∥∥G(xn) – SG(xn)
∥∥ +

∥∥SG(xn) – Sxn
∥∥

≤ 
∥∥xn –G(xn)

∥∥ +
∥∥G(xn) – SG(xn)

∥∥
→  as n→ ∞. (.)

Define a mapping Wx = ( – θ )Sx + θG(x), θ ∈ (, ) is a constant. Then by Lemma . we
have that Fix(W ) = Fix(S)∩ Fix(G) = F . We observe that

‖xn –Wxn‖ =
∥∥( – θ )(xn – Sxn) + θ

(
xn –G(xn)

)∥∥
≤ ( – θ )‖xn – Sxn‖ + θ

∥∥xn –G(xn)
∥∥.

From (.) and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Now, we claim that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ , (.)

where q = s – limt→ xt with xt being a fixed point of the contraction

x �→ tf (x) + ( – t)Wx.

Then xt solves the fixed point equation xt = tf (xt) + ( – t)Wxt . Thus we have

‖xt – xn‖ =
∥∥( – t)(Wxt – xn) + t

(
f (xt) – xn

)∥∥.
By Lemma . we conclude that

‖xt – xn‖

=
∥∥( – t)(Wxt – xn) + t

(
f (xt) – xn

)∥∥

≤ ( – t)‖Wxt – xn‖ + t
〈
f (xt) – xn, J(xt – xn)

〉
≤ ( – t)

(‖Wxt –Wxn‖ + ‖Wxn – xn‖
) + t

〈
f (xt) – xn, J(xt – xn)

〉
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≤ ( – t)
(‖xt – xn‖ + ‖Wxn – xn‖

) + t
〈
f (xt) – xn, J(xt – xn)

〉
= ( – t)

[‖xt – xn‖ + ‖xt – xn‖‖Wxn – xn‖ + ‖Wxn – xn‖
]

+ t
〈
f (xt) – xt , J(xt – xn)

〉
+ t

〈
xt – xn, J(xt – xn)

〉
=

(
 – t + t

)‖xt – xn‖ + fn(t) + t
〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖, (.)

where

fn(t) = ( – t)
(
‖xt – xn‖ + ‖xn –Wxn‖

)‖xn –Wxn‖ →  as n→ ∞. (.)

It follows from (.) that

〈
xt – f (xt), J(xt – xn)

〉 ≤ t

‖xt – xn‖ + 

t
fn(t). (.)

Letting n → ∞ in (.) and noticing (.), we derive

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤ t

M, (.)

where M >  is a constant such that ‖xt – xn‖ ≤ M for all t ∈ (, ) and n ≥ . Taking
t →  in (.), we have

lim sup
t→

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤ .

On the other hand, we have

〈
f (q) – q, J(xn – q)

〉
=

〈
f (q) – q, J(xn – q)

〉
–

〈
f (q) – q, J(xn – xt)

〉
+

〈
f (q) – q, J(xn – xt)

〉
–

〈
f (q) – xt , J(xn – xt)

〉
+

〈
f (q) – xt , J(xn – xt)

〉
–

〈
f (xt) – xt , J(xn – xt)

〉
+

〈
f (xt) – xt , J(xn – xt)

〉
=

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
+

〈
xt – q, J(xn – xt)

〉
+

〈
f (q) – f (xt), J(xn – xt)

〉
+

〈
f (xt) – xt , J(xn – xt)

〉
.

It follows that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ lim sup
n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
+ ‖xt – q‖ lim sup

n→∞
‖xn – xt‖ + ρ‖q – xt‖ lim sup

n→∞
‖xn – xt‖

+ lim sup
n→∞

〈
f (xt) – xt , J(xn – xt)

〉
.

Taking into account that xt → q as t → , we have

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
= lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
≤ lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
. (.)
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Since X has a uniformly Fréchet differentiable norm, the duality mapping J is norm-to-
norm uniformly continuous on bounded subsets ofX. Consequently, the two limits are in-
terchangeable and hence (.) holds. From (.) and (.) we get (yn – q) – (xn – q) → .
Noticing that J is norm-to-norm uniformly continuous on bounded subsets of X, we de-
duce from (.) that

lim sup
n→∞

〈
f (q) – q, J(yn – q)

〉
= lim sup

n→∞

(〈
f (q) – q, J(xn – q)

〉
+

〈
f (q) – q, J(yn – q) – J(xn – q)

〉)
= lim sup

n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ . (.)

Finally, let us show that xn → q as n→ ∞. We observe that

‖yn – q‖

=
∥∥αn

(
f (yn) – f (q)

)
+ ( – αn)

(
G(xn) – q

)
+ αn

(
f (q) – q

)∥∥

≤ ∥∥αn
(
f (yn) – f (q)

)
+ ( – αn)

(
G(xn) – q

)∥∥ + αn
〈
f (q) – q, J(yn – q)

〉
≤ αn

∥∥f (yn) – f (q)
∥∥ + ( – αn)

∥∥G(xn) – q
∥∥ + αn

〈
f (q) – q, J(yn – q)

〉
≤ αnρ‖yn – q‖ + ( – αn)‖xn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
,

which implies that

‖yn – q‖ ≤
(
 –

 – ρ

 – αnρ
αn

)
‖xn – q‖ + αn( – ρ)

 – αnρ
· 〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

By the convexity of ‖ · ‖ and (.), we get

‖xn+ – q‖ ≤ βn‖xn – q‖ + ( – βn)‖yn – q‖,

which together with (.) leads to

‖xn+ – q‖ ≤ βn‖xn – q‖ + ( – βn)
{(

 –
 – ρ

 – αnρ
αn

)
‖xn – q‖

+
αn( – ρ)
 – αnρ

· 〈f (q) – q, J(yn – q)〉
 – ρ

}

=
[
 –

( – βn)( – ρ)
 – αnρ

αn

]
‖xn – q‖

+
( – βn)( – ρ)

 – αnρ
αn · 〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

Applying Lemma . to (.), we obtain that xn → q as n → ∞. This completes the
proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X
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onto C. Let the mapping Bi : C → X be αi-inverse-strongly accretive for i = , . Let f : C →
C be a contraction with coefficient ρ ∈ (, ). Let S be a nonexpansive mapping of C into
itself such that F = Fix(S) ∩ Ω �= ∅, where Ω is the fixed point set of the mapping G. For
arbitrarily given x ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩yn = αnf (yn) + ( – αn)ΠC(I –μB)ΠC(I –μB)xn,

xn+ = βnxn + ( – βn)Syn, ∀n≥ ,

where  < μi < αi
κ

for i = , . Suppose that {αn} and {βn} are sequences in (, ) satisfying
the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. LetΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be λi-strictly pseudocontractive
and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a contraction with
coefficient ρ ∈ (, ). Let {Sn}∞n= be an infinite family of nonexpansive mappings of C into
itself such that F =

⋂∞
i= Fix(Si)∩ Ω �= ∅, where Ω is a fixed point set of the mapping G. For

arbitrarily given x ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩yn = αnxn + ( – αn)ΠC(I –μB)ΠC(I –μB)xn,

xn+ = βnf (xn) + ( – βn)Snyn, ∀n≥ ,
(.)

where  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤  for i = , . Suppose that {αn} and {βn} are sequences in
(, ) satisfying the following conditions:

(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn =  and

∑∞
n= βn = ∞;

(iii)
∑∞

n= |αn – αn–| < ∞ or limn→∞ |αn – αn–|/βn = ;
(iv)

∑∞
n= |βn – βn–| <∞ or limn→∞ βn–/βn = .

Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C and let S be a
mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C and suppose that Fix(S) =⋂∞

i= Fix(Si). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

Proof It is easy to see that scheme (.) can be rewritten as

⎧⎨
⎩yn = αnxn + ( – αn)G(xn),

xn+ = βnf (xn) + ( – βn)Snyn, ∀n≥ .
(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/176


Ceng et al. Fixed Point Theory and Applications 2013, 2013:176 Page 16 of 34
http://www.fixedpointtheoryandapplications.com/content/2013/1/176

Take a fixed p ∈ F arbitrarily. Then by Lemma . we know that p = G(p). Moreover, by
Lemma . we have

‖yn – p‖ =
∥∥αn(xn – p) + ( – αn)

(
G(xn) – p

)∥∥
≤ αn‖xn – p‖ + ( – αn)

∥∥G(xn) – p
∥∥

≤ αn‖xn – p‖ + ( – αn)‖xn – p‖
= ‖xn – p‖. (.)

From (.) we obtain

‖xn+ – p‖ =
∥∥βn

(
f (xn) – p

)
+ ( – βn)(Snyn – p)

∥∥
≤ βn

(∥∥f (xn) – f (p)
∥∥ +

∥∥f (p) – p
∥∥)

+ ( – βn)‖Snyn – p‖
≤ βnρ‖xn – p‖ + βn

∥∥f (p) – p
∥∥ + ( – βn)‖yn – p‖

≤ βnρ‖xn – p‖ + βn
∥∥f (p) – p

∥∥ + ( – βn)‖xn – p‖
=

(
 – βn( – ρ)

)‖xn – p‖ + βn
∥∥f (p) – p

∥∥
=

(
 – βn( – ρ)

)‖xn – p‖ + βn( – ρ) · ‖f (p) – p‖
 – ρ

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
,

which implies that {xn} is bounded. By Lemma . we know from (.) that {G(xn)} and
{yn} both are bounded.
Let us show that ‖xn+ – xn‖ →  and ‖xn – yn‖ →  as n→ ∞. As a matter of fact, from

(.) we have

⎧⎨
⎩yn = αnxn + ( – αn)G(xn),

yn– = αn–xn– + ( – αn–)G(xn–), ∀n≥ .

Simple calculations show that

yn – yn– = αn(xn – xn–) + (αn – αn–)
(
xn– –G(xn–)

)
+ ( – αn)

(
G(xn) –G(xn–)

)
.

It follows that

‖yn – yn–‖ ≤ αn‖xn – xn–‖ + |αn – αn–|
∥∥xn– –G(xn–)

∥∥
+ ( – αn)

∥∥G(xn) –G(xn–)
∥∥

≤ αn‖xn – xn–‖ + |αn – αn–|
∥∥xn– –G(xn–)

∥∥
+ ( – αn)‖xn – xn–‖

= ‖xn – xn–‖ + |αn – αn–|
∥∥xn– –G(xn–)

∥∥. (.)
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Furthermore, from (.) we have

⎧⎨
⎩xn+ = βnf (xn) + ( – βn)Snyn,

xn = βn–f (xn–) + ( – βn–)Sn–yn–, ∀n≥ .

Also, simple calculations show that

xn+ – xn = βn
(
f (xn) – f (xn–)

)
+ (βn – βn–)

(
f (xn–) – Sn–yn–

)
+ ( – βn)(Snyn – Sn–yn–). (.)

It follows from (.) and (.) that

‖xn+ – xn‖ ≤ βn
∥∥f (xn) – f (xn–)

∥∥ + |βn – βn–|
∥∥f (xn–) – Sn–yn–

∥∥
+ ( – βn)‖Snyn – Sn–yn–‖

≤ βnρ‖xn – xn–‖ + |βn – βn–|
∥∥f (xn–) – Sn–yn–

∥∥
+ ( – βn)

(‖Snyn – Snyn–‖ + ‖Snyn– – Sn–yn–‖
)

≤ βnρ‖xn – xn–‖ + |βn – βn–|
∥∥f (xn–) – Sn–yn–

∥∥
+ ( – βn)

(‖yn – yn–‖ + ‖Snyn– – Sn–yn–‖
)

≤ βnρ‖xn – xn–‖ + |βn – βn–|
∥∥f (xn–) – Sn–yn–

∥∥
+ ( – βn)

[‖xn – xn–‖ + |αn – αn–|
∥∥xn– –G(xn–)

∥∥]
+ ‖Snyn– – Sn–yn–‖

=
(
 – βn( – ρ)

)‖xn – xn–‖ + |βn – βn–|
∥∥f (xn–) – Sn–yn–

∥∥
+ |αn – αn–|

∥∥xn– –G(xn–)
∥∥ + ‖Snyn– – Sn–yn–‖

≤ (
 – βn( – ρ)

)‖xn – xn–‖ +M
(|αn – αn–| + |βn – βn–|

)
+ ‖Snyn– – Sn–yn–‖, (.)

where supn≥{‖f (xn) – Snyn‖ + ‖xn – G(xn)‖} ≤ M for some M > . Utilizing Lemma .,
from conditions (ii)-(iv) and the assumption on {Sn}, we deduce that

lim
n→∞‖xn+ – xn‖ = . (.)

Since {xn} and {G(xn)} both are bounded, by Lemma . there exists a continuous strictly
increasing function g : [,∞)→ [,∞), g() =  such that for p ∈ F

‖yn – p‖

≤ αn‖xn – p‖ + ( – αn)
∥∥G(xn) – p

∥∥ – αn( – αn)g
(∥∥xn –G(xn)

∥∥)
≤ αn‖xn – p‖ + ( – αn)‖xn – p‖ – αn( – αn)g

(∥∥xn –G(xn)
∥∥)

= ‖xn – p‖ – αn( – αn)g
(∥∥xn –G(xn)

∥∥)
,
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which together with (.) implies that

‖xn+ – p‖

=
∥∥βn

(
f (xn) – f (p)

)
+ ( – βn)(Snyn – p) + βn

(
f (p) – p

)∥∥

≤ ∥∥βn
(
f (xn) – f (p)

)
+ ( – βn)(Snyn – p)

∥∥ + βn
〈
f (p) – p, J(xn+ – p)

〉
≤ βn

∥∥f (xn) – f (p)
∥∥ + ( – βn)‖Snyn – p‖ + βn

∥∥f (p) – p
∥∥‖xn+ – p‖

≤ βnρ
‖xn – p‖ + ( – βn)‖yn – p‖ + βn

∥∥f (p) – p
∥∥‖xn+ – p‖

≤ βnρ‖xn – p‖ + ( – βn)
[‖xn – p‖ – αn( – αn)g

(∥∥xn –G(xn)
∥∥)]

+ βn
∥∥f (p) – p

∥∥‖xn+ – p‖
=

(
 – βn( – ρ)

)‖xn – p‖ – ( – βn)αn( – αn)g
(∥∥xn –G(xn)

∥∥)
+ βn

∥∥f (p) – p
∥∥‖xn+ – p‖

≤ ‖xn – p‖ – ( – βn)αn( – αn)g
(∥∥xn –G(xn)

∥∥)
+ βn

∥∥f (p) – p
∥∥‖xn+ – p‖. (.)

It immediately follows that

( – βn)αn( – αn)g
(∥∥xn –G(xn)

∥∥)
≤ ‖xn – p‖ – ‖xn+ – p‖ + βn

∥∥f (p) – p
∥∥‖xn+ – p‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + βn
∥∥f (p) – p

∥∥‖xn+ – p‖.

Since βn → , ‖xn+ – xn‖ →  and  < lim infn→∞ αn ≤ lim supn→∞ αn < , we get
limn→∞ g(‖xn –G(xn)‖) =  and hence

lim
n→∞

∥∥xn –G(xn)
∥∥ = . (.)

Thus, from (.) and (.) it follows that

lim
n→∞‖yn – xn‖ = lim

n→∞( – αn)
∥∥G(xn) – xn

∥∥ = . (.)

On the other hand, we observe that

xn+ – xn = βn
(
f (xn) – xn

)
+ ( – βn)(Snyn – xn)

= βn
(
f (xn) – xn

)
+ ( – βn)(Snyn – yn) + ( – βn)(yn – xn).

Then we have

( – βn)‖Snyn – yn‖
=

∥∥xn+ – xn – βn
(
f (xn) – xn

)
– ( – βn)(yn – xn)

∥∥
≤ ‖xn+ – xn‖ + βn

∥∥f (xn) – xn
∥∥ + ( – βn)‖yn – xn‖

≤ ‖xn+ – xn‖ + βn
∥∥f (xn) – xn

∥∥ + ‖yn – xn‖.
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Since βn → , ‖xn+ – xn‖ →  and ‖xn – yn‖ →  as n→ ∞, we get

lim
n→∞‖Snyn – yn‖ =  and lim

n→∞‖Snyn – xn‖ = . (.)

In the meantime, since ‖xn –G(xn)‖ →  and ‖xn – yn‖ →  as n → ∞, we also get

lim
n→∞

∥∥yn –G(xn)
∥∥ = . (.)

We note that

∥∥SnG(xn) –G(xn)
∥∥ ≤ ∥∥SnG(xn) – Snyn

∥∥ + ‖Snyn – xn‖ +
∥∥xn –G(xn)

∥∥
≤ ∥∥G(xn) – yn

∥∥ + ‖Snyn – xn‖ +
∥∥xn –G(xn)

∥∥.
From (.), (.) and (.), we obtain

lim
n→∞

∥∥SnG(xn) –G(xn)
∥∥ = . (.)

By (.) and Lemma ., we have

∥∥SG(xn) –G(xn)
∥∥ ≤ ∥∥SG(xn) – SnG(xn)

∥∥ +
∥∥SnG(xn) –G(xn)

∥∥
→  as n→ ∞. (.)

In terms of (.) and (.), we have

‖xn – Sxn‖ ≤ ∥∥xn –G(xn)
∥∥ +

∥∥G(xn) – SG(xn)
∥∥ +

∥∥SG(xn) – Sxn
∥∥

≤ 
∥∥xn –G(xn)

∥∥ +
∥∥G(xn) – SG(xn)

∥∥
→  as n→ ∞. (.)

Define a mapping Wx = ( – θ )Sx + θG(x), θ ∈ (, ) is a constant. Then by Lemma . we
have that Fix(W ) = Fix(S)∩ Fix(G) = F . We observe that

‖xn –Wxn‖ =
∥∥( – θ )(xn – Sxn) + θ

(
xn –G(xn)

)∥∥
≤ ( – θ )‖xn – Sxn‖ + θ

∥∥xn –G(xn)
∥∥.

From (.) and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Now, we claim that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ , (.)

where q = s– limt→ xt with xt being the fixed point of the contraction x �→ tf (x)+(–t)Wx.
Then xt solves the fixed point equation xt = tf (xt) + ( – t)Wxt . Utilizing the arguments
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similar to those of (.) in the proof of Theorem ., we can deduce that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
= lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
≤ lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
.

Since X has a uniformly Gâteaux differentiable norm, the duality mapping J is norm-to-
weak∗ uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable and hence the following holds:

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ . (.)

From (.) we get (xn+ – q) – (xn – q) → . Noticing the norm-to-weak∗ uniform conti-
nuity of J on bounded subsets of X, we deduce from (.) that

lim sup
n→∞

〈
f (q) – q, J(xn+ – q)

〉
= lim sup

n→∞
(〈
f (q) – q, J(xn+ – q) – J(xn – q)

〉
+

〈
f (q) – q, J(xn+ – q)

〉)
= lim sup

n→∞
〈
f (q) – q, J(xn – q)

〉 ≤ . (.)

Finally, let us show that xn → q as n→ ∞. We observe that

‖yn – q‖ =
∥∥αn(xn – q) + ( – αn)

(
G(xn) – q

)∥∥
≤ αn‖xn – q‖ + ( – αn)‖xn – q‖ = ‖xn – q‖,

and

‖xn+ – q‖

=
∥∥βn

(
f (xn) – f (q)

)
+ ( – βn)(Snyn – q) + βn

(
f (q) – q

)∥∥

≤ ∥∥βn
(
f (xn) – f (q)

)
+ ( – βn)(Snyn – q)

∥∥ + βn
〈
f (q) – q, J(xn+ – q)

〉
≤ βn

∥∥f (xn) – f (q)
∥∥ + ( – βn)‖Snyn – q‖ + βn

〈
f (q) – q, J(xn+ – q)

〉
≤ βnρ‖xn – q‖ + ( – βn)‖yn – q‖ + βn

〈
f (q) – q, J(xn+ – q)

〉
≤ βnρ‖xn – q‖ + ( – βn)‖xn – q‖ + βn

〈
f (q) – q, J(xn+ – q)

〉
=

(
 – βn( – ρ)

)‖xn – q‖ + βn
〈
f (q) – q, J(xn+ – q)

〉
. (.)

Since
∑∞

n= βn = ∞ and lim supn→∞〈f (q) – q, J(xn+ – q)〉 ≤ , by Lemma . we conclude
from (.) that xn → q as n→ ∞. This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. Let ΠC be a sunny nonex-
pansive retraction from X onto C. Let the mapping Bi : C → X be λi-strictly pseudocon-
tractive and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a contrac-
tion with coefficient ρ ∈ (, ). Let S be a nonexpansive mapping of C into itself such that
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F = Fix(S) ∩ Ω �= ∅, where Ω is a fixed point set of the mapping G. For arbitrarily given
x ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩yn = αnxn + ( – αn)ΠC(I –μB)ΠC(I –μB)xn,

xn+ = βnf (xn) + ( – βn)Syn, ∀n≥ ,

where  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤  for i = , . Suppose that {αn} and {βn} are sequences in
(, ) satisfying the following conditions:

(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn =  and

∑∞
n= βn = ∞;

(iii)
∑∞

n= |αn – αn–| < ∞ or limn→∞ |αn – αn–|/βn = ;
(iv)

∑∞
n= |βn – βn–| <∞ or limn→∞ βn–/βn = .

Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

Remark . Theorems . and . improve, extend, supplement and develop [, Theo-
rem .] in the following aspects. Although the iterative algorithm in Theorem . is an
implicit algorithm, we can derive the strong convergence of the proposed algorithm un-
der the same conditions on the parameter sequences {αn}, {βn} as in [, Theorem .].
The assumption of the uniformly convex and -uniformly smooth Banach space X in [,
Theorem .] is weakened to the one of the uniformly convex Banach space X having a
uniformly Gâteaux differentiable norm in Theorem ..

4 Relaxed extragradient composite algorithms
In this section, we propose and analyze a composite explicit iterative algorithm by the
two-step relaxed extragradient method for solving GSVI (.) and the common fixed point
problem of an infinite family of nonexpansive self-mappings {Sn} in a -uniformly smooth
and uniformly convex Banach space.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X
onto C. Let the mapping Bi : C → X be αi-inverse-strongly accretive for i = , . Let f : C →
C be a contraction with coefficient ρ ∈ (, ). Let {Sn}∞n= be an infinite family of nonexpan-
sive mappings of C into itself such that F =

⋂∞
i= Fix(Si) ∩ Ω �= ∅, where Ω is a fixed point

set of the mapping G. For arbitrarily given x ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)SnΠC(I –μB)ΠC(I –μB)xn,

xn+ = βnyn + ( – βn)SnΠC(I –μB)ΠC(I –μB)yn, ∀n≥ ,
(.)

where  < μi < αi
κ

for i = , . Suppose that {αn} and {βn} are sequences in (, ] satisfying
the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) {βn} ⊂ [a, ] for some a ∈ (, );
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(iii)
∑∞

n= |αn – αn–| < ∞ or limn→∞ αn–/αn = ;
(iv)

∑∞
n= |βn – βn–| <∞ or limn→∞ |βn – βn–|/αn = .

Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C and let S be a
mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C and suppose that Fix(S) =⋂∞

i= Fix(Si). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

Proof It is easy to see that scheme (.) can be rewritten as

⎧⎨
⎩yn = αnf (xn) + ( – αn)SnG(xn),

xn+ = βnyn + ( – βn)SnG(yn), ∀n≥ .
(.)

Take a fixed p ∈ F arbitrarily. Then by Lemma . we know that p = G(p). Moreover, by
Lemma . we have

‖yn – p‖ =
∥∥αn

(
f (xn) – p

)
+ ( – αn)

(
SnG(xn) – p

)∥∥
≤ αn

∥∥f (xn) – f (p)
∥∥ + αn

∥∥f (p) – p
∥∥ + ( – αn)

∥∥SnG(xn) – p
∥∥

≤ αnρ‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + ( – αn)
∥∥G(xn) – p

∥∥
≤ αnρ‖xn – p‖ + αn

∥∥f (p) – p
∥∥ + ( – αn)‖xn – p‖

=
(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥. (.)

From (.) we have

‖xn+ – p‖ =
∥∥βn(yn – p) + ( – βn)

(
SnG(yn) – p

)∥∥
≤ βn‖yn – p‖ + ( – βn)

∥∥SnG(yn) – p
∥∥

≤ βn‖yn – p‖ + ( – βn)
∥∥G(yn) – p

∥∥
≤ βn‖yn – p‖ + ( – βn)‖yn – p‖
= ‖yn – p‖
≤ (

 – αn( – ρ)
)‖xn – p‖ + αn

∥∥f (p) – p
∥∥

=
(
 – αn( – ρ)

)‖xn – p‖ + αn( – ρ)
‖f (p) – p‖

 – ρ

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
.

It immediately follows that {xn} is bounded, and so are the sequences {yn}, {G(xn)}, {G(yn)}
due to (.) and the nonexpansivity of G.
Let us show that ‖xn+ – xn‖ →  as n→ ∞. As a matter of fact, from (.) we have

⎧⎨
⎩yn = αnf (xn) + ( – αn)SnG(xn),

yn– = αn–f (xn–) + ( – αn–)Sn–G(xn–), ∀n≥ .
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Simple calculations show that

yn – yn– = αn
(
f (xn) – f (xn–)

)
+ (αn – αn–)

(
f (xn–) – Sn–G(xn–)

)
+ ( – αn)

(
SnG(xn) – Sn–G(xn–)

)
.

It follows that

‖yn – yn–‖ ≤ αn
∥∥f (xn) – f (xn–)

∥∥ + |αn – αn–|
∥∥f (xn–) – Sn–G(xn–)

∥∥
+ ( – αn)

∥∥SnG(xn) – Sn–G(xn–)
∥∥

≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – Sn–G(xn–)

∥∥
+ ( – αn)

(∥∥SnG(xn) – SnG(xn–)
∥∥ +

∥∥SnG(xn–) – Sn–G(xn–)
∥∥)

≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – Sn–G(xn–)

∥∥
+ ( – αn)

(∥∥G(xn) –G(xn–)
∥∥ +

∥∥SnG(xn–) – Sn–G(xn–)
∥∥)

≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – Sn–G(xn–)

∥∥
+ ( – αn)

(‖xn – xn–‖ +
∥∥SnG(xn–) – Sn–G(xn–)

∥∥)
≤ (

 – αn( – ρ)
)‖xn – xn–‖ + |αn – αn–|

∥∥f (xn–) – Sn–G(xn–)
∥∥

+
∥∥SnG(xn–) – Sn–G(xn–)

∥∥. (.)

So, we have from (.)

∥∥SnG(yn) – Sn–G(yn–)
∥∥

≤ ∥∥SnG(yn) – SnG(yn–)
∥∥ +

∥∥SnG(yn–) – Sn–G(yn–)
∥∥

≤ ∥∥G(yn) –G(yn–)
∥∥ +

∥∥SnG(yn–) – Sn–G(yn–)
∥∥

≤ ‖yn – yn–‖ +
∥∥SnG(yn–) – Sn–G(yn–)

∥∥. (.)

On the other hand, from (.) we have

⎧⎨
⎩xn+ = βnyn + ( – βn)SnG(yn),

xn = βn–yn– + ( – βn–)Sn–G(yn–).

Also, simple calculations show that

xn+ – xn = βn(yn – yn–) + (βn – βn–)
(
yn– – Sn–G(yn–)

)
+ ( – βn)

(
SnG(yn) – Sn–G(yn–)

)
. (.)

Thus, it follows from (.)-(.) that for all n≥ 

‖xn+ – xn‖
≤ βn‖yn – yn–‖ + |βn – βn–|

∥∥yn– – Sn–G(yn–)
∥∥
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+ ( – βn)
∥∥SnG(yn) – Sn–G(yn–)

∥∥
≤ βn‖yn – yn–‖ + |βn – βn–|

∥∥yn– – Sn–G(yn–)
∥∥

+ ( – βn)
(‖yn – yn–‖ +

∥∥SnG(yn–) – Sn–G(yn–)
∥∥)

≤ ‖yn – yn–‖ + |βn – βn–|
∥∥yn– – Sn–G(yn–)

∥∥
+

∥∥SnG(yn–) – Sn–G(yn–)
∥∥

≤ (
 – αn( – ρ)

)‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – Sn–G(xn–)

∥∥
+

∥∥SnG(xn–) – Sn–G(xn–)
∥∥ + |βn – βn–|

∥∥yn– – Sn–G(yn–)
∥∥

+
∥∥SnG(yn–) – Sn–G(yn–)

∥∥
≤ (

 – αn( – ρ)
)‖xn – xn–‖ +M

(|αn – αn–| + |βn – βn–|
)

+
∥∥SnG(xn–) – Sn–G(xn–)

∥∥ +
∥∥SnG(yn–) – Sn–G(yn–)

∥∥,
where supn≥{‖f (xn) – SnG(xn)‖ + ‖yn – SnG(yn)‖} ≤ M for some M > . Utilizing Lem-
ma ., we deduce from conditions (i), (iii), (iv) and the assumption on {Sn} that

lim sup
n→∞

‖xn+ – xn‖ = . (.)

In terms of (.), we also have that ‖yn – yn–‖ →  as n→ ∞.
Let us show that ‖xn–yn‖ and ‖xn–SnG(xn)‖ →  as n→ ∞. Indeed, since yn = αnf (xn)+

( – αn)SnG(xn), we get

lim
n→∞( – αn)

∥∥SnG(xn) – yn
∥∥ = lim

n→∞αn
∥∥f (xn) – yn

∥∥ = ,

which together with αn →  implies that

lim
n→∞

∥∥SnG(xn) – yn
∥∥ = . (.)

Observe that

‖xn+ – yn‖ = ( – βn)
∥∥SnG(yn) – yn

∥∥
≤ ( – βn)

(∥∥SnG(yn) – SnG(xn)
∥∥ +

∥∥SnG(xn) – yn
∥∥)

≤ ( – βn)
(∥∥G(yn) –G(xn)

∥∥ +
∥∥SnG(xn) – yn

∥∥)
≤ ( – βn)

(‖yn – xn‖ +
∥∥SnG(xn) – yn

∥∥)
≤ ( – βn)

(‖yn – xn+‖ + ‖xn+ – xn‖ +
∥∥SnG(xn) – yn

∥∥)
,

which together with condition (ii) implies that

‖xn+ – yn‖ ≤  – βn

βn

(‖xn+ – xn‖ +
∥∥SnG(xn) – yn

∥∥)

≤  – a
a

(‖xn+ – xn‖ +
∥∥SnG(xn) – yn

∥∥)
.
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Obviously, from (.) and (.) we know that ‖xn+ – yn‖ →  as n→ ∞. This implies that

‖xn – yn‖ ≤ ‖xn – xn+‖ + ‖xn+ – yn‖ →  as n→ ∞. (.)

Also, from (.) and (.) we have

∥∥xn – SnG(xn)
∥∥ ≤ ‖xn – yn‖ +

∥∥yn – SnG(xn)
∥∥ →  as n→ ∞. (.)

Let us show that ‖xn – G(xn)‖ →  as n → ∞. Indeed, for simplicity, put q = ΠC(p –
μBp), un = ΠC(xn – μBxn) and vn = ΠC(un – μBun). Then vn = G(xn). From
Lemma . we have

‖un – q‖ =
∥∥ΠC(xn –μBxn) –ΠC(p –μBp)

∥∥

≤ ∥∥xn – p –μ(Bxn – Bp)
∥∥

≤ ‖xn – p‖ – μ
(
α – κμ

)‖Bxn – Bp‖, (.)

and

‖vn – p‖ =
∥∥ΠC(un –μBun) –ΠC(q –μBq)

∥∥

≤ ∥∥un – q –μ(Bun – Bq)
∥∥

≤ ‖un – q‖ – μ
(
α – κμ

)‖Bun – Bq‖. (.)

Substituting (.) into (.), we obtain

‖vn – p‖ ≤ ‖xn – p‖ – μ
(
α – κμ

)‖Bxn – Bp‖

– μ
(
α – κμ

)‖Bun – Bq‖. (.)

According to Lemma ., we have from (.)

‖yn – p‖ =
∥∥αn

(
f (xn) – f (p)

)
+ ( – αn)(Snvn – p) + αn

(
f (p) – p

)∥∥

≤ ∥∥αn
(
f (xn) – f (p)

)
+ ( – αn)(Snvn – p)

∥∥ + αn
〈
f (p) – p, J(yn – p)

〉
≤ αn

∥∥f (xn) – f (p)
∥∥ + ( – αn)‖Snvn – p‖ + αn

〈
f (p) – p, J(yn – p)

〉
≤ αnρ

‖xn – p‖ + ( – αn)‖vn – p‖ + αn
〈
f (p) – p, J(yn – p)

〉
≤ αnρ‖xn – p‖ + ( – αn)‖vn – p‖ + αn

∥∥f (p) – p
∥∥‖yn – p‖,

which together with (.) and the convexity of ‖ · ‖ implies that

‖xn+ – p‖

=
∥∥βn(yn – p) + ( – βn)

(
SnG(yn) – p

)∥∥

≤ βn‖yn – p‖ + ( – βn)
∥∥SnG(yn) – p

∥∥

≤ βn‖yn – p‖ + ( – βn)
∥∥G(yn) – p

∥∥
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≤ βn‖yn – p‖ + ( – βn)‖yn – p‖

= ‖yn – p‖

≤ αnρ‖xn – p‖ + ( – αn)‖vn – p‖ + αn
∥∥f (p) – p

∥∥‖yn – p‖
≤ αnρ‖xn – p‖ + ( – αn)‖vn – p‖ +Mαn

≤ αnρ‖xn – p‖ + ( – αn)
[‖xn – p‖ – μ

(
α – κμ

)‖Bxn – Bp‖

– μ
(
α – κμ

)‖Bun – Bq‖
]
+Mαn

=
(
 – αn( – ρ)

)‖xn – p‖ – ( – αn)
[
μ

(
α – κμ

)‖Bxn – Bp‖

+μ
(
α – κμ

)‖Bun – Bq‖
]
+Mαn

≤ ‖xn – p‖ – ( – αn)
[
μ

(
α – κμ

)‖Bxn – Bp‖

+μ
(
α – κμ

)‖Bun – Bq‖
]
+Mαn, (.)

where supn≥{‖f (p) – p‖‖yn – p‖} ≤ M for someM > . So, it follows that

( – αn)
[
μ

(
α – κμ

)‖Bxn – Bp‖ +μ
(
α – κμ

)‖Bun – Bq‖
]

≤ ‖xn – p‖ – ‖xn+ – p‖ +Mαn

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ +Mαn.

Since  < μi < αi
κ

for i = , , from (.) and αn →  we obtain

lim
n→∞‖Bxn – Bp‖ =  and lim

n→∞‖Bun – Bq‖ = . (.)

Utilizing Proposition . and Lemma ., we have

‖un – q‖ =
∥∥ΠC(xn –μBxn) –ΠC(p –μBp)

∥∥

≤ 〈
xn –μBxn – (p –μBp), J(un – q)

〉
=

〈
xn – p, J(un – q)

〉
+μ

〈
Bp – Bxn, J(un – q)

〉
≤ 


[‖xn – p‖ + ‖un – q‖ – g

(∥∥xn – un – (p – q)
∥∥)]

+μ‖Bp – Bxn‖‖un – q‖,

which implies that

‖un – q‖ ≤ ‖xn – p‖ – g
(∥∥xn – un – (p – q)

∥∥)
+ μ‖Bp – Bxn‖‖un – q‖. (.)

In the same way, we derive

‖vn – p‖ =
∥∥ΠC(un –μBun) –ΠC(q –μBq)

∥∥

≤ 〈
un –μBun – (q –μBq), J(vn – p)

〉
=

〈
un – q, J(vn – p)

〉
+μ

〈
Bq – Bun, J(vn – p)

〉
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≤ 

[‖un – q‖ + ‖vn – p‖ – g

(∥∥un – vn + (p – q)
∥∥)]

+μ‖Bq – Bun‖‖vn – p‖,

which implies that

‖vn – p‖ ≤ ‖un – q‖ – g
(∥∥un – vn + (p – q)

∥∥)
+ μ‖Bq – Bun‖‖vn – p‖. (.)

Substituting (.) into (.), we get

‖vn – p‖ ≤ ‖xn – p‖ – g
(∥∥xn – un – (p – q)

∥∥)
– g

(∥∥un – vn + (p – q)
∥∥)

+ μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖. (.)

From (.) and (.), we have

‖xn+ – p‖

≤ αnρ‖xn – p‖ + ( – αn)‖vn – p‖ +Mαn

≤ αnρ‖xn – p‖ + ( – αn)
[‖xn – p‖ – g

(∥∥xn – un – (p – q)
∥∥)

– g
(∥∥un – vn + (p – q)

∥∥)
+ μ‖Bp – Bxn‖‖un – q‖

+ μ‖Bq – Bun‖‖vn – p‖] +Mαn

≤ (
 – αn( – ρ)

)‖xn – p‖ – ( – αn)
[
g

(∥∥xn – un – (p – q)
∥∥)

+ g
(∥∥un – vn + (p – q)

∥∥)]
+ μ‖Bp – Bxn‖‖un – q‖

+ μ‖Bq – Bun‖‖vn – p‖ +Mαn

≤ ‖xn – p‖ – ( – αn)
[
g

(∥∥xn – un – (p – q)
∥∥)

+ g
(∥∥un – vn + (p – q)

∥∥)]
+ μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖ +Mαn,

which hence implies that

( – αn)
[
g

(∥∥xn – un – (p – q)
∥∥)

+ g
(∥∥un – vn + (p – q)

∥∥)]
≤ ‖xn – p‖ – ‖xn+ – p‖ + μ‖Bp – Bxn‖‖un – q‖

+ μ‖Bq – Bun‖‖vn – p‖ +Mαn

≤ αnM +
(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + μ‖Bp – Bxn‖‖un – q‖

+ μ‖Bq – Bun‖‖vn – p‖.

Thus, from (.), (.) and αn →  we have

lim
n→∞ g

(∥∥xn – un – (p – q)
∥∥)

=  and lim
n→∞ g

(∥∥un – vn + (p – q)
∥∥)

= . (.)

Utilizing the properties of g and g, we deduce that

lim
n→∞

∥∥xn – un – (p – q)
∥∥ =  and lim

n→∞
∥∥un – vn + (p – q)

∥∥ = . (.)
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From (.), we obtain

‖xn – vn‖ ≤ ∥∥xn – un – (p – q)
∥∥ +

∥∥un – vn + (p – q)
∥∥ →  as n→ ∞.

That is,

lim
n→∞

∥∥xn –G(xn)
∥∥ = . (.)

On the other hand, we observe that

∥∥SnG(xn) –G(xn)
∥∥ ≤ ∥∥SnG(xn) – yn

∥∥ + ‖yn – xn‖ +
∥∥xn –G(xn)

∥∥. (.)

So, it follows from (.), (.) and (.) that

lim
n→∞

∥∥SnG(xn) –G(xn)
∥∥ = . (.)

By (.) and Lemma ., we have

∥∥SG(xn) –G(xn)
∥∥ ≤ ∥∥SG(xn) – SnG(xn)

∥∥ +
∥∥SnG(xn) –G(xn)

∥∥
→  as n→ ∞. (.)

In terms of (.) and (.), we have

‖xn – Sxn‖ ≤ ∥∥xn –G(xn)
∥∥ +

∥∥G(xn) – SG(xn)
∥∥ +

∥∥SG(xn) – Sxn
∥∥

≤ 
∥∥xn –G(xn)

∥∥ +
∥∥G(xn) – SG(xn)

∥∥
→  as n→ ∞. (.)

Define a mappingWx = ( – θ )Sx + θG(x) and θ ∈ (, ) is a constant. Then by Lemma .
we have that Fix(W ) = Fix(S)∩ Fix(G) = F . We observe that

‖xn –Wxn‖ =
∥∥( – θ )(xn – Sxn) + θ

(
xn –G(xn)

)∥∥ ≤ ( – θ )‖xn – Sxn‖ + θ
∥∥xn –G(xn)

∥∥.
From (.) and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Utilizing the arguments similar to those of (.) in the proof of Theorem ., we can
deduce that

lim sup
n→∞

〈
f (q) – q, J(yn – q)

〉 ≤ . (.)

Finally, let us show that xn → q as n→ ∞. We observe that

‖yn – q‖

=
∥∥αn

(
f (xn) – f (q)

)
+ ( – αn)

(
SnG(xn) – q

)
+ αn

(
f (q) – q

)∥∥
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≤ ∥∥αn
(
f (xn) – f (q)

)
+ ( – αn)

(
SnG(xn) – q

)∥∥ + αn
〈
f (q) – q, J(yn – q)

〉
≤ αn

∥∥f (xn) – f (q)
∥∥ + ( – αn)

∥∥SnG(xn) – q
∥∥ + αn

〈
f (q) – q, J(yn – q)

〉
≤ αnρ‖xn – q‖ + ( – αn)‖xn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
=

(
 – αn( – ρ)

)‖xn – q‖ + αn
〈
f (q) – q, J(yn – q)

〉
. (.)

By the convexity of ‖ · ‖ and (.), we get

‖xn+ – q‖ ≤ βn‖yn – q‖ + ( – βn)
∥∥SnG(yn) – q

∥∥ ≤ ‖yn – q‖,

which together with (.) leads to

‖xn+ – q‖ ≤ (
 – αn( – ρ)

)‖xn – q‖ + αn
〈
f (q) – q, J(yn – q)

〉
=

(
 – αn( – ρ)

)‖xn – q‖ + αn( – ρ) · 〈f (q) – q, J(yn – q)〉
 – ρ

. (.)

Applying Lemma . to (.), we obtain that xn → q as n → ∞. This completes the
proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X
onto C. Let the mapping Bi : C → X be αi-inverse-strongly accretive for i = , . Let f : C →
C be a contraction with coefficient ρ ∈ (, ). Let S be a nonexpansive mapping of C into
itself such that F = Fix(S) ∩ Ω �= ∅, where Ω is a fixed point set of the mapping G. For
arbitrarily given x ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)SΠC(I –μB)ΠC(I –μB)xn,

xn+ = βnyn + ( – βn)SΠC(I –μB)ΠC(I –μB)yn, ∀n≥ ,

where  < μi < αi
κ

for i = , . Suppose that {αn} and {βn} are sequences in (, ] satisfying
the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) {βn} ⊂ [a, ] for some a ∈ (, );
(iii)

∑∞
n= |αn – αn–| <∞ or limn→∞ αn–/αn = ;

(iv)
∑∞

n= |βn – βn–| < ∞ or limn→∞ |βn – βn–|/αn = .
Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

Remark. Theorem. improves, extends, supplements and develops [, Theorem.]
in the following aspects. The composite iterative algorithm in [, Theorem .] is ex-
tended to develop the composite iterative algorithm in Theorem .. Compared with the
iterative algorithm in [, Theorem .], each iteration step in the iterative algorithm of
Theorem . is very different from the corresponding step in the iterative algorithm of [,
Theorem.] because each iteration step in the iterative algorithmofTheorem. involves
the composite operator SnΠC(I – μB)ΠC(I – μB). In the proof of [, Theorem .],
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Lemma . was used to derive ‖xn+ – xn‖ → . However, in the proof of Theorem ., we
only use Lemma . to derive ‖xn+ – xn‖ → . Thus, Theorem . drops the restriction
lim supn→∞ βn < .

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let the
mapping Bi : C → H be αi-inverse-strongly monotone for i = , . Let f : C → C be a con-
traction with coefficient ρ ∈ (, ). Let {Sn}∞n= be an infinite family of nonexpansive map-
pings of C into itself such that F =

⋂∞
i= Fix(Si) ∩ Ω �= ∅, where Ω is a fixed point set of the

mapping G. For arbitrarily given x ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)SnPC(I –μB)PC(I –μB)xn,

xn+ = βnyn + ( – βn)SnPC(I –μB)PC(I –μB)yn, ∀n≥ ,

where  < μi < αi for i = , . Suppose that {αn} and {βn} are sequences in (, ] satisfying
the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) {βn} ⊂ [a, ] for some a ∈ (, );
(iii)

∑∞
n= |αn – αn–| < ∞ or limn→∞ αn–/αn = ;

(iv)
∑∞

n= |βn – βn–| <∞ or limn→∞ |βn – βn–|/αn = .
Assume that

∑∞
n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C and let S be a

mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C and suppose that Fix(S) =⋂∞
i= Fix(Si). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
the mapping Bi : C → H be αi-inverse-strongly monotone for i = , . Let f : C → C be a
contraction with coefficient ρ ∈ (, ). Let S be a nonexpansive mapping of C into itself such
that F = Fix(S)∩Ω �= ∅,where Ω is a fixed point set of the mapping G. For arbitrarily given
x ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)SPC(I –μB)PC(I –μB)xn,

xn+ = βnyn + ( – βn)SPC(I –μB)PC(I –μB)yn, ∀n≥ ,

where  < μi < αi
κ

for i = , . Suppose that {αn} and {βn} are sequences in (, ] satisfying
the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) {βn} ⊂ [a, ] for some a ∈ (, );
(iii)

∑∞
n= |αn – αn–| < ∞ or limn→∞ αn–/αn = ;

(iv)
∑∞

n= |βn – βn–| <∞ or limn→∞ |βn – βn–|/αn = .
Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q),q – p

〉 ≤ , ∀p ∈ F .
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Now,we say that amappingT : C → C has property (∗) if there exists a constant k ∈ [, )
such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

Whenever k = , then T is nonexpansive. Put A = I – T , where T : C → C is a mapping
having property (∗). Then A is ( – k)/-inverse-strongly monotone. Indeed, we have

∥∥(I –A)x – (I –A)y
∥∥ ≤ ‖x – y‖ + k‖Ax –Ay‖, ∀x, y ∈ C.

Since H is a real Hilbert space, we have

∥∥(I –A)x – (I –A)y
∥∥ = ‖x – y‖ + ‖Ax –Ay‖ – 〈x – y,Ax –Ay〉,

and hence

〈x – y,Ax –Ay〉 ≥  – k


‖Ax –Ay‖

⇒ ∥∥(I – T)x – (I – T)y
∥∥ ≤ 

 – k
‖x – y‖

⇒ ‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥ ≤
(
 + k
 – k

)

‖x – y‖.

Thus, if T is a mapping having property (∗), then T is Lipschitz continuous with constant
+k
–k , i.e., ‖Tx – Ty‖ ≤ +k

–k ‖x – y‖ for all x, y ∈ C. We denote by Fix(T) a fixed point set of
T . It is obvious that the class of mappings having property (∗) strictly includes the class of
nonexpansive mappings.
Further, utilizing Corollary . we first derive a strong convergence result for finding a

common fixed point of a nonexpansive mapping and a mapping having property (∗).

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → C be amapping having property (∗) and let S : C → C be a nonexpansive mapping
such that Fix(S)∩ Fix(T) �= ∅. Let f : C → C be a contraction with coefficient ρ ∈ (, ). For
arbitrarily given x ∈ C, let {xn} be a sequence generated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)S(( – λ)xn + λTxn),

xn+ = βnyn + ( – βn)S(( – λ)yn + λTyn), ∀n≥ ,
(.)

where  < λ < –k. Suppose that {αn} and {βn} are sequences in (, ] satisfying the following
conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) {βn} ⊂ [a, ] for some a ∈ (, );
(iii)

∑∞
n= |αn – αn–| < ∞ or limn→∞ αn–/αn = ;

(iv)
∑∞

n= |βn – βn–| <∞ or limn→∞ |βn – βn–|/αn = .
Then {xn} converges strongly to q ∈ Fix(S)∩ Fix(T), which solves the following VIP:

〈
q – f (q),q – p

〉 ≤ , ∀p ∈ Fix(S)∩ Fix(T).
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Proof In Corollary ., we put B = I –T , B =  and μ = λ. Then GSVI (.) is equivalent
to the VIP of finding x∗ ∈ C such that

〈
Bx∗,x – x∗〉 ≥ , ∀x ∈ C.

In this case, B is ( – k)/-inverse-strongly monotone. It is not hard to see that Fix(T) =
VI(C,B). As a matter of fact, we have, for λ > ,

u ∈VI(C,B) ⇔ 〈Bu, y – u〉 ≥  ∀y ∈ C

⇔ 〈u – λBu – u,u – y〉 ≥  ∀y ∈ C

⇔ u = PC(u – λBu)

⇔ u = PC(u – λu + λTu)

⇔ 〈u – λu + λTu – u,u – y〉 ≥  ∀y ∈ C

⇔ 〈u – Tu,u – y〉 ≤  ∀y ∈ C

⇔ u = Tu

⇔ u ∈ Fix(T).

Accordingly, we know that F = Fix(S)∩ Ω = Fix(S)∩ Fix(T),

PC(I –μB)PC(I –μB)xn = PC(I –μB)xn

= PC
(
( – λ)xn + λTxn

)
= ( – λ)xn + λTxn,

and

PC(I –μB)PC(I –μB)yn = PC(I –μB)yn

= PC
(
( – λ)yn + λTyn

)
= ( – λ)yn + λTyn.

So, scheme (.) reduces to (.). Therefore, the desired result follows from Corol-
lary .. �

Utilizing Corollary ., we also have the following result.

Corollary . Let H be a real Hilbert space. Let A be an α-inverse-strongly monotone
mapping of H into itself and let S be a nonexpansive mapping of H into itself such that
Fix(S)∩∩A– �= ∅. Let f :H →H be a contraction with coefficient ρ ∈ (, ). For arbitrarily
given x ∈H , let {xn} be a sequence generated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)S(xn – λAxn),

xn+ = βnyn + ( – βn)S(yn – λAyn), ∀n≥ ,
(.)

where  < λ < α. Suppose that {αn} and {βn} are sequences in (, ] satisfying the following
conditions:
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(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) {βn} ⊂ [a, ] for some a ∈ (, );
(iii)

∑∞
n= |αn – αn–| < ∞ or limn→∞ αn–/αn = ;

(iv)
∑∞

n= |βn – βn–| <∞ or limn→∞ |βn – βn–|/αn = .
Then {xn} converges strongly to q ∈ Fix(S)∩A–, which solves the following VIP:

〈
q – f (q),q – p

〉 ≤ , ∀p ∈ Fix(S)∩A–.

Proof In Corollary ., we putC =H , B = A, B =  andμ = λ. Then we know that PH = I
and A– =VI(H ,A) = Ω . Moreover, we know that F = Fix(S)∩ Ω = Fix(S)∩A–,

PC(I –μB)PC(I –μB)xn = xn – λAxn,

and

PC(I –μB)PC(I –μB)yn = yn – λAyn.

So, scheme (.) reduces to (.). Therefore, the desired result follows from Corol-
lary .. �
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