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1 Introduction
Throughout this paper, we assume that H is a real Hilbert space, C is a nonempty closed
and convex subset of H and denote by Fix(T) the set of fixed points of a mapping
T : C → C.
Let A : H → H be a single-valued nonlinear mapping and let M : H → H be a multi-

valued mapping. The so-called quasi-variational inclusion problem (see [–]) is to find a
point u ∈H such that

θ ∈ A(u) +M(u). (.)

A number of problems arising in structural analysis, mechanics and economics can be
considered in the framework of this kind of variational inclusions (see, for example, []).
The set of solutions of the variational inclusion (.) is denoted by �.

Special cases
(I) If M = ∂φ : H → H , where φ : H → R ∪ {+∞} is a proper convex and lower semi-
continuous function and ∂φ is the sub-differential of φ, then variational inclusion problem
(.) is equivalent to finding u ∈H such that

〈
A(u), v – u

〉
+ φ(y) – φ(u) ≥ , ∀y ∈H , (.)

which is called the mixed quasi-variational inequality.

© 2013 Chang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.fixedpointtheoryandapplications.com/content/2013/1/179
mailto:jongkyuk@kyungnam.ac.kr
http://creativecommons.org/licenses/by/2.0


Chang et al. Fixed Point Theory and Applications 2013, 2013:179 Page 2 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/179

Especially, if A = , then (.) is equivalent to the minimizing problem of φ on H , i.e., to
find u ∈H such that φ(u) = infy∈H φ(y).
(II) If M = ∂δC , where C is a nonempty closed and convex subset of H and δC : H →

[,∞] is the indicator function of C, i.e.,

δC(x) =

⎧⎨
⎩
, x ∈ C,

+∞, x /∈ C,

then variational inclusion problem (.) is equivalent to finding u ∈ C such that

〈
A(u), v – u

〉 ≥ , ∀v ∈ C. (.)

This problem is called Hartman-Stampacchia variational inequality problem.
(III) IfM =  and A = I –T where I is an identity mapping and T :H →H is a nonlinear

mapping, then problem (.) is equivalent to the fixed point problem of T . That is, find
u ∈ H such that

u = Tu. (.)

Recently, hierarchical fixed point problems, hierarchical optimization problems and hi-
erarchical minimization problems have attracted many authors’ attention due to their link
with convex programming problems, optimization problems and monotone variational
inequality problems etc. (see [–] and others).
The purpose of this paper is to introduce and study the following bi-level hierarchical

variational inclusion problem in the setting of Hilbert spaces:
Find (x∗, y∗) ∈ � × � such that for given positive real numbers ρ and η, the following

inequalities hold:

⎧⎨
⎩

〈ρF(y∗) + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ �,

〈ηF(x∗) + y∗ – x∗, y – y∗〉 ≥ , ∀y ∈ �,
(.)

where F ,A,A :H → H are mappings and M,M :H → H are multi-valued mappings,
�i is the set of solutions to variational inclusion problem (.) with A = Ai, M = Mi for
i = , .

Special examples
(I) If Mi = , Ai = I – Ti, where Ti : H → H is a nonlinear mapping for each i = , , then
�i = Fix(Ti) and bi-level hierarchical variational inclusion problem (.) is equivalent to
finding (x∗, y∗) ∈ Fix(T)× Fix(T) such that

⎧⎨
⎩

〈ρF(y∗) + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ Fix(T),

〈ηF(x∗) + y∗ – x∗, y – y∗〉 ≥ , ∀y ∈ Fix(T).
(.)

This problem, which is called bi-level hierarchical optimization problem, was studied by
Maingé [] and Kraikaew et al. [].
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(II) In (.), if Ti = PKi for each i = , , where PKi is the metric projection from H onto
a nonempty closed convex subset Ki, then it is clear that the �i = Fix(Ti) = Ki and bi-level
hierarchical optimization problem (.) is equivalent to finding (x∗, y∗) ∈ K ×K such that

⎧⎨
⎩

〈ρF(y∗) + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ K,

〈ηF(x∗) + y∗ – x∗, y – y∗〉 ≥ , ∀y ∈ K.
(.)

This system forms a more general problem originated from Nash equilibrium points and
it was treated from a theoretical viewpoint in [–].
(III) If η = , ρ >  and both sets � and � are nonempty closed and convex subsets

ofH , then bi-level hierarchical variational inclusion problem (.) reduces to the following
(one-level) hierarchical variational inclusion problem:
Find x∗ ∈ � such that for a given positive real number ρ , the following inequality holds:

〈
ρF

(
y∗),x – x∗〉 ≥ , ∀x ∈ �. (.)

(IV) If K = K = K and η = , ρ > , then (.) reduces to the classic variational inequal-
ity, i.e., the problem of finding x∗ ∈ K such that

〈
F
(
x∗),x – x∗〉 ≥ , ∀x ∈ K . (.)

In (.), it is worth noting that if �, � are nonempty closed convex subsets in H , then
the metric projections P� and P� from H onto � and �, respectively, are well defined
and problem (.) is equivalent to the problem of finding (x∗, y∗) ∈ � × � such that

⎧⎨
⎩
x∗ = P� [y∗ – ρF(y∗)],

y∗ = P� [x∗ – ηF(x∗)].
(.)

However, in practice, both solution sets � and � (and hence the two projections) are
not given explicitly.
To overcome this drawback, inspired by the method studied by Yamada et al. [, ],

Maingé [] and Kraikaew et al. [], we investigate a more general variant of the scheme
proposed by Maingé [], Kraikaew et al. [] to replace the projection by some suitable
mappingswith a nice fixed point set. This strategy also suggests an effective approximation
process. Our analysis andmethod allowus to prove the existence and approximation of so-
lutions to problem (.). As applications, we utilize the main results to study the quadratic
minimization problems and convex programming problems in Hilbert spaces. The results
presented in the paper extend and improve the corresponding results in [, , , ]
and others.

2 Preliminaries
For the sake of convenience, we first recall some definitions and lemmas for our main
results.
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Definition . A mapping A : H → H is said to be α-inverse-strongly monotone if there
exists α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ H .

A multi-valued mapping M : H → H is called monotone if for all x, y ∈ H , u ∈ Mx and
v ∈My imply that

〈u – v,x – y〉 ≥ .

A multi-valued mappingM :H → H is said to bemaximal monotone if it is monotone
and for any (x,u) ∈H ×H ,

〈u – v,x – y〉 ≥ 

for every (y, v) ∈Graph(M) (the graph of mappingM) implies that u ∈Mx.

Lemma . [] Let A :H →H be an α-inverse-strongly monotone mapping. Then
(i) A is an 

α
-Lipschitz continuous and monotone mapping;

(ii) For any constant λ > , we have

∥∥(I – λA)x – (I – λA)y
∥∥ ≤ ‖x – y‖ + λ(λ – α)‖Ax –Ay‖; (.)

(iii) If λ ∈ (, α], then I – λA is a nonexpansive mapping, where I is the identity
mapping on H .

Let H be a real Hilbert space, C be a nonempty closed convex subset of H . For each
x ∈H , there exists a unique nearest point in C, denoted by PC(x), such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

Such a mapping PC from H onto C is called themetric projection.

Remark . It is well known that the metric projection PC has the following properties:
(i) PC :H → C is nonexpansive;
(ii) PC is firmly nonexpansive, i.e.,

‖PCx – PCy‖ ≤ 〈PCx – PCy,x – y〉, ∀x, y ∈H ;

(iii) For each x ∈H ,

z = PC(x) ⇔ 〈x – z, z – y〉 ≥ , ∀y ∈ C. (.)

Definition . Let M : H → H be a multi-valued maximal monotone mapping. Then
the mapping JM,λ :H →H defined by

JM,λ(u) = (I + λM)–(u), u ∈H

http://www.fixedpointtheoryandapplications.com/content/2013/1/179
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is called the resolvent operator associated with M, where λ is any positive number and I is
the identity mapping.

Proposition . [] Let M : H → H be a multi-valued maximal monotone mapping,
and let A : H → H be an α-inverse-strongly monotone mapping. Then the following con-
clusions hold.

(i) The resolvent operator JM,λ associated withM is single-valued and nonexpansive for
all λ > .

(ii) The resolvent operator JM,λ is -inverse-strongly monotone, i.e.,

∥∥JM,λ(x) – JM,λ(y)
∥∥ ≤ 〈

x – y, JM,λ(x) – JM,λ(y)
〉
, ∀x, y ∈H .

(iii) u ∈H is a solution of the variational inclusion (.) if and only if u = JM,λ(u – λAu),
∀λ > , i.e., u is a fixed point of the mapping JM,λ(I – λA). Therefore we have

� = Fix
(
JM,λ(I – λA)

)
, ∀λ > , (.)

where � is the set of solutions of variational inclusion problem (.).
(iv) If λ ∈ (, α], then � is a closed convex subset in H .

In the sequel, we denote the strong and weak convergence of a sequence {xn} in H to an
element x ∈H by xn → x and xn ⇀ x, respectively.

Lemma . [] For x, y ∈H and ω ∈ (, ), the following statements hold:
(i) ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉;
(ii) ‖( –ω)x +ωy‖ = ( –ω)‖x‖ +ω‖y‖ –ω( –ω)‖x – y‖.

Lemma . [] Let {an} be a sequence of real numbers, and there exists a subsequence
{amj} of {an} such that amj < amj+ for all j ∈ N , where N is the set of all positive integers.
Then there exists a nondecreasing sequence {nk} of N such that limk→∞ nk = ∞ and the
following properties are satisfied by all (sufficiently large) number k ∈ N :

ank ≤ ank+ and ak ≤ ank+.

In fact, nk is the largest number n in the set {, , . . . ,k} such that an < an+ holds.

Lemma . [] Let {an} ⊂ [,∞), {αn} ⊂ [, ), {bn} ⊂ (–∞, +∞), α̂ ∈ [, ) be such that
(i) {an} is a bounded sequence;
(ii) an+ ≤ ( – αn)an + αnα̂

√an
√an+ + αnbn, ∀n≥ ;

(iii) whenever {ank } is a subsequence of {an} satisfying

lim inf
k→∞

(ank+ – ank ) ≥ ,

it follows that lim supk→∞ bnk ≤ ;
(iv) limn→∞ αn =  and

∑∞
n= αn = ∞.

Then limn→∞ an = .
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Definition .
(i) A mapping T :H →H is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈H .

(ii) A mapping T :H →H is said to be quasi-nonexpansive if Fix(T) �= ∅ and

‖Tx – p‖ ≤ ‖x – p‖, ∀x ∈H ,p ∈ Fix(T).

It should be noted that T is quasi-nonexpansive if and only if ∀x ∈H , p ∈ Fix(T)

〈x – Tx,x – p〉 ≥ 

‖x – Tx‖. (.)

(iii) A mapping T :H →H is said to be strongly quasi-nonexpansive if T is
quasi-nonexpansive and

xn – Txn →  (.)

whenever {xn} is a bounded sequence in H and ‖xn – p‖ – ‖Txn – p‖ →  for some
p ∈ Fix(T).

Lemma . Let M :H → H be amulti-valuedmaximalmonotone mapping, A :H →H
be an α-inverse-strongly monotone mapping and let � be the set of solutions of variational
inclusion problem (.) and � �= ∅. Then the following statements hold.

(i) If λ ∈ (, α], then the mapping K :H →H defined by

K := JM,λ(I – λA) (.)

is quasi-nonexpansive, where I is the identity mapping and JM,λ is the resolvent
operator associated withM.

(ii) The mapping I –K :H →H is demiclosed at zero, i.e., for any sequence {xn} ⊂H , if
xn ⇀ x and (I –K)xn → , then x = Kx.

(iii) For any β ∈ (, ), the mapping Kβ defined by

Kβ = ( – β)I + βK (.)

is a strongly quasi-nonexpansive mapping and Fix(Kβ ) = Fix(K).
(iv) I –Kβ , β ∈ (, ) is demiclosed at zero.

Proof (i) Since λ ∈ (, α], it follows fromLemma.(iii) and Proposition . that themap-
ping K is nonexpansive and � = Fix(K) �= ∅. This implies that K is quasi-nonexpansive.
(ii) Since K is a nonexpansive mapping on H , I –K is demiclosed at zero.
(iii) It is obvious that Fix(Kβ ) = Fix(K) and Kβ is quasi-nonexpansive.
Next we prove that Kβ , β ∈ (, ) is a strongly quasi-nonexpansive mapping.

http://www.fixedpointtheoryandapplications.com/content/2013/1/179
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In fact, let {xn} be any bounded sequence in H and let p ∈ Fix(Kβ ) be a given point such
that

‖xn – p‖ – ‖Kβxn – p‖ → . (.)

Now we prove that ‖Kβxn – xn‖ → .
In fact, it follows from (.) that

‖Kβxn – p‖ = ∥∥xn – p – β(xn –Kxn)
∥∥

= ‖xn – p‖ – β〈xn – p,xn –Kxn〉 + β‖xn –Kxn‖

≤ ‖xn – p‖ – β( – β)‖xn –Kxn‖.

Hence from (.), we have

β( – β)‖Kxn – xn‖ ≤ ‖xn – p‖ – ‖Kβxn – p‖ → .

Since β( – β) > , ‖Kxn – xn‖ → , and so

‖Kβxn – xn‖ = β‖Kxn – xn‖ → .

(iv) Since I –Kβ = β(I –K) and I –K is demi-closed at zero, hence I –Kβ is demi-closed
at zero. This completes the proof. �

3 Main results
Throughout this section we always assume that the following conditions are satisfied:
(C) Mi :H → H , i = , , is a multi-valued maximal monotone mapping, Ai :H →H

is an α-inverse-strongly monotone mapping and �i is the set of solutions to
variational inclusion problem (.) with A = Ai,M =Mi and �i �= ∅;

(C) Ki and Kiβ , β ∈ (, ), i = , , are the mappings defined by

⎧⎨
⎩
Ki := JM,λ(I – λAi), λ ∈ (, α],

Ki,β = ( – β)I + βKi, β ∈ (, ),
(.)

respectively.
We have the following result.

Theorem . Let Ai, Mi, �i, Ki, Kiβ , i = , , satisfy the conditions (C) and (C), and let
f , g :H →H be contractions with a contractive constant h ∈ (, ). Let {xn} and {yn} be two
sequences defined by

⎧⎪⎪⎨
⎪⎪⎩
x, y ∈H ,

xn+ = ( – αn)K,βxn + αnf (K,βyn),

yn+ = ( – αn)K,βyn + αng(K,βxn), n = , , , . . . ,

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/179
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where {αn} is a sequence in (, ) satisfying αn →  and
∑∞

n= αn = ∞. Then the sequences
{xn} and {yn} converge to x∗ and y∗, respectively, where (x∗, y∗) ∈ � × � is the unique
solution of the following (bi-level) hierarchical optimization problem:

⎧⎨
⎩

〈x∗ – f (y∗),x – x∗〉 ≥ , ∀x ∈ �,

〈y∗ – g(x∗), y – y∗〉 ≥ , ∀y ∈ �.
(.)

Proof (I) First we prove that (.) has a unique solution (x∗, y∗) ∈ � × �.
Indeed, it follows from Proposition . and Lemma . that both sets �, � are

nonempty closed and convex and �i = Fix(Ki) for each i = , . Hence the metric pro-
jection P�i for each i = ,  is well defined. It is clear that the mapping

P� ◦ f ◦ P� ◦ g :H →H

is a contraction. By the Banach contractive mapping principle, there exists a unique ele-
ment x∗ ∈H such that

x∗ = (P� ◦ f ◦ P� ◦ g)(x∗).
Letting y∗ = P� ◦ g(x∗), then it is easy to see that

x∗ = (P� ◦ f )(y∗), y∗ = (P� ◦ g)(x∗)

are the unique solution of (.).
(II) Now we prove that {xn} and {yn} are bounded.
In fact, it follows from Lemma . that Ki,β , i = , , is strongly quasi-nonexpansive and

Fix(Ki,β ) = Fix(Ki) = �i. Since f is h-contractive and x∗ ∈ Fix(K,β), y∗ ∈ Fix(K,β ), we have

∥∥xn+ – x∗∥∥ ≤ ( – αn)
∥∥K,βxn – x∗∥∥ + αn

∥∥f (K,βyn) – x∗∥∥
≤ ( – αn)

∥∥xn – x∗∥∥ + αn
∥∥f (K,βyn) – f

(
y∗)∥∥ + αn

∥∥f (y∗) – x∗∥∥
≤ ( – αn)‖xn – x‖ + αnh

∥∥K,βyn – y∗∥∥ + αn
∥∥f (y∗) – x∗∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αnh

∥∥yn – y∗∥∥ + αn
∥∥f (y∗) – x∗∥∥.

Similarly, we can also prove that

∥∥yn+ – y∗∥∥ ≤ ( – αn)
∥∥yn – y∗∥∥ + αnh

∥∥xn – x∗∥∥ + αn
∥∥g(x∗) – y∗∥∥.

This implies that

∥∥xn+ – x∗∥∥ +
∥∥yn+ – y∗∥∥

≤ (
 – αn( – h)

)(∥∥xn – x∗∥∥ +
∥∥yn – y∗∥∥)

+ αn( – h)
‖f (y∗) – x∗‖ + ‖g(x∗) – y∗‖

 – h

≤ max

{(∥∥xn – x∗∥∥ +
∥∥yn – y∗∥∥)

,
‖f (y∗) – x∗‖ + ‖g(x∗) – y∗‖

 – h

}
.
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By induction, we have

∥∥xn – x∗∥∥ +
∥∥yn – y∗∥∥

≤ max

{(∥∥x – x∗∥∥ +
∥∥y – y∗∥∥)

,
‖f (y∗) – x∗‖ + ‖g(x∗) – y∗‖

 – h

}
, ∀n≥ .

This implies that {xn} and {yn} are bounded. Consequently, the sequences {K,βxn} and
{K,βyn} both are bounded.
(III) Next we prove that for each n≥  the following inequality holds.

∥∥xn+ – x∗∥∥ +
∥∥yn+ – y∗∥∥

≤ ( – αn)
(∥∥xn – x∗∥∥ +

∥∥yn – y∗∥∥)
+ αnh

(∥∥xn+ – x∗∥∥∥∥yn – y∗∥∥ +
∥∥xn – x∗∥∥∥∥yn+ – y∗∥∥)

+ αn
(〈
f
(
y∗) – x∗,xn+ – x∗〉 + 〈

g
(
x∗) – y∗,xn+ – y∗〉). (.)

In fact, it follows from (.) and Lemma .(i) that

∥∥xn+ – x∗∥∥ =
∥∥( – αn)

(
K,βxn – x∗) + αn

(
f (K,βyn) – x∗)∥∥

≤ ∥∥( – αn)
(
K,βxn – x∗)∥∥ + αn

〈(
f (K,βyn) – x∗),xn+ – x∗〉

= ( – αn)
∥∥K,βxn – x∗∥∥ + αn

〈
f (K,βyn) – f

(
y∗),xn+ – x∗〉

+ αn
〈
f
(
y∗) – x∗,xn+ – x∗〉

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥f (K,βyn) – f
(
y∗)∥∥∥∥xn+ – x∗∥∥

+ αn
〈
f
(
y∗) – x∗,xn+ – x∗〉

≤ ( – αn)
∥∥xn – x∗∥∥ + αnh

∥∥yn – y∗∥∥∥∥xn+ – x∗∥∥
+ αn

〈
f
(
y∗) – x∗,xn+ – x∗〉.

Similarly, we have

∥∥yn+ – y∗∥∥ ≤ ( – αn)
∥∥yn – y∗∥∥ + αnh

∥∥xn – x∗∥∥∥∥yn+ – y∗∥∥
+ αn

〈
g
(
x∗) – y∗, yn+ – y∗〉.

Adding up the last two inequalities, the inequality (.) is proved.
(IV) Next we prove the following fact.
If there exists a subsequence {nk} ⊂ {n} such that

lim inf
k→∞

(∥∥xnk+ – x∗∥∥ +
∥∥ynk+ – y∗∥∥ –

(∥∥xnk – x∗∥∥ +
∥∥ynk – y∗∥∥)) ≥ ,

then

lim sup
k→∞

(〈
f
(
y∗) – x∗,xnk+ – x∗〉 + 〈

g
(
x∗) – y∗, ynk+ – y∗〉) ≤ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/179
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In fact, since the norm ‖ · ‖ is convex and limn→∞ αn = , from (.) we have that

 ≤ lim inf
k→∞

{∥∥xnk+ – x∗∥∥ +
∥∥ynk+ – y∗∥∥ –

(∥∥xnk – x∗∥∥ +
∥∥ynk – y∗∥∥)}

≤ lim inf
k→∞

{
( – αnk )

∥∥K,βxnk – x∗∥∥ + αnk
∥∥f (K,βynk ) – x∗∥∥

+ ( – αnk )
∥∥K,βynk – y∗∥∥ + αnk

∥∥g(K,βxnk ) – y∗∥∥ –
∥∥xnk – x∗∥∥ –

∥∥ynk – y∗∥∥}
= lim inf

k→∞
{(∥∥K,βxnk – x∗∥∥ –

∥∥xnk – x∗∥∥) + (∥∥K,βynk – y∗∥∥ –
∥∥ynk – y∗∥∥)}

≤ lim sup
k→∞

{(∥∥K,βxnk – x∗∥∥ –
∥∥xnk – x∗∥∥) + (∥∥K,βynk – y∗∥∥ –

∥∥ynk – y∗∥∥)}

= lim sup
k→∞

{(∥∥K,βxnk – x∗∥∥ +
∥∥xnk – x∗∥∥)(∥∥K,βxnk – x∗∥∥ –

∥∥xnk – x∗∥∥)

+
(∥∥K,βynk – y∗∥∥ +

∥∥ynk – y∗∥∥)(∥∥K,βynk – y∗∥∥ –
∥∥ynk – y∗∥∥)}

≤ .

The above conclusion can be proved as follows.
Indeed, since the sequences {‖K,βxnk –x

∗‖+‖xnk –x∗‖} and {‖K,βynk –y
∗‖+‖ynk –y∗‖}

are bounded, and Ki,β , i = , , is quasi-nonexpansive, we have

∥∥K,βxnk – x∗∥∥ ≤ ∥∥xnk – x∗∥∥,
∥∥K,βynk – y∗∥∥ ≤ ∥∥ynk – y∗∥∥.

The conclusion is proved. Therefore we have that

lim
k→∞

(∥∥K,βxnk – x∗∥∥ –
∥∥xnk – x∗∥∥)

= lim
k→∞

(∥∥K,βynk – y∗∥∥ –
∥∥ynk – y∗∥∥)

= . (.)

By Lemma .(iii), the mapping Ki,β , i = , , is strongly quasi-nonexpansive. Hence from
(.) we have that

K,βxnk – xnk → , K,βynk – ynk → . (.)

This together with (.) shows that

xnk+ – xnk →  and ynk+ – ynk → .

Since {xnk } is bounded and H is reflexive, there exists a subsequence {xnkl } ⊂ {xnk } such
that xnkl ⇀ u and

lim
l→∞

〈
f
(
y∗) – x∗,xnkl – x∗〉 = lim sup

k→∞

〈
f
(
y∗) – x∗,xnk – x∗〉 = lim sup

k→∞

〈
f
(
y∗) – x∗,xnk+ – x∗〉.

On the other hand, by virtue of Lemma .(iv), I – K,β is demiclosed at zero, and so
u ∈ Fix(K,β ) = �. Hence from (.) we have

lim
l→∞

〈
f
(
y∗) – x∗,xnkl – x∗〉 = 〈

f
(
y∗) – x∗,u – x∗〉 ≤ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/179
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Consequently,

lim sup
k→∞

〈
f
(
y∗) – x∗,xnk+ – x∗〉 ≤ .

Similarly, by using the same argument, we have

lim sup
k→∞

〈
g
(
x∗) – y∗, ynk+ – y∗〉 ≤ .

The desired inequality is proved.
(V) Finally we prove that the sequences {xn} and {yn} defined by (.) converge to x∗

and y∗, respectively.
It is easy to see that

∥∥xn+ – x∗∥∥∥∥yn – y∗∥∥ +
∥∥xn – x∗∥∥∥∥yn+ – y∗∥∥

≤ (∥∥yn – y∗∥∥ +
∥∥xn – x∗∥∥) 


(∥∥yn+ – y∗∥∥ +

∥∥xn+ – x∗∥∥) 
 . (.)

Substituting (.) into (.), simplifying and putting

an :=
∥∥xn – x∗∥∥ +

∥∥yn – y∗∥∥,

bn := 
(〈
f
(
y∗) – x∗,xn+ – x∗〉 + 〈

g
(
x∗) – y∗,xn+ – y∗〉),

then we have the following conclusions:
(i) By (II), {an} is a bounded sequence;
(ii) From (.), an+ ≤ ( – αn)an + αnh

√an
√an+ + αnbn, ∀n≥ ;

(iii) By (IV), for any subsequence {ank } ⊂ {an} satisfying

lim inf
k→∞

(ank+ – ank ) ≥ ,

it follows that lim supk→∞ bnk ≤ .
Hence it follows from Lemma . that xn → x∗ and yn → y∗. This completes the proof of
Theorem .. �

Definition . A mapping F : H → H is said to be μ-Lipschitzian and r-strongly mono-
tone, if there exist constants μ >  and r >  such that

‖Fx – Fy‖ ≤ μ‖x – y‖, 〈Fx – Fy,x – y〉 ≥ r‖x – y‖, ∀x, y ∈H .

Remark . It is easy to prove that if F :H →H is aμ-Lipschitzian and r-strongly mono-
tone mapping and if ρ ∈ (, r

μ ), then the mapping f := I – ρF :H →H is a contraction.

Now we are in a position to prove the following main result.

Theorem . Let Ai,Mi, �i, Ki, Kiβ , i = , , be the same as in Theorem .. Let F :H →H
be a μ-Lipschitzian and r-strongly monotone mapping. Let {xn} and {yn} be the sequences

http://www.fixedpointtheoryandapplications.com/content/2013/1/179
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defined by

⎧⎪⎪⎨
⎪⎪⎩
x, y ∈H ,

xn+ = ( – αn)K,βxn + αnf (K,βyn),

yn+ = ( – αn)K,βyn + αng(K,βxn),

(.)

where f := I – ρF , g := I – ηF with ρ,η ∈ (, r
μ ), β ∈ (, ) and {αn} is a sequence in (, )

satisfying the following conditions:

lim
n→∞αn = ,

∞∑
n=

αn = ∞.

Then the sequence ({xn}, {yn}) converges strongly to the unique solution (x∗, y∗) of bi-level
hierarchical variational inclusion problem (.).

Proof Indeed, it follows fromRemark . that bothmappings f , g :H →H are contractive.
Therefore all the conditions in Theorem . are satisfied. By Theorem ., the sequence
({xn}, {yn}) converges strongly to (x∗, y∗) ∈ � × �, which is the unique solution of the
following bi-level hierarchical optimization problem:

⎧⎨
⎩

〈x∗ – f (y∗),x – x∗〉 ≥ , ∀x ∈ �,

〈y∗ – g(x∗), y – y∗〉 ≥ , ∀y ∈ �.
(.)

Since f = I – ρF and g = I – ηF , we have

⎧⎨
⎩

〈ρF(y∗) + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ �,

〈ηF(x∗) + y∗ – x∗, y – y∗〉 ≥ , ∀y ∈ �.
(.)

This implies that the sequence ({xn}, {yn}) converges strongly to (x∗, y∗) ∈ �×�, which is
the unique solution of bi-level hierarchical variational inclusion problem (.). This com-
pletes the proof of Theorem .. �

4 Some applications
In this section, we shall utilize Theorem . and Theorem . to study the convex mathe-
matical programming problem and quadratic minimization problem.
(I) Applications to convex mathematical programming problems.
Let ψ : H → R be a convex and lower semi-continuous function with �ψ being μ-

Lipschitzian and r-strongly monotone, i.e., it satisfies the following conditions:

∥∥�ψ(x) –�ψ(y)
∥∥ ≤ μ‖x – y‖, ∀x, y ∈H ,μ > , (.)

and

〈
�ψ(x) –�ψ(y),x – y

〉 ≥ r‖x – y‖, ∀x, y ∈ H , r > . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/179
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In (.) taking η = , ρ ∈ (, r
μ ) and F =�ψ , then hierarchical variational inclusion prob-

lem (.) reduces to the following problem:
Find a point x∗ ∈ � such that

〈
�ψ

(
x∗),x – x∗〉 ≥ , ∀x ∈ �. (.)

By using the subdifferential inequality, this implies that

ψ(x) –ψ
(
x∗) ≥ 〈

�ψ
(
x∗),x – x∗〉 ≥ , ∀x ∈ �.

Therefore we have

ψ(x) –ψ
(
x∗) ≥ , ∀x ∈ �. (.)

Thus problem (.) reduces to the convex mathematical programming problem on �:
Find a point x∗ ∈ � such that

min
x∈�

ψ(x). (.)

Hence, we have the following result.

Theorem . Let A,M, �, K, K,β , {αn} be the same as in Theorem .. Let {xn} be the
iterative sequence defined by

⎧⎨
⎩
x ∈H ,

xn+ = ( – αn)K,βxn + αn(I – ρF)(K,βxn),
(.)

where ρ ∈ (, r
μ ), β ∈ (, ). Then {xn} converges strongly to x∗ ∈ �, which is the unique

solution of convex mathematical programming problem (.).

(II) Applications to quadratic minimization problems.
Recall that a linear bounded operator T :H →H is said to be ξ -strongly positive if there

exists a positive constant ξ such that

〈Tx,x〉 ≥ ξ‖x‖, ∀x ∈H .

Lemma . Let T :H →H be a ξ -strongly positive linear operator and let γ be a positive
number with γ < 

‖T‖ , where ‖T‖ is the norm of T defined by

‖T‖ = sup
{〈Tu,u〉 : u ∈H ,‖u‖ = 

}
.

Then we have
() The linear operator F := I + γT :H →H is μ-Lipschitzian and r-strongly monotone,

where μ = ( + γ ‖T‖) and r =  + γ ξ .
() If ρ ∈ (, 

+γ ξ
), then the linear operator (I – ρ(I + γT)) is contractive with a

contractive constant h :=  – ρ( + γ ξ ).

http://www.fixedpointtheoryandapplications.com/content/2013/1/179
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Proof () In fact, for any x, y ∈H , we have

∥∥(I + γT)(x – y)
∥∥ ≤ (

 + γ ‖T‖)‖x – y‖ = μ‖x – y‖.

Again, since T :H →H is a ξ -strongly positive linear operator, we have

〈
(I + γT)(x – y),x – y

〉 ≥ ( + γ ξ )‖x – y‖ = r‖x – y‖.

Conclusion () is proved.
() By the definition of the norm of the bounded linear operator (I –ρ(I + γT)), we have

∥∥I – ρ(I + γT)
∥∥ = sup

{〈(
I – ρ(I + γT)

)
u,u

〉
: u ∈H ,‖u‖ = 

}
= sup

{
( – ρ – ργ )〈Tu,u〉 : u ∈H ,‖u‖ = 

}

≤  – ρ – ργ ξ , ∀ρ ∈
(
,


 + γ ξ

)
.

Therefore, (I – ρ(I + γT)) is contractive with a contractive constant  – ρ( + γ ξ ). This
completes the proof. �

From Theorem . and Lemma . we have the following result.

Theorem . Let A, M, K , Kβ , � and {αn} satisfy the same conditions as given in The-
orem .. Let the linear mappings T and F satisfy the same conditions as in Lemma ..
Then the sequence {xn} defined by

⎧⎨
⎩
x ∈H ,

xn+ = ( – αn)Kβxn + αn(I – ρF)(Kβxn),
(.)

where ρ ∈ (, 
+γ ξ

), β ∈ (, ), converges strongly to x∗ ∈ �, which is the unique solution of
the hierarchical variational inclusion problem:

〈
ρ(I + γT)x∗,x – x∗〉 ≥ , ∀x ∈ �,

that is,

〈
(I + γT)x∗,x – x∗〉 ≥ , ∀x ∈ �. (.)

Letting g(x) := γ

 〈Tx,x〉 + 
‖x‖, then it is easy to know that g : H → R+ is a continuous

and convex functional and ∂g(x∗) = (I + γT)(x∗). By the subdifferential inequality of g , we
have

g(x) – g
(
x∗) ≥ 〈

(I + γT)
(
x∗),x – x∗〉 ≥ , ∀x ∈ �.

This implies that x∗ solves the following quadratic minimization problem:

min
x∈�

{
γ


〈Tx,x〉 + 


‖x‖

}
(.)

and xn → x∗. This completes the proof.

http://www.fixedpointtheoryandapplications.com/content/2013/1/179
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