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Abstract
In the present paper, an iterative algorithm for solving mixed equilibrium problems
and fixed points problems has been constructed. It is shown that under some mild
conditions, the sequence generated by the presented algorithm converges strongly
to the common solution of mixed equilibrium problems and fixed points problems.
As an application, we can find the minimum norm element without involving
projection.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset of H . For a nonlinear mapping A : C →H and
a bifunction F : C ×C → R, the mixed equilibrium problem is to find z ∈ C such that

F(z, y) + 〈Az, y – z〉 ≥ , ∀y ∈ C. (.)

The solution set of (.) is denoted by MEP. If A = , then (.) reduces to the following
equilibrium problem of finding z ∈ C such that

F(z, y) ≥ , ∀y ∈ C. (.)

The solution set of (.) is denoted by EP. If F = , then (.) reduces to the variational
inequality problem of finding z ∈ C such that

〈Az, y – z〉 ≥ , ∀y ∈ C. (.)

The solution set of (.) is denoted by VI . Problem (.) is very general in the sense that it
includes, as special cases, optimization problems, variational inequalities, minimax prob-
lems, Nash equilibrium problem in noncooperative games and others. See, e.g., [–].
For solving mixed equilibrium problem (.), Moudafi [] introduced an iterative algo-

rithm and proved a weak convergence theorem. Further, Takahashi and Takahashi []
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introduced the following iterative algorithm for finding an element of F(S)∩MEP:
⎧⎨
⎩
F(zn, y) + 〈Axn, y – zn〉 + 

λn
〈y – zn, zn – xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + S(αnu + ( – βn)zn)
(.)

for all n≥ , where S : C → C is a nonexpansive mapping. They proved that the sequence
{xn} generated by (.) converges strongly to z = ProjF(S)∩MEP(u).
Recently, Yao and Shahzad [] gave the following iteration process for nonexpansive

mappings with perturbation: x ∈ C and

xn+ = ( – βn)xn + βn ProjC
(
αnun + ( – αn)Txn

)
, n≥ ,

where {αn} and {βn} are sequences in [, ], and the sequence {un} inH is a small perturba-
tion for the n-step iteration satisfying ‖un‖ →  as n→ ∞. In fact, there are perturbations
always occurring in the iterative processes because the manipulations are inaccurate.
Using the ideas in [], Chuang et al. [] introduced the following iteration process for

finding a common element of the set of solutions of the equilibrium problem and the set
of fixed points for a quasi-nonexpansive mapping with perturbation: q ∈H and

⎧⎨
⎩
xn ∈ C such that F(xn, y) + 

λn
〈y – xn,xn – qn〉 ≥ , ∀y ∈ C,

qn+ = αnun + ( – αn)(βnxn + ( – βn)Sxn)

for all n ≥ . They showed that the sequence {qn} converges strongly to ProjF(S)∩EP .
Motivated and inspired by the above works, in the present paper, we construct an it-

erative algorithm for solving mixed equilibrium problems and fixed points problems. It
is shown that under some mild conditions the sequence {xn} generated by the presented
algorithm converges strongly to the common solution of mixed equilibrium problems and
fixed points problems. As an application, we can find theminimumnorm element without
involving projection.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert spaceH . Recall that a mapping
A : C →H is called α-inverse-stronglymonotone if there exists a positive real number α > 
such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

It is clear that any α-inverse-strongly monotone mapping is monotone and 
α
-Lipschitz

continuous. A mapping S : C → C is said to be nonexpansive if ‖Sx – Sy‖ ≤ ‖x – y‖ for all
x, y ∈ C. And a mapping S : C → C is said to be strictly pseudo-contractive if there exists a
constant  ≤ κ <  such that

‖Sx – Sy‖ ≤ ‖x – y‖ + κ
∥∥(I – S)x – (I – S)y

∥∥, ∀x, y ∈ C.

For such a case, we also say that S is a κ-strictly pseudo-contractive mapping.
Throughout this paper, we assume that a bifunction F : C×C → R satisfies the following

conditions:

http://www.fixedpointtheoryandapplications.com/content/2013/1/183
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(H) F(x,x) =  for all x ∈ C;
(H) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(H) for each x, y, z ∈ C, limt↓ F(tz + ( – t)x, y)≤ F(x, y);
(H) for each x ∈ C, y → F(x, y) is convex and lower semicontinuous.
We need the following lemmas for proving our main results.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C × C → R be a bifunction which satisfies conditions (H)-(H). Let r >  and x ∈ H .
Then there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, if Tr(x) = {z ∈ C : F(z, y) + 
r 〈y – z, z – x〉 ≥ ,∀y ∈ C}, then we have

(i) Tr is single-valued and Tr is firmly nonexpansive, i.e., for any x, y ∈H ,
‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

(ii) EP is closed and convex and EP = F(Tr).

Lemma . [] Let C, H , F and Trx be as in Lemma .. Then we have

‖Tsx – Ttx‖ ≤ s – t
s

〈Tsx – Ttx,Tsx – x〉

for all s, t >  and x ∈H .

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
the mapping A : C → H be α-inverse strongly monotone and r >  be a constant. Then we
have

∥∥(I – rA)x – (I – rA)y
∥∥ ≤ ‖x – y‖ + r(r – α)‖Ax –Ay‖, ∀x, y ∈ C.

In particular, if  ≤ r ≤ α, then I – rA is nonexpansive.

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ = ( –
βn)yn+βnxn for all n ≥  and lim supn→∞(‖yn+ –yn‖–‖xn+ –xn‖) ≤ .Then limn→∞ ‖yn–
xn‖ = .

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
S : C → C be a λ-strict pseudo-contraction. Then we have

(i) F(S) = {x : Sx = x} is closed convex;
(ii) κI + ( – κ)S for κ ∈ [λ, ) is nonexpansive.

Lemma . [] Let C be a nonempty closed and convex of a real Hilbert space H . Let
S : C → C be a κ-strictly pseudo-contractive mapping. Then I – S is demi-closed at , i.e.,
if xn ⇀ x ∈ C and xn – Sxn → , then x = Sx.

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δnγn,

http://www.fixedpointtheoryandapplications.com/content/2013/1/183
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where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn = ∞;

() lim supn→∞ δn ≤  or
∑∞

n= |δnγn| < ∞.
Then limn→∞ an = .

3 Main results
In this section, we prove our main results.

Theorem. Let C be a nonempty closed convex subset of a real Hilbert space H and let F :
C×C → R be a bifunction satisfying conditions (H)-(H). Let A : C → H be an α-inverse-
strongly monotone mapping and let S : C → C be a κ-strictly pseudo-contractive mapping.
Suppose that F(S)∩MEP �= ∅. Let x ∈ C, {zn} and {xn} be sequences in C generated by

⎧⎨
⎩
F(zn, y) + 〈Axn, y – zn〉 + 

λn
〈y – zn, zn – (αnun + ( – αn)xn)〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)γ zn + ( – βn)( – γ )Szn,
(.)

for all n ≥ , where {λn} ⊂ (, α), {αn} ⊂ (, ) and {βn} ⊂ (, ) satisfy
(r) limn→∞ un = u for some u ∈H ;
(r) limn→∞ αn =  and

∑∞
n= αn = ∞;

(r)  < c ≤ βn ≤ d <  and γ ∈ [κ , );
(r) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, α) and limn→∞(λn+ – λn) = .

Then {xn} generated by (.) converges strongly to ProjF(S)∩MEP(u).

Proof Note that zn can be rewritten as zn = Tλn (αnun + (–αn)xn –λnAxn) for each n. Take
z ∈ F(S) ∩ MEP. It is obvious that z = Tλn (z – λnAz) = Tλn (αnz + ( – αn)(z – λnAz

–αn
)) for all

n≥ . By using the nonexpansivity of Tλn and the convexity of ‖ · ‖, we derive

‖zn – z‖

=
∥∥Tλn

(
αnun + ( – αn)xn – λnAxn

)
– Tλn (z – λnAz)

∥∥

=
∥∥∥∥Tλn

(
αnun + ( – αn)

(
xn –

λnAxn
 – αn

))
– Tλn

(
αnz + ( – αn)

(
z –

λnAz
 – αn

))∥∥∥∥


≤
∥∥∥∥
(

αnun + ( – αn)
(
xn –

λnAxn
 – αn

))
–

(
αnz + ( – αn)

(
z –

λnAz
 – αn

))∥∥∥∥


=
∥∥∥∥( – αn)

((
xn –

λnAxn
 – αn

)
–

(
z –

λnAz
 – αn

))
+ αn(un – z)

∥∥∥∥


≤ ( – αn)
∥∥∥∥
(
xn –

λnAxn
 – αn

)
–

(
z –

λnAz
 – αn

)∥∥∥∥


+ αn‖un – z‖.

Since A is α-inverse strongly monotone, we know from Lemma . that

∥∥∥∥
(
xn –

λnAxn
 – αn

)
–

(
z –

λnAz
 – αn

)∥∥∥∥


≤ ‖xn – z‖ + λn(λn – ( – αn)α)
( – αn)

‖Axn –Az‖.
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It follows that

‖zn – z‖ ≤ ( – αn)
(

‖xn – z‖ + λn(λn – ( – αn)α)
( – αn)

‖Axn –Az‖
)
+ αn‖un – z‖

≤ ( – αn)‖xn – z‖ + αn‖un – z‖. (.)

So, we have

‖xn+ – z‖ =
∥∥βn(xn – z) + ( – βn)

((
γ I + ( – γ )S

)
zn – z

)∥∥

≤ βn‖xn – z‖ + ( – βn)‖zn – z‖

≤ βn‖xn – z‖ + ( – βn)
(
( – αn)‖xn – z‖ + αn‖un – z‖)

=
[
 – ( – βn)αn

]‖xn – z‖ + ( – βn)αn‖un – z‖

≤ max
{‖xn – z‖,‖un – z‖}.

Since limn→∞ un = u, {un} is bounded. Therefore, by induction, we deduce that {xn} is
bounded. Hence, {Axn}, {zn} and {Szn} are also bounded.
Putting yn = αnun + ( – αn)xn – λnAxn for all n, we have

zn+ – zn = Tλn+yn+ – Tλn+yn + Tλn+yn – Tλnyn.

It follows that

‖zn+ – zn‖ ≤ ‖Tλn+yn+ – Tλn+yn‖ + ‖Tλn+yn – Tλnyn‖
≤ ‖yn+ – yn‖ + ‖Tλn+yn – Tλnyn‖. (.)

From Lemma ., we know that I – λA is nonexpansive for all λ ∈ (, α). Thus, we have
I – λn+

–αn+
A is nonexpansive for all n due to the fact that λn+

–αn+
∈ (, α). Then we get

‖yn+ – yn‖ =
∥∥αn+un+ + ( – αn+)xn+ – λn+Axn+ –

(
αnun + ( – αn)xn – λnAxn

)∥∥
≤

∥∥∥∥( – αn+)
(
xn+ –

λn+

 – αn+
Axn+

)
– ( – αn)

(
xn –

λn

 – αn
Axn

)∥∥∥∥
+ αn+‖un+‖ + αn‖un‖

≤ ( – αn+)
∥∥∥∥
(
I –

λn+

 – αn+
A

)
xn+ –

(
I –

λn+

 – αn+
A

)
xn

∥∥∥∥
+

∥∥∥∥( – αn+)
(
xn –

λn+

 – αn+
Axn

)
– ( – αn)

(
xn –

λn

 – αn
Axn

)∥∥∥∥
+ αn+‖un+‖ + αn‖un‖

≤ ‖xn+ – xn‖ + |αn+ – αn|‖xn‖ + |λn+ – λn|‖Axn‖
+ αn+‖un+‖ + αn‖un‖. (.)

By Lemma ., we have

‖Tλn+yn – Tλnyn‖ ≤ |λn+ – λn|
λn+

‖Tλn+yn – yn‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/183
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From (.)-(.), we obtain

‖zn+ – zn‖ ≤ ‖xn+ – xn‖ + |αn+ – αn|‖xn‖ + |λn+ – λn|‖Axn‖
+

|λn+ – λn|
λn+

‖Tλn+yn – yn‖ + αn+‖un+‖ + αn‖un‖.

Then

∥∥(
γ I + ( – γ )S

)
zn+ –

(
γ I + ( – γ )S

)
zn

∥∥
≤ ‖zn+ – zn‖
≤ ‖xn+ – xn‖ + |αn+ – αn|‖xn‖ + |λn+ – λn|‖Axn‖

+
|λn+ – λn|

λn+
‖Tλn+yn – yn‖ + αn+‖un+‖ + αn‖un‖.

Therefore,

∥∥(
γ I + ( – γ )S

)
zn+ –

(
γ I + ( – γ )S

)
zn

∥∥ – ‖xn+ – xn‖
≤ |αn+ – αn|‖xn‖ + |λn+ – λn|‖Axn‖ + αn+‖un+‖ + αn‖un‖

+
|λn+ – λn|

λn+
‖Tλn+yn – yn‖.

Since αn → , λn+ – λn →  and lim infn→∞ λn > , we obtain

lim sup
n→∞

(∥∥(
γ I + ( – γ )S

)
zn+ –

(
γ I + ( – γ )S

)
zn

∥∥ – ‖xn+ – xn‖
) ≤ .

This together with Lemma . implies that

lim
n→∞

∥∥(
γ I + ( – γ )S

)
zn – xn

∥∥ = . (.)

Consequently, we obtain

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)
∥∥(

γ I + ( – γ )S
)
zn – xn

∥∥ = .

From (.) and (.), we have

‖xn+ – z‖ ≤ ( – βn)
∥∥(

γ I + ( – γ )S
)
Tλn

(
αnun + ( – αn)xn – λnAxn

)
– z

∥∥

+ βn‖xn – z‖

≤ ( – βn)
{
( – αn)

(
‖xn – z‖ + λn

( – αn)
(
λn – ( – αn)α

)‖Axn –Az‖
)

+ αn‖un – z‖
}
+ βn‖xn – z‖

=
(
 – ( – βn)αn

)‖xn – z‖ + ( – βn)λn

 – αn

(
λn – ( – αn)α

)‖Axn –Az‖

+ ( – βn)αn‖un – z‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/183
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≤ ‖xn – z‖ + ( – βn)λn

 – αn

(
λn – ( – αn)α

)‖Axn –Az‖

+ ( – βn)αn‖un – z‖.

Then we obtain

( – βn)λn

 – αn

(
( – αn)α – λn

)‖Axn –Az‖

≤ ‖xn – z‖ – ‖xn+ – z‖ + ( – βn)αn‖un – z‖

≤ (‖xn – z‖ – ‖xn+ – z‖)‖xn+ – xn‖ + ( – βn)αn‖un – z‖.

Since limn→∞ αn = , limn→∞ ‖xn+ – xn‖ =  and lim infn→∞ (–βn)λn
–αn

(( – αn)α – λn) > ,
we have

lim
n→∞‖Axn –Az‖ = . (.)

Next, we show ‖xn – zn‖ = ‖xn –Tλnyn‖ → . By using the firm nonexpansivity of Tλn , we
have

‖Tλnyn – z‖ =
∥∥Tλnyn – Tλn (z – λnAz)

∥∥

≤ 〈
yn – (z – λnAz),Tλnyn – z

〉

=


(∥∥yn – (z – λnAz)

∥∥ + ‖Tλnyn – z‖

–
∥∥αnun + ( – αn)xn – λn(Axn – λnAz) – Tλnyn

∥∥).
We note that

∥∥yn – (z – λnAz)
∥∥ ≤ ( – αn)‖xn – z‖ + αn‖un – z‖.

Thus,

‖Tλnyn – z‖ ≤ 

(
( – αn)‖xn – z‖ + αn‖un – z‖ + ‖Tλnyn – z‖

–
∥∥αnun + ( – αn)xn – Tλnyn – λn(Axn – λnAz)

∥∥).
That is,

‖Tλnyn – z‖ ≤ ( – αn)‖xn – z‖ + αn‖un – z‖

–
∥∥αnun + ( – αn)xn – Tλnyn – λn(Axn – λnAz)

∥∥

= ( – αn)‖xn – z‖ + αn‖un – z‖ – ∥∥αnun + ( – αn)xn – Tλnyn
∥∥

+ λn
〈
αnun + ( – αn)xn – Tλnyn,Axn –Az

〉
– λ

n‖Axn –Az‖

≤ ( – αn)‖xn – z‖ + αn‖un – z‖ – ∥∥αnun + ( – αn)xn – Tλnyn
∥∥

+ λn
∥∥αnun + ( – αn)xn – Tλnyn

∥∥‖Axn –Az‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/183
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It follows that

‖xn+ – z‖ ≤ βn‖xn – z‖ + ( – βn)( – αn)‖xn – z‖ + ( – βn)αn‖un – z‖

– ( – βn)
∥∥αnun + ( – αn)xn – Tλnyn

∥∥

+ λn( – βn)
∥∥αnun + ( – αn)xn – Tλnyn

∥∥‖Axn –Az‖
=

(
 – ( – βn)αn

)‖xn – z‖ + ( – βn)αn‖un – z‖

– ( – βn)
∥∥αnun + ( – αn)xn – Tλnyn

∥∥

+ λn( – βn)
∥∥αnun + ( – αn)xn – Tλnyn

∥∥‖Axn –Az‖.

Hence,

( – βn)
∥∥αnun + ( – αn)xn – Tλnyn

∥∥

≤ ‖xn – z‖ – ‖xn+ – z‖ – ( – βn)αn‖xn – z‖

+( – βn)αn‖un – z‖ + λn( – βn)
∥∥αnun + ( – αn)xn – Tλnyn

∥∥‖Axn –Az‖
≤ (‖xn – z‖ + ‖xn+ – z‖)‖xn+ – xn‖ + ( – βn)αn‖un – z‖

+λn( – βn)
∥∥αnun + ( – αn)xn – Tλnyn

∥∥‖Axn –Az‖.

Since lim supn→∞ βn < , ‖xn+ – xn‖ → , αn →  and ‖Axn –Az‖ → , we deduce

lim
n→∞

∥∥αnun + ( – αn)xn – Tλnyn
∥∥ = .

This implies that

lim
n→∞‖xn – zn‖ = ‖xn – Tλnyn‖ = . (.)

Put x̃ = ProjF(S)∩MEP(u). We will finally show that xn → x̃.
Setting vn = xn – λn

–αn
(Axn – Ax̃) for all n. Taking z = x̃ in (.) to get ‖Axn – Ax̃‖ → .

First, we prove lim supn→∞〈u– x̃, vn – x̃〉 ≤ .We take a subsequence {vni} of {vn} such that

lim sup
n→∞

〈u – x̃, vn – x̃〉 = lim
i→∞〈u – x̃, vni – x̃〉.

It is clear that {vni} is bounded due to the boundedness of {xn} and ‖Axn –Ax̃‖ → . Then
there exists a subsequence {vnij } of {vni} which converges weakly to some point w ∈ C.
Hence, {xnij } also converges weakly to w. At the same time, from (.) and (.), we have

lim
j→∞

∥∥xnij –
(
γ I + ( – γ )S

)
xnij

∥∥ = . (.)

By the demi-closedness principle (see Lemma .) and (.), we deduce w ∈ F(S).
Further, we show that w is also inMEP. From (.), we have

F(zn, y) + 〈Axn, y – zn〉 + 
λn

〈
y – zn, zn –

(
αnun + ( – αn)xn

)〉 ≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/183
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From (H), we have

〈Axn, y – zn〉 + 
λn

〈
y – zn, zn –

(
αnun + ( – αn)xn

)〉 ≥ F(y, zn). (.)

Put xt = ty + ( – t)w for all t ∈ (,  – λ
α ) and y ∈ C. Then we have xt ∈ C. So, from (.),

we have

〈xt – zn,Axt〉 ≥ 〈xt – zn,Axt〉 – 〈xt – zn,Axn〉
–


λn

〈
xt – zn, zn –

(
αnun + ( – αn)xn

)〉
+ F(xt , zn)

= 〈xt – zn,Axt –Azn〉 + 〈xt – zn,Azn –Axn〉
–


λn

〈
xt – zn, zn –

(
αnun + ( – αn)xn

)〉
+ F(xt , zn).

Since ‖zn – xn‖ → , we have ‖Azn –Axn‖ → . Further, frommonotonicity of A, we have
〈xt – zn,Axt –Azn〉 ≥ . So, from (H), we have

〈xt –w,Axt〉 ≥ F(xt ,w), as n→ ∞. (.)

From (H), (H) and (.), we also have

 = F(xt ,xt)

≤ tF(xt , y) + ( – t)F(xt ,w)

≤ tF(xt , y) + ( – t)〈xt –w,Axt〉
= tF(xt , y) + ( – t)t〈y –w,Axt〉

and hence

 ≤ F(xt , y) + ( – t)〈y –w,Axt〉.

Letting t → , we have, for each y ∈ C,

 ≤ F(w, y) + 〈y –w,Aw〉.

This implies w ∈ MEP. Hence, we have w ∈ F(S)∩MEP. This implies that

lim sup
n→∞

〈u – x̃, vn – x̃〉 = lim
j→∞〈u – x̃, vnij – x̃〉 = 〈u – x̃,w – x̃〉.

Note that x̃ = ProjF(S)∩MEP(u). Then 〈u – x̃,w – x̃〉 ≤ , w ∈ F(S)∩MEP. Therefore,

lim sup
n→∞

〈u – x̃, vn – x̃〉 ≤ .

Since un → u, we have

lim sup
n→∞

〈un – x̃, vn – x̃〉 ≤ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/183
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From (.), we have

‖xn+ – x̃‖

≤ βn‖xn – x̃‖ + ( – βn)
∥∥(

γ I + ( – γ )S
)
Tλnyn – x̃

∥∥

≤ βn‖xn – x̃‖ + ( – βn)‖Tλnyn – x̃‖

= βn‖xn – x̃‖ + ( – βn)
∥∥Tλnyn – Tλn (x̃ – λnAx̃)

∥∥

≤ βn‖xn – x̃‖ + ( – βn)
∥∥yn – (x̃ – λnAx̃)

∥∥

= βn‖xn – x̃‖ + ( – βn)
∥∥αnun + ( – αn)xn – λnAxn – (x̃ – λnAx̃)

∥∥

= ( – βn)
∥∥∥∥( – αn)

((
xn –

λn

 – αn
Axn

)
–

(
x̃ –

λn

 – αn
Ax̃

))
+ αn(un – x̃)

∥∥∥∥


+ βn‖xn – x̃‖

= ( – βn)
(
( – αn)

∥∥∥∥
(
xn –

λn

 – αn
Axn

)
–

(
x̃ –

λn

 – αn
Ax̃

)∥∥∥∥


+ αn( – αn)
〈
un – x̃,

(
xn –

λn

 – αn
Axn

)
–

(
x̃ –

λn

 – αn
Ax̃

)〉

+ α
n‖un – x̃‖

)
+ βn‖xn – x̃‖

≤ βn‖xn – x̃‖ + ( – βn)
(
( – αn)‖xn – x̃‖

+ αn( – αn)
〈
un – x̃,xn –

λn

 – αn
(Axn –Ax̃) – x̃

〉
+ α

n‖un – x̃‖
)

≤ (
 – ( – βn)αn

)‖xn – x̃‖

+ ( – βn)αn
{
( – αn)〈un – x̃, vn – x̃〉 + αn‖un – x̃‖}.

It is clear that
∑∞

n=( – βn)αn = ∞ and lim supn→∞(( – αn)〈un – x̃, vn – x̃〉 + αn‖un –
x̃‖) ≤ . We can therefore apply Lemma . to conclude that xn → x̃. This completes the
proof. �

Corollary . Let C be a nonempty closed convex subset of a realHilbert spaceH and let F :
C×C → R be a bifunction satisfying conditions (H)-(H). Let A : C → H be an α-inverse-
strongly monotone mapping and let S : C → C be a nonexpansive mapping. Suppose that
F(S)∩MEP �= ∅. Let x ∈ C, {zn} and {xn} be sequences in C generated by

⎧⎨
⎩
F(zn, y) + 〈Axn, y – zn〉 + 

λn
〈y – zn, zn – (αnun + ( – αn)xn)〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)γ zn + ( – βn)( – γ )Szn
(.)

for all n ≥ , where {λn} ⊂ (, α), {αn} ⊂ (, ) and {βn} ⊂ (, ) satisfy
(r) limn→∞ un = u for some u ∈H ;
(r) limn→∞ αn =  and

∑∞
n= αn = ∞;

(r)  < c ≤ βn ≤ d <  and γ ∈ (, );
(r) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, α) and limn→∞(λn+ – λn) = .

Then {xn} generated by (.) converges strongly to ProjF(S)∩MEP(u).

http://www.fixedpointtheoryandapplications.com/content/2013/1/183
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Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and
let F : C × C → R be a bifunction satisfying conditions (H)-(H). Let S : C → C be a κ-
strictly pseudo-contractive mapping. Suppose that F(S)∩ EP �= ∅. Let x ∈ C, {zn} and {xn}
be sequences in C generated by

⎧⎨
⎩
F(zn, y) + 

λn
〈y – zn, zn – (αnun + ( – αn)xn)〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)γ zn + ( – βn)( – γ )Szn
(.)

for all n ≥ , where {λn} ⊂ (, ), {αn} ⊂ (, ) and {βn} ⊂ (, ) satisfy
(r) limn→∞ un = u for some u ∈H ;
(r) limn→∞ αn =  and

∑∞
n= αn = ∞;

(r)  < c ≤ βn ≤ d <  and γ ∈ [κ , );
(r) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, ) and limn→∞(λn+ – λn) = .

Then {xn} generated by (.) converges strongly to ProjF(S)∩EP(u).

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and
let F : C × C → R be a bifunction satisfying conditions (H)-(H). Let S : C → C be a
nonexpansive mapping. Suppose that F(S)∩EP �= ∅. Let x ∈ C, {zn} and {xn} be sequences
in C generated by

⎧⎨
⎩
F(zn, y) + 

λn
〈y – zn, zn – (αnun + ( – αn)xn)〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)γ zn + ( – βn)( – γ )Szn
(.)

for all n ≥ , where {λn} ⊂ (, ), {αn} ⊂ (, ) and {βn} ⊂ (, ) satisfy
(r) limn→∞ un = u for some u ∈H ;
(r) limn→∞ αn =  and

∑∞
n= αn = ∞;

(r)  < c ≤ βn ≤ d <  and γ ∈ (, );
(r) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, ) and limn→∞(λn+ – λn) = .

Then {xn} generated by (.) converges strongly to ProjF(S)∩EP(u).

Corollary . Let C be a nonempty closed convex subset of a realHilbert spaceH and let F :
C×C → R be a bifunction satisfying conditions (H)-(H). Let A : C → H be an α-inverse-
strongly monotone mapping and let S : C → C be a κ-strictly pseudo-contractive mapping.
Suppose that F(S)∩MEP �= ∅. Let x ∈ C, {zn} and {xn} be sequences in C generated by

⎧⎨
⎩
F(zn, y) + 〈Axn, y – zn〉 + 

λn
〈y – zn, zn – ( – αn)xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)γ zn + ( – βn)( – γ )Szn
(.)

for all n ≥ , where {λn} ⊂ (, α), {αn} ⊂ (, ) and {βn} ⊂ (, ) satisfy
(r) limn→∞ αn =  and

∑∞
n= αn = ∞;

(r)  < c ≤ βn ≤ d <  and γ ∈ [κ , );
(r) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, α) and limn→∞(λn+ – λn) = .

Then {xn} generated by (.) converges strongly to ProjF(S)∩MEP(), which is the minimum
norm element in F(S)∩MEP.
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Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and
let F : C × C → R be a bifunction satisfying conditions (H)-(H). Let S : C → C be a κ-
strictly pseudo-contractive mapping. Suppose that F(S)∩ EP �= ∅. Let x ∈ C, {zn} and {xn}
be sequences in C generated by

⎧⎨
⎩
F(zn, y) + 

λn
〈y – zn, zn – ( – αn)xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)γ zn + ( – βn)( – γ )Szn
(.)

for all n ≥ , where {λn} ⊂ (, ), {αn} ⊂ (, ) and {βn} ⊂ (, ) satisfy
(r) limn→∞ αn =  and

∑∞
n= αn = ∞;

(r)  < c ≤ βn ≤ d <  and γ ∈ [κ , );
(r) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, ) and limn→∞(λn+ – λn) = .

Then {xn} generated by (.) converges strongly to ProjF(S)∩EP(), which is the minimum
norm element in F(S)∩ EP.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and
let F : C × C → R be a bifunction satisfying conditions (H)-(H). Let A : C → H be an
α-inverse-strongly monotone mapping. Suppose that MEP �= ∅. Let x ∈ C, {zn} and {xn} be
sequences in C generated by

⎧⎨
⎩
F(zn, y) + 〈Axn, y – zn〉 + 

λn
〈y – zn, zn – ( – αn)xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)zn
(.)

for all n ≥ , where {λn} ⊂ (, α), {αn} ⊂ (, ) and {βn} ⊂ (, ) satisfy
(r) limn→∞ αn =  and

∑∞
n= αn = ∞;

(r)  < c ≤ βn ≤ d < ;
(r) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, α) and limn→∞(λn+ – λn) = .

Then {xn} generated by (.) converges strongly to ProjMEP(),which is the minimum norm
element in MEP.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and let
F : C ×C → R be a bifunction satisfying conditions (H)-(H). Suppose EP �= ∅. Let x ∈ C,
{zn} and {xn} be sequences in C generated by

⎧⎨
⎩
F(zn, y) + 

λn
〈y – zn, zn – ( – αn)xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)zn
(.)

for all n ≥ , where {λn} ⊂ (, ), {αn} ⊂ (, ) and {βn} ⊂ (, ) satisfy
(r) limn→∞ αn =  and

∑∞
n= αn = ∞;

(r)  < c ≤ βn ≤ d < ;
(r) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, ) and limn→∞(λn+ – λn) = .

Then {xn} generated by (.) converges strongly to ProjEP(), which is the minimum norm
element in EP.
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