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Abstract
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1 Introduction
LetH be a real Hilbert space with the inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let C
be a nonempty, closed and convex subset of H and let A : C →H be a nonlinear operator.
The variational inequality problem for A and C, denoted by VI(C,A), is the problem of
finding a point x* ∈ C satisfying

〈
Ax*,x – x*

〉 ≥ , ∀x ∈ C. ()

We denote the solution set of this problem by SVI(C,A). Under themonotonicity assump-
tion, the solution set of SVI(C,A) is always closed and convex.
The variational inequality problem is a fundamental problem in variational analysis and,

in particular, in optimization theory. There are several iterative methods for solving it.
See, e.g., [–]. The basic idea consists of extending the projected gradient method for
constrained optimization, i.e., for the problem of minimizing f (x) subject to x ∈ C. For
x ∈ C, compute the sequence {xn} in the following manner:

xn+ = PC
[
xn – αn∇f (xn)

]
, n≥ , ()

where αn >  is the stepsize and PC is themetric projection ontoC. See [] for convergence
properties of thismethod for the case inwhich f is convex and f : Rn → R is a differentiable
function, which are related to the results in this article. An immediate extension of the
method () to VI(C,A) is the iterative procedure given by

xn+ = PC[xn – αnAxn], n≥ . ()
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Convergence results for this method require some monotonicity properties of A. Note
that for the method given by () there is no chance of relaxing the assumption on A to
plain monotonicity. The typical example consists of taking C = R

 and A, a rotation with
a π

 angle. A is monotone and the unique solution of VI(C,A) is x* = . However, it is
easy to check that ‖xn –αnAxn‖ > ‖xn‖ for all xn 
=  and all αn > , therefore the sequence
generated by ()moves away from the solution, independently of the choice of the stepsize
αn.
To overcome this weakness of the method defined by (), Korpelevich [] proposed a

modification of the method, called the extragradient algorithm. It generates iterates using
the following formulae:

yn = PC[xn – λAxn],

xn+ = PC[xn – λAyn], n≥ ,
()

where λ >  is a fixed number. The difference in () is that A is evaluated twice and the
projection is computed twice at each iteration, but the benefit is significant, because the
resulting algorithm is applicable to the whole class of monotone variational inequalities.
However, we note that Korpelevich assumed that A is Lipschitz continuous and that an
estimate of the Lipschitz constant is available. When A is not Lipschitz continuous, or
it is Lipschitz but the constant is not known, the fixed parameter λ must be replaced by
stepsizes computed through anArmijo-type search, as in the followingmethod, presented
in [] (see also [] for another related approach).
Let δ ∈ (, ), {βn} ⊂ [β̂ , β̄] and x ∈ C. Given xn define

zn = xn – βnAxn.

If xn = PC[zn], then stop. Otherwise, let

j(n) =min

{
j ≥  :

〈
A

(

j
PC[zn] +

(
 –


j
xn

))
,xn – PC[zn]

〉

≥ δ

βn

∥∥xn – PC[zn]
∥∥

}
()

and

αn = –j(n), yn = αnPC[zn] + ( – αn)xn.

Define

Hn =
{
x ∈H : 〈Ayn, z – yn〉 ≤ 

}
,

Wn =
{
z ∈ H : 〈x – xn, z – xn〉 ≤ 

}
, ()

xn+ = PHn∩Wn∩Cx.

It is proved that if A is maximal monotone, point-to-point and uniformly continuous on
bounded sets, and if VI(C,A) is nonempty, then {xn}n strongly converges to PVI(C,A)x.
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We now know that the difficult implementation of these methods is in computational
respect. First, we note that in order to get αn, we have to compute j(n), whichmay be time-
consuming. At the same time, we observe that () involves two half-spaces Hn andWn. If
the sets C, Hn and Wn are simple enough, then PC , PHn and PWn are easily executed. But
Hn ∩Wn ∩C may be complicated, so that the projection PHn∩Wn∩C is not easily executed.
This might seriously affect the efficiency of the method.
The literature on theVI(C,A) is vast and Korpelevich’s method has received great atten-

tion from many authors, who improved it in various ways; see, e.g., [, –] and ref-
erences therein. It is known that Korpelevich’s method () has only weak convergence in
the infinite-dimensional Hilbert spaces (please refer to a recent result of Censor et al. []
and []). So, to obtain strong convergence, the original method was modified by several
authors. For example, in [, ] it was proved that some very interesting Korpelevich-type
algorithms strongly converge to a solution of VI(C,A). Very recently, Yao et al. [] sug-
gested modified Korpelevich’s method which converges strongly to the minimum norm
solution of variational inequality () in infinite-dimensional Hilbert spaces.
Motivated by the works given above, in the present paper, we propose a variant

extragradient-type method for solving monotone variational inequalities. Strong conver-
gence analysis of the method is presented under reasonable assumptions on the problem
data in the infinite-dimensional Hilbert spaces.

2 Preliminaries
In this section, we present somedefinitions and results that are needed for the convergence
analysis of the proposedmethod. LetC be a closed convex subset of a real Hilbert spaceH .
A mapping F : C → H is said to be Lipschitz if there exists a positive real number L > 

such that

∥∥F(x) – F(y)
∥∥ ≤ L‖x – y‖

for all x, y ∈ C. In the case L ∈ (, ), F is called L-contractive. A mapping A : C → H is
called α-inverse-strongly-monotone if there exists a positive real number α such that

〈Au –Av,u – v〉 ≥ α‖Au –Av‖, ∀u, v ∈ C.

The following result is well known.

Proposition  [] Let C be a bounded closed convex subset of a real Hilbert space H
and let A be an α-inverse strongly monotone operator of C into H . Then SVI(C,A) is
nonempty.

For any u ∈H , there exists a unique u ∈ C such that

‖u – u‖ = inf
{‖u – x‖ : x ∈ C

}
.

We denote u by PCu, where PC is called themetric projection of H onto C. The following
is a useful characterization of projections.
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Proposition  Given x ∈H .We have

〈x – PCx, y – PCx〉 ≤ , ∀y ∈ C,

which is equivalent to

〈x – y,PCx – PCy〉 ≥ ‖PCx – PCy‖, ∀x, y ∈H .

Consequently, we deduce immediately that PC is nonexpansive, that is,

‖PCx – PCy‖ ≤ ‖x – y‖

for all x, y ∈H .

It is well known that PC – I is nonexpansive.

Lemma  [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let the
mapping A : C → H be α-inverse strongly monotone and r >  be a constant. Then we have

∥∥(I – rA)x – (I – rA)y
∥∥ ≤ ‖x – y‖ + r(r – α)‖Ax –Ay‖, ∀x, y ∈ C.

In particular, if  ≤ r ≤ α, then I – rA is nonexpansive.

Lemma  [] Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Suppose that
() xn+ = ( – βn)yn + βnxn for all n≥ ;
() lim supn→∞(‖yn+ – yn‖ – ‖xn+ – xn‖) ≤ .
Then limn→∞ ‖yn – xn‖ = .

Lemma  [] Assume that {an} is a sequence of nonnegative real numbers,which satisfies

an+ ≤ ( – γn)an + δn, n≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn = ∞;

() lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

3 Algorithm and its convergence analysis
In this section, we present the formal statement of our proposal for the algorithm.

Variant extragradient-type method
LetC be a nonempty, closed and convex subset of a real Hilbert spaceH . LetA : C → H be
an α-inverse-strongly-monotone mapping and let F : C →H be a ρ-contractive mapping.
Consider the sequences {αn} ⊂ [, ], {λn} ⊂ [, α], {μn} ⊂ [, α] and {γn} ⊂ [, ].

http://www.fixedpointtheoryandapplications.com/content/2013/1/185
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. Initialization:

x ∈ C.

. Iterative step: Given xn, define

⎧⎨
⎩yn = PC[xn – λnAxn + αn(Fxn – xn)],

xn+ = PC[xn –μnAyn + γn(yn – xn)], n≥ .
()

Remark  Note that algorithm () includes Korpelevich’s method () as a special case.

Next, we shall perform a study on the convergence analysis of the proposed algo-
rithm ().

Theorem  Suppose that SVI(C,A) 
=∅.Assume that the algorithm parameters {αn}, {λn},
{μn} and {γn} satisfy the following conditions:
(C) limn→∞ αn =  and

∑∞
n= αn = ∞;

(C) λn ∈ [a,b]⊂ (, α) and limn→∞(λn+ – λn) = ;
(C) γn ∈ (, ), μn ≤ αγn and limn→∞(γn+ – γn) = limn→∞(μn+ –μn) = .
Then the sequence {xn} generated by () converges strongly to x̃ ∈ SVI(C,A), which solves

the following variational inequality:

〈
x̃ – Fx̃, x̃ – x*

〉 ≤  for all x* ∈ SVI(C,A).

We shall prove our main result in several steps, included into the propositions given
bellow.

Proposition  The sequences {xn} and {yn} are bounded. Therefore, the sequences {Fxn},
{Axn} and {Ayn} are all bounded.

Proof From conditions (C) and (C), since αn →  and λn ∈ [a,b]⊂ (, α), we have αn <
 – λn

α , for n large enough. Without loss of generality, we may assume that, for all n ∈ N,
αn <  – λn

α . So,
λn

–αn
∈ (, α).

Consider any x* ∈ SVI(C,A). By the property of the metric projection, we know x* =
PC[x* – δAx*] for any δ > . Hence,

x* = PC

[
x* –

λn

 – αn
Ax*

]
= PC

[
x* – λnAx*

]

= PC

[
αnx* + ( – αn)

(
x* –

λn

 – αn
Ax*

)]
, ∀n≥ . ()

Thus, by () and (), we have

∥∥yn – x*
∥∥ =

∥∥PC
[
αnFxn + ( – αn)xn – λnAxn

]
– x*

∥∥
=

∥∥∥∥PC

[
αnFxn + ( – αn)

(
xn –

λn

 – αn
Axn

)]
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– PC

[
αnx* + ( – αn)

(
x* –

λn

 – αn
Ax*

)]∥∥∥∥
≤

∥∥∥∥αn
(
Fxn – x*

)
+ ( – αn)

[(
xn –

λn

 – αn
Axn

)
–

(
x* –

λn

 – αn
Ax*

)]∥∥∥∥. ()

Since λn
–αn

∈ (, α), from Lemma , we know that I – λn
–αn

A is nonexpansive. From (), we
get

∥∥yn – x*
∥∥ ≤ αn

∥∥Fxn – x*
∥∥ + ( – αn)

∥∥∥∥
(
I –

λn

 – αn
A

)
xn –

(
I –

λn

 – αn
A

)
x*

∥∥∥∥
≤ αn

∥∥Fxn – Fx*
∥∥ + αn

∥∥Fx* – x*
∥∥ + ( – αn)

∥∥xn – x*
∥∥

≤ αnρ
∥∥xn – x*

∥∥ + αn
∥∥Fx* – x*

∥∥ + ( – αn)
∥∥xn – x*

∥∥
=

[
 – ( – ρ)αn

]∥∥xn – x*
∥∥ + αn

∥∥Fx* – x*
∥∥.

By (C), we obtain μn
γn

≤ α. So, I – μn
γn
A is also nonexpansive. Therefore,

∥∥xn+ – x*
∥∥ =

∥∥PC
[
xn –μnAyn + γn(yn – xn)

]
– x*

∥∥
=

∥∥∥∥PC

[
( – γn)xn + γn

(
yn –

μn

γn
Ayn

)]

– PC

[
( – γn)x* + γn

(
x* –

μn

γn
Ax*

)]∥∥∥∥
≤ ( – γn)

∥∥xn – x*
∥∥ + γn

∥∥∥∥
(
yn –

μn

γn
Ayn

)
–

(
x* –

μn

γn
Ax*

)∥∥∥∥
≤ ( – γn)

∥∥xn – x*
∥∥ + γn

∥∥yn – x*
∥∥

≤ ( – γn)
∥∥xn – x*

∥∥ + γnαn
∥∥Fx* – x*

∥∥
+ γn

[
 – ( – ρ)αn

]∥∥xn – x*
∥∥

=
[
 – ( – ρ)γnαn

]∥∥xn – x*
∥∥ + γnαn

∥∥Fx* – x*
∥∥

≤ max

{∥∥xn – x*
∥∥, ‖Fx* – x*‖

 – ρ

}
. ()

By induction, we get

∥∥xn+ – x*
∥∥ ≤ max

{∥∥x – x*
∥∥, ‖Fx* – x*‖

 – ρ

}
.

Then {xn} is bounded, and so are {yn}, {Fxn}, {Axn} and {Ayn}. Therefore, the proof is
complete. �

Proposition  The following two properties hold:

lim
n→∞‖xn+ – xn‖ = , lim

n→∞‖xn – yn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/185
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Proof Let S = PC – I . From the property of the metric projection, we known that S is
nonexpansive. Therefore, we can rewrite xn+ in () as

xn+ =
I + S


[
( – γn)xn + γn

(
yn –

μn

γn
Ayn

)]

=
 – γn


xn +

γn



(
yn –

μn

γn
Ayn

)
+


S
[
( – γn)xn + γn

(
yn –

μn

γn
Ayn

)]

=
 – γn


xn +

 + γn


zn,

where

zn =
γn
 (yn –

μn
γn
Ayn) + 

S[( – γn)xn + γn(yn – μn
γn
Ayn)]

+γn


=
γn(yn – μn

γn
Ayn) + S[( – γn)xn + γn(yn – μn

γn
Ayn)]

 + γn
.

It follows that

zn+ – zn

=
γn+(yn+ – μn+

γn+
Ayn+) + S[( – γn+)xn+ + γn+(yn+ – μn+

γn+
Ayn+)]

 + γn+

–
γn(yn – μn

γn
Ayn) + S[( – γn)xn + γn(yn – μn

γn
Ayn)]

 + γn
.

So,

‖zn+ – zn‖ ≤ γn+

 + γn+

∥∥∥∥
(
yn+ –

μn+

γn+
Ayn+

)
–

(
yn –

μn

γn
Ayn

)∥∥∥∥
+

∣∣∣∣ γn+

 + γn+
–

γn

 + γn

∣∣∣∣
∥∥∥∥yn – μn

γn
Ayn

∥∥∥∥
+


 + γn+

∥∥∥∥S
[
( – γn+)xn+ + γn+

(
yn+ –

μn+

γn+
Ayn+

)]

– S
[
( – γn)xn + γn

(
yn –

μn

γn
Ayn

)]∥∥∥∥
+

∣∣∣∣ 
 + γn+

–


 + γn

∣∣∣∣
∥∥∥∥S

[
( – γn)xn + γn

(
yn –

μn

γn
Ayn

)]∥∥∥∥
≤ γn+

 + γn+

∥∥∥∥
(
I –

μn+

γn+
A

)
yn+ –

(
I –

μn+

γn+
A

)
yn

∥∥∥∥
+

γn+

 + γn+

∣∣∣∣μn+

γn+
–

μn

γn

∣∣∣∣‖Ayn‖
+

∣∣∣∣ γn+

 + γn+
–

γn

 + γn

∣∣∣∣
∥∥∥∥yn – μn

γn
Ayn

∥∥∥∥
+


 + γn+

∥∥∥∥S
[
( – γn+)xn+ + γn+

(
yn+ –

μn+

γn+
Ayn+

)]
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– S
[
( – γn)xn + γn

(
yn –

μn

γn
Ayn

)]∥∥∥∥
+

∣∣∣∣ 
 + γn+

–


 + γn

∣∣∣∣
∥∥∥∥S

[
( – γn)xn + γn

(
yn –

μn

γn
Ayn

)]∥∥∥∥.
Again, by using the nonexpansivity of I – μn

γn
A and S, we have

‖zn+ – zn‖ ≤ γn+

 + γn+
‖yn+ – yn‖ +

∣∣∣∣ γn+

 + γn+
–

γn

 + γn

∣∣∣∣
∥∥∥∥yn – μn

γn
Ayn

∥∥∥∥
+

γn+

 + γn+

∣∣∣∣μn+

γn+
–

μn

γn

∣∣∣∣‖Ayn‖ + 
 + γn+

∥∥∥∥( – γn+)(xn+ – xn)

+ γn+

[(
I –

μn+

γn+
A

)
yn+ –

(
I –

μn+

γn+
A

)
yn

]

+ (γn+ – γn)(yn – xn) + (μn –μn+)Ayn
∥∥∥∥

+
∣∣∣∣ 
 + γn+

–


 + γn

∣∣∣∣
∥∥∥∥S

[
( – γn)xn + γn

(
yn –

μn

γn
Ayn

)]∥∥∥∥
≤ γn+

 + γn+
‖yn+ – yn‖ +

∣∣∣∣ γn+

 + γn+
–

γn

 + γn

∣∣∣∣
∥∥∥∥yn – μn

γn
Ayn

∥∥∥∥
+

γn+

 + γn+

∣∣∣∣μn+

γn+
–

μn

γn

∣∣∣∣‖Ayn‖ +  – γn+

 + γn+
‖xn+ – xn‖

+
γn+

 + γn+
‖yn+ – yn‖

+
|γn+ – γn|
 + γn+

(‖xn‖ + ‖yn‖
)
+

|μn+ –μn|
 + γn+

‖Ayn‖

+
∣∣∣∣ 
 + γn+

–


 + γn

∣∣∣∣
∥∥∥∥S

[
( – γn)xn + γn

(
yn –

μn

γn
Ayn

)]∥∥∥∥.
Next, we estimate ‖yn+ – yn‖.
By (), we have

‖yn+ – yn‖ =
∥∥PC

[
xn+ – λn+Axn+ + αn+(Fxn+ – xn+)

]
– PC

[
xn – λnAxn + αn(Fxn – xn)

]∥∥
≤ ∥∥[xn+ – λn+Axn+] – [xn – λnAxn]

∥∥ + αn+‖Fxn+ – xn+‖
+ αn‖Fxn – xn‖

=
∥∥(I – λn+A)xn+ – (I – λn+A)xn + (λn – λn+)Axn

∥∥
+ αn+‖Fxn+ – xn+‖ + αn‖Fxn – xn‖

≤ ‖xn+ – xn‖ + |λn+ – λn|‖xn‖ + αn+‖Fxn+ – xn+‖ + αn‖Fxn – xn‖.

So, we deduce

‖zn+ – zn‖ ≤
∣∣∣∣ γn+

 + γn+
–

γn

 + γn

∣∣∣∣
∥∥∥∥yn – μn

γn
Ayn

∥∥∥∥ +
γn+

 + γn+

∣∣∣∣μn+

γn+
–

μn

γn

∣∣∣∣‖Ayn‖
+

|γn+ – γn|
 + γn+

(‖xn‖ + ‖yn‖
)
+

|μn+ –μn|
 + γn+

‖Ayn‖ + ‖xn+ – xn‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/185
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+
∣∣∣∣ 
 + γn+

–


 + γn

∣∣∣∣
∥∥∥∥S

[
( – γn)xn + γn

(
yn –

μn

γn
Ayn

)]∥∥∥∥
+ |λn+ – λn|‖xn‖
+ αn+‖Fxn+ – xn+‖ + αn‖Fxn – xn‖.

Since limn→∞(γn+ – γn) =  and limn→∞(μn+ –μn) = , we derive that

lim
n→∞

∣∣∣∣ γn+

 + γn+
–

γn

 + γn

∣∣∣∣ = , lim
n→∞

∣∣∣∣μn+

γn+
–

μn

γn

∣∣∣∣ = , lim
n→∞

∣∣∣∣ 
 + γn+

–


 + γn

∣∣∣∣ = .

At the same time, note that {xn}, {Fxn}, {yn} and {Ayn} are bounded. Therefore,

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

By Lemma , we obtain

lim
n→∞‖zn – xn‖ = .

Hence,

lim
n→∞‖xn+ – xn‖ = lim

n→∞
 + γn


‖zn – xn‖ = .

From (), (), Lemma  and the convexity of the norm, we deduce

∥∥xn+ – x*
∥∥ ≤ ( – γn)

∥∥xn – x*
∥∥ + γn

∥∥yn – x*
∥∥

≤ γn

∥∥∥∥αn
(
Fxn – x*

)
+ ( – αn)

[(
xn –

λn

 – αn
Axn

)
–

(
x* –

λn

 – αn
Ax*

)]∥∥∥∥


+ ( – γn)
∥∥xn – x*

∥∥

≤ γn

[
αn

∥∥Fxn – x*
∥∥ + ( – αn)

∥∥∥∥
(
I –

λn

 – αn
A

)
xn –

(
I –

λn

 – αn
A

)
x*

∥∥∥∥
]

+ ( – γn)
∥∥xn – x*

∥∥

≤ ( – αn)γn
[∥∥xn – x*

∥∥ +
λn

 – αn

(
λn

 – αn
– α

)∥∥Axn –Ax*
∥∥

]

+ ( – γn)
∥∥xn – x*

∥∥ + αnγn
∥∥Fxn – x*

∥∥

≤ αnγn
∥∥Fxn – x*

∥∥ +
∥∥xn – x*

∥∥ + γna
(

b
 – αn

– α
)∥∥Axn –Ax*

∥∥.

Therefore, we have

γna
(
α –

b
 – αn

)∥∥Axn –Ax*
∥∥

≤ αnγn
∥∥Fxn – x*

∥∥ +
∥∥xn – x*

∥∥ –
∥∥xn+ – x*

∥∥

≤ αnγn
∥∥Fxn – x*

∥∥ +
(∥∥xn – x*

∥∥ +
∥∥xn+ – x*

∥∥) × ‖xn – xn+‖.
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Since limn→∞ αn = , limn→∞ ‖xn – xn+‖ =  and lim infn→∞ γna(α – b
–αn

) > , we de-
duce

lim
n→∞

∥∥Axn –Ax*
∥∥ = .

By the property (ii) of the metric projection PC , we have

∥∥yn – x*
∥∥ =

∥∥PC
[
αnFxn + ( – αn)xn – λnAxn

]
– PC

[
x* – λnAx*

]∥∥

≤ 〈
αnFxn + ( – αn)xn – λnAxn –

(
x* – λnAx*

)
, yn – x*

〉
=


{∥∥xn – λnAxn –

(
x* – λnAx*

)
+ αn(Fxn – xn)

∥∥ +
∥∥yn – x*

∥∥

–
∥∥αnFxn + ( – αn)xn – λnAxn –

(
x* – λnAx*

)
–

(
yn – x*

)∥∥}
≤ 


{∥∥(xn – λnAxn) –

(
x* – λnAx*

)∥∥

+ αn‖Fxn – xn‖
∥∥xn – λnAxn –

(
x* – λnAx*

)
+ αn(Fxn – xn)

∥∥
+

∥∥yn – x*
∥∥ –

∥∥(xn – yn) – λn
(
Axn –Ax*

)
+ αn(Fxn – xn)

∥∥}
≤ 


{∥∥(xn – λnAxn) –

(
x* – λnAx*

)∥∥ + αnM +
∥∥yn – x*

∥∥

–
∥∥(xn – yn) – λn

(
Axn –Ax*

)
+ αn(Fxn – xn)

∥∥}
≤ 


{∥∥xn – x*

∥∥ + αnM +
∥∥yn – x*

∥∥ – ‖xn – yn‖ + λn
〈
xn – yn,Axn –Ax*

〉
– αn〈Fxn – xn,xn – yn〉 –

∥∥λn
(
Axn –Ax*

)
– αn(Fxn – xn)

∥∥}
≤ 


{∥∥xn – x*

∥∥ + αnM +
∥∥yn – x*

∥∥ – ‖xn – yn‖

+ λn‖xn – yn‖
∥∥Axn –Ax*

∥∥ + αn‖Fxn – xn‖‖xn – yn‖
}
,

whereM >  is some constant satisfying

sup
n

{
‖Fxn – xn‖

∥∥xn – λnAxn –
(
x* – λnAx*

)
+ αn(Fxn – xn)

∥∥} ≤ M.

It follows that

∥∥yn – x*
∥∥ ≤ ∥∥xn – x*

∥∥ + αnM – ‖xn – yn‖ + λn‖xn – yn‖
∥∥Axn –Ax*

∥∥
+ αn‖Fxn – xn‖‖xn – yn‖,

and hence

∥∥xn+ – x*
∥∥ ≤ ( – γn)

∥∥xn – x*
∥∥ + γn

∥∥yn – x*
∥∥

≤ ∥∥xn – x*
∥∥ + αnM – γn‖xn – yn‖ + λn‖xn – yn‖

∥∥Axn –Ax*
∥∥

+ αn‖Fxn – xn‖‖xn – yn‖,
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which implies that

γn‖xn – yn‖ ≤ (∥∥xn – x*
∥∥ +

∥∥xn+ – x*
∥∥)‖xn+ – xn‖ + λn‖xn – yn‖

∥∥Axn –Ax*
∥∥

+ αnM + αn‖Fxn – xn‖‖xn – yn‖.

Since limn→∞ αn = , limn→∞ ‖xn – xn+‖ =  and limn→∞ ‖Axn –Ax*‖ = , we derive

lim
n→∞‖xn – yn‖ = ,

and this concludes the proof. �

Proposition  lim supn→∞〈x̃ – Fx̃, x̃ – yn〉 ≤ , where x̃ = PSVI(C,A)Fx̃.

Proof In order to show that lim supn→∞〈x̃–Fx̃, x̃– yn〉 ≤ , we choose a subsequence {yni}
of {yn} such that

lim sup
n→∞

〈x̃ – Fx̃, x̃ – yn〉 = lim
i→∞〈x̃ – Fx̃, x̃ – yni〉.

As {yni} is bounded, we deduce that a subsequence {ynij} of {yni} converges weakly to z.
Next, we show that z ∈ SVI(C,A). The following proofs are similar to the one in [].

Since the involved algorithms are not different, we still give the details. Now, we define a
mapping T by the formula

Tv =

{
Av +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone.
Let (v,w) ∈ G(T). Since w – Av ∈ NCv and yn ∈ C, we have 〈v – yn,w – Av〉 ≥ . On the

other hand, from yn = PC[αnFxn + ( – αn)xn – λnAxn], we obtain

〈
v – yn, yn – αnFxn – ( – αn)xn + λnAxn

〉 ≥ ,

that is,

〈
v – yn,

yn – xn
λn

+Axn –
αn

λn
(Fxn – xn)

〉
≥ .

Therefore, we have

〈v – yni ,w〉 ≥ 〈v – yni ,Av〉

≥ 〈v – yni ,Av〉 –
〈
v – yni ,

yni – xni
λni

+Axni –
αni
λni

(Fxni – xni )
〉

=
〈
v – yni ,Av –Axni –

yni – xni
λni

+
αni
λni

(Fxni – xni )
〉

= 〈v – yni ,Av –Ayni〉 + 〈v – yni ,Ayni –Axni〉

http://www.fixedpointtheoryandapplications.com/content/2013/1/185
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–
〈
v – yni ,

yni – xni
λni

–
αni
λni

(Fxni – xni )
〉

≥ 〈v – yni ,Ayni –Axni〉 –
〈
v – yni ,

yni – xni
λni

–
αni
λni

(Fxni – xni )
〉
.

Noting that αni → , ‖yni – xni‖ →  and A is Lipschitz continuous, we obtain
〈v– z,w〉 ≥ . Since T is maximal monotone, we have z ∈ T–() and hence z ∈ SVI(C,A).
Therefore,

lim sup
n→∞

〈x̃ – Fx̃, x̃ – yn〉 = lim
i→∞〈x̃ – Fx̃, x̃ – yni〉 = 〈x̃ – Fx̃, x̃ – z〉 ≤ .

The proof of this proposition is now complete. �

Finally, by using Propositions -, we prove Theorem .

Proof By the property of the metric projection PC , we have

‖yn – x̃‖ =
∥∥∥∥PC

[
αnFxn + ( – αn)

(
xn –

λn

 – αn
Axn

)]

– PC

[
αnx̃ + ( – αn)

(
x̃ –

λn

 – αn
Ax̃

)]∥∥∥∥


≤
〈
αn(Fxn – x̃) + ( – αn)

[(
xn –

λn

 – αn
Axn

)
–

(
x̃ –

λn

 – αn
Ax̃

)]
, yn – x̃

〉

≤ αn〈x̃ – Fx̃, x̃ – yn〉 + αn〈Fx̃ – Fxn, x̃ – yn〉

+ ( – αn)
∥∥∥∥
(
xn –

λn

 – αn
Axn

)
–

(
x̃ –

λn

 – αn
Ax̃

)∥∥∥∥‖yn – x̃‖

≤ αn〈x̃ – Fx̃, x̃ – yn〉 + αn‖Fx̃ – Fxn‖‖x̃ – yn‖ + ( – αn)‖xn – x̃‖‖yn – x̃‖
≤ αn〈x̃ – Fx̃, x̃ – yn〉 +

[
 – ( – ρ)αn

]‖xn – x̃‖‖x̃ – yn‖

≤ αn〈x̃ –Gx̃, x̃ – yn〉 +  – ( – ρ)αn


‖xn – x̃‖ + 


‖yn – x̃‖.

Hence,

‖yn – x̃‖ ≤ [
 – ( – ρ)αn

]‖xn – x̃‖ + αn〈x̃ – Fx̃, x̃ – yn〉.

Therefore,

‖xn+ – x̃‖ ≤ ( – γn)‖xn – x̃‖ + γn‖yn – x̃‖

≤ [
 – ( – ρ)αnγn

]‖xn – x̃‖ + αnγn〈x̃ – Fx̃, x̃ – yn〉.

We apply Lemma  to the last inequality to deduce that xn → x̃.
The proof of our main result is completed. �

Remark  Our algorithm () includes Korpelevich’s method () as a special case. How-
ever, it is well known that Korpelevich’s algorithm () has only weak convergence in the

http://www.fixedpointtheoryandapplications.com/content/2013/1/185
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setting of infinite-dimensional Hilbert spaces. But our algorithm () has strong conver-
gence in the setting of infinite-dimensional Hilbert spaces.

If we take F ≡ , then we have the following algorithm:
. Initialization:

x ∈ C.

. Iterative step: Given xn, define
⎧⎨
⎩yn = PC[xn – λnAxn – αnxn],

xn+ = PC[xn –μnAyn + γn(yn – xn)], n≥ .
()

Corollary  Suppose that SVI(C,A) 
=∅.Assume that the algorithmparameters {αn}, {λn},
{μn} and {γn} satisfy the following conditions:
(C) limn→∞ αn =  and

∑∞
n= αn = ∞;

(C) λn ∈ [a,b]⊂ (, α) and limn→∞(λn+ – λn) = ;
(C) γn ∈ (, ), μn ≤ αγn and limn→∞(γn+ – γn) = limn→∞(μn+ –μn) = .
Then the sequence {xn} generated by () converges strongly to theminimumnormelement

x̃ in SVI(C,A).

Proof It is clear that algorithm () is a special case of algorithm (). So, from Theorem ,
we have that the sequence {xn} defined by () converges strongly to x̃ ∈ SVI(C,A), which
solves

〈
x̃, x̃ – x*

〉 ≤ , for all x* ∈ SVI(C,A). ()

Applying the characterization of the metric projection, we can deduce from () that

x* = PSVI(C,A)().

This indicates that x̃ is the minimum-norm element in SVI(C,A). This completes the
proof. �

Remark  Corollary  includes the main result in [] as a special case.
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