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Abstract
In this paper, the concepts of conditionally sequential absorbing and
pseudo-reciprocal continuous maps are introduced in connection to giving a brief
discussion on the role of various types of commutativity (e.g., weakly compatible,
occasionally weakly compatible, subcompatible, pseudo-compatible, etc.) and
continuity-type conditions (e.g., reciprocal, weak reciprocal, g-reciprocal, conditionally
reciprocal, subsequential and sequential continuity of type (Ag) and (Af )) in the
context of existence of common fixed points of a pair of maps. Here, the utility of
newly introduced maps (i.e., conditionally sequential absorbing and
pseudo-reciprocal continuous) in view of common fixed points for a pair of maps
satisfying contractive as well as nonexpansive Lipschitz-type conditions is shown.
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1 Introduction and preliminaries
The classical results of Banach [] (see also []) and Edelstein [] have been the inspiration
for many researchers working in the area of metric fixed point theory. In , Jungck []
generalized the Banach contraction principle by introducing the idea of commuting maps
and settled the historical open problem that a pair of commuting and continuous self-
mappings on the unit interval [, ] need not have a common fixed point [, ]. This result
of Jungck [] made foundation to study and investigate common fixed points and their
applications in various other branches of mathematical sciences in the last five decades.
Since thenmany fixed point theorists have attempted to findweaker forms of commutativ-
ity and continuity that may ensure the existence of a common fixed point for a pair of self-
mappings on a metric space. Systematic observations and comparison of commutativity-
type mappings are available in [].
Proving a common fixed point for mappings satisfying Banach-type contractive condi-

tions involves the following steps: step one is to show that there exists a Cauchy sequence
which converges to a point in X (where X is complete); the second step is to show the
existence of a coincidence point by assuming suitable weaker forms of commutativity and
continuity conditions; and step three automatically gives rise to the fact that this coinci-
dence point is a unique common fixed point due to the contractive condition. Observing
carefully step two, one finds that showing the existence of a coincidence point for involved
maps is nothing but assuming the existence of a coincidence point itself by a suitable choice
of weaker forms of commutativity and continuity conditions (see, for instance, [–]).
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Keeping the above facts in mind, Jungck and Rhoades [] utilized the notion of occa-
sionally weakly compatible maps introduced in [] (as a generalization of weakly compat-
ible maps) for those pairs which do have at least one coincidence point where the maps
commute (it is well known that a pair of maps without a coincidence point is always vac-
uously weakly compatible) and obtained fixed point theorems for such maps.
On the other hand, Singh and Mishra in [] illustrated a technique to prove the exis-

tence of a coincidence point without assuming continuity and commutativity-type condi-
tions. Whereas the result of Suzuki and Pathak [] does not involve any continuity-type
conditions to prove the existence of a coincidence point as well as a common fixed point
for a pair of maps (but they used weaker forms of commutativity conditions). It is also
worth mentioning that Suzuki and Pathak [] did not provide any illustrative examples
to discuss and highlight the above facts. It is also important to note that none of the re-
sults of Jungck [], Singh and Mishra [] and Suzuki and Pathak [] can be obtained
from each other due to their different characteristics. These facts are illustrated in this
paper via Example . (p.).
Motivated by the works of Jungck and Rhoades [], Bouhadjera and Thobie [] (re-

spectively Hussain et al. [] and Sintunavarat and Kumam []) introduced the notion of
subcompatiblemaps (respectively the notions of occasionallyweaklyJH operator and oc-
casionally weakly biased maps) as generalization of occasionally weakly compatible maps
and obtained fixed point theorems for such maps. However, Dorić et al. in [] (respec-
tively Alghamdi et al. []) showed that in the event of a pair of single-valued maps, the
notion of occasionally weakly compatible (respectively occasionally weakly JH operator
and occasionally weakly biasedmaps) reduces to weak compatibility due to the unique co-
incidence point of the involved maps, which is always ensured by underlying contractive
conditions. Hence weak compatibility remains the minimal commutativity condition for
the existence of a common fixed point for a contractive pair of maps. In view of these, the
various results for occasionally weakly compatible maps (occasionally weakly JH opera-
tor and occasionally weakly biasedmaps) obtained in [, , , –], which were used
under contractive conditions, do not yield real generalizations (see also [, ]). Consid-
ering these facts, Pant and Pant [] (see also []) redefined the concept of occasionally
weakly compatibility by introducing the idea of conditionally commutingmapswhich con-
stitute a proper setting in the context of studying non-unique common fixed points for a
pair of maps.
Possibly the first common fixed point theorem (respectively fixed point theorem) with-

out any continuity requirement was established by Pant [, ] when he introduced the
idea of noncompatible and reciprocal continuous maps. (However, the origin of metric
fixed point theory for a singlemappingwithout continuity requirement can be traced back
to Kannan [].) Recently, Pant et al. [] and Pant and Bisht [] generalized the notion
of reciprocal continuity by introducing weak reciprocal continuity and conditionally re-
ciprocal continuity and utilized the same to obtain some common fixed point theorems.
In this connection, the recent paper of Gopal et al. [] is also readable.
Motivated by the results of Pant and Bisht [, ], we introduce the concept of condi-

tionally sequential absorbing and pseudo-reciprocal continuous maps, which allows us to
give a comparative study of various types of commutativity conditions (e.g., compatible,
weakly compatible, occasionally weakly compatible, conditionally commuting, pseudo-
compatible) and continuity-type conditions (e.g., reciprocal, weak reciprocal, g-reciprocal,
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conditionally reciprocal, subsequential and sequential continuity of type (Ag) and (Af ))
with these newly introduced notions in the context of existence of common fixed points
of a pair of maps.
The following relevant known definitions (and results) will be needed in our subsequent

discussion. A pair (f , g) of self-mappings defined on a metric space (X,d) is said to be
(i) compatible [] iff limn d(fgxn, gfxn) =  whenever {xn} is a sequence in X such that

limn fxn = limn gxn = t for some t in X .
It is clear from the above definition that f and g will be noncompatible [] if

there exists a sequence {xn} in X such that limn fxn = limn gxn = t for some t in X ,
but limn d(fgxn, gfxn) is either nonzero or non-existent;

(ii) f -compatible [] if limn d(fgxn, ggxn) =  whenever {xn} is a sequence in X such
that limn fxn = limn gxn = t for some t in X ;

(iii) g-compatible [] if limn(ffxn, gfxn) =  whenever {xn} is a sequence in X such that
limn fxn = limn gxn = t for some t in X ;

(iv) weakly compatible [] if the mappings commute at their coincidence points, i.e.,
fx = gx for some x ∈ X implies fgx = gfx;

(v) occasionally weakly compatible [] if there exists a point x in X that is a
coincidence point of f and g at which f and g commute;

(vi) subcompatible [] iff there exists a sequence {xn} in X such that
limn d(fgxn, gfxn) =  with limn fxn = limn gxn = t for some t ∈ X ;

(vii) conditionally commuting [] if they commute on a nonempty subset of the set of
coincidence points whenever the set of their coincidence point is nonempty;

(viii) conditionally compatible [] iff, whenever the set of sequences {xn} satisfying
limn fxn = limn gxn is nonempty, there exists a sequence {yn} such that
limn fyn = limn gyn = t (say) and limn d(fgyn, gfyn) = ;

(ix) pseudo-compatible [] iff, whenever the set of sequences {xn} satisfying
limn fxn = limn gxn is nonempty, there exists a sequence {yn} such that
limn fyn = limn gyn = t (say), limn d(fgyn, gfyn) = ; and limn d(fgzn, gfzn) =  for any
associated sequence {zn} of {yn}.

We also recall that a pair (f , g) of self-mappings defined on a metric space (X,d) is said to
be

(i) reciprocally continuous [, ] iff limn fgxn = ft and limn gfxn = gt whenever {xn} is
a sequence in X such that limn fxn = limn gxn = t for some t in X ;

(ii) weakly reciprocally continuous [] if limn fgxn = ft or limn gfxn = gt whenever {xn}
is a sequence in X such that limn fxn = limn gxn = t for some t in X ;

(iii) conditionally reciprocally continuous (CRC) [] if, whenever the set of sequences
{xn} satisfying limn fxn = limn gxn is nonempty, there exists a sequence {yn}
satisfying limn fyn = limn gyn = t (say) such that limn fgyn = ft and limn gfyn = gt;

(iv) g-reciprocally continuous [] iff limn ffxn = ft and limn gfxn = gt whenever {xn} is a
sequence such that limn fxn = limn gxn = t for some t in X ;

(v) sequentially continuous of type (Ag) [] iff there exists a sequence {xn} in X such
that limn fxn = limn gxn = t for some t ∈ X satisfying limn ffxn = ft and limn gfxn = gt;

(vi) sequentially continuous of type (Af ) [] iff there exists a sequence {xn} in X such
that limn fxn = limn gxn = t for some t ∈ X satisfying limn fgxn = ft and
limn ggxn = gt;
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(vii) subsequentially continuous [] iff there exists a sequence xn in X such that
limn fgxn = ft and limn gfxn = gt with limn fxn = limn gxn = t for some t ∈ X .

Theorem . [] Let f and g be g-reciprocally continuous self-mappings of a complete
metric space (X,d) such that

(i) fX ⊆ gX ;
(ii) d(fx, fy) ≤ kd(gx, gy), k ∈ [, ).

If f and g are pseudo-compatible, then f and g have a unique common fixed point.

Theorem . [] Let f and g be g-reciprocally continuous noncompatible self-mappings
of a metric space (X,d) such that

(i) fX ⊆ gX ;
(ii) d(fx, fy) <max{d(gx, gy), k[d(fx,gx)+d(fy,gy)] , d(fx,gy)+d(fy,gx) }, where  ≤ k < ;
(iii) d(x, fx) �=max{d(x, gx),d(fx, gx)},

whenever the right-hand side is nonzero. If f and g are pseudo-compatible, then f and g
have a unique common fixed point.

Theorem . [] Let f and g be conditionally compatible self-mappings of a metric space
(X,d) satisfying

d(x, gx) �=max
{
d(x, fx),d(gx, fx)

}
,

whenever the right-hand side is nonzero. If f and g are noncompatible and reciprocally
continuous, then f and g have a common fixed point.

Theorem . [] Let f and g be conditionally reciprocal continuous self-mappings of a
complete metric space (X,d) such that

(i) fX ⊆ gX ;
(ii) d(fx, fy) ≤ kd(gx, gy), k ∈ [, ).

If f and g are either compatible or g-compatible or f -compatible, then f and g have a unique
common fixed point.

Theorem . [] Let (X,d) be a complete metric space, let f and g be two noncompatible
self-mappings on X satisfying

d(fx, fy) ≤ ϕ
(
d(gx, gy)

)
for all x, y ∈ X,

where ϕ : [,∞)→ [,∞) is a continuous from right and nondecreasing function such that
ϕ(t) < t for all t > . Assume that

(i) f (X) ⊆ g(X),
(ii) max{d(ggx, fgx),d(ffx, gfx)} ≤ ϕ(d(fx, gx)) for all x ∈ X and
(iii) ϕ(d(fx, f x)) �= ϕ(max{d(gx, gfx),d(gx, gfx),d(fx, gx),d(f x, gfx),d(fx, gfx),

d(gx, f x)}), whenever fx �= f x.
Then f and g have a unique common fixed point. Also, f and g are discontinuous at the
common fixed point.
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2 Main results
We begin with the following example.

Example . Let X = [, ] and d be the usual metric on X. Define self-mappings f and
g on X as follows:

fx =

{
x +  if x ∈ (, ],
 otherwise,

gx =

{
x if x ∈ (, ],
 otherwise.

Then we can see that f (X) = (, ] ⊆ (, ]∪{} = g(X) and the pair (f , g) is g-reciprocally
continuous. It can be verified that d(fx, fy) ≤ kd(gx, gy) for all x, y ∈ X with k = 

 . Thus,
f and g satisfy all the conditions of Theorem . except pseudo-compatibility. For the
pseudo-compatibility, consider the only existent sequence xn = yn =  + 

n , then we have
limn fyn = limn gyn = , but limn fgyn = limn f ( + 

n ) = , limn gfyn = limn( + 
n ) = , and so

limn d(fgyn, gfyn) =  �= . Also note that the pair (f , g) is not compatible. Here, (f , g) has no
coincidence point therefore it is also not an occasionally weakly compatible but vacuously
weakly compatible pair.

This suggests that pseudo-compatible is stronger than weakly compatible (and occa-
sionally weakly compatible) in the context of Theorem . (such an observation is missing
in []).
The above example motivated us to define the following.

Definition . Two self-mappings f and g of a metric space (X,d) are called conditionally
sequential absorbing if, whenever the set of sequences {xn} satisfying limn fxn = limn gxn is
nonempty, there exists a sequence {yn} satisfying limn fyn = limn gyn = t (say) such that
limn d(fyn, fgyn) =  and limn d(gyn, gfyn) = .

Example . Let X = [, ] and let d be the usual metric on X. Define f , g : X → X as
follows:

fx =

{
 if x =  or x > ,
 if x ∈ (, ],

gx =

⎧⎪⎨
⎪⎩
 if x = ,
x if x ∈ (, ],
x+
 if x > .

Then the maps are conditionally sequential absorbing. To view this, consider the constant
sequence xn = . However, the pair (f , g) is not weakly compatible as they do not commute
at their coincidence point x = . It may be noted that x =  and x =  are two coincidence
points of f and g . But in respect of the unique coincidence point (common fixed point),
conditionally sequential absorbing always implies weakly compatible and hence occasion-
ally weakly compatible and pseudo-compatible, because the maps naturally commute at
their unique coincidence point (common fixed point).

Example . Let X = [, ] and let d be the usual metric on X. Define f , g : X → X as
follows:

fx =  – x and gx = ( – x) for all x ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2013/1/187
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Then f and g areweakly compatible but not conditionally sequential absorbing.Here, x = 
and x =  are two coincidence points.

Remark . In Example ., the pair (f , g) is vacuously weakly compatible but not condi-
tionally sequential absorbing and not pseudo-compatible. Note that f and g do not have
any coincidence point. In Example ., the pair (f , g) is conditionally sequential absorbing
but not weakly compatible. In Example ., the pair (f , g) is weakly compatible but not
conditionally sequential absorbing.

Thus, as definitions, weakly compatible, pseudo-compatible and conditionally sequen-
tial absorbing are very different. However, in the context of a unique coincidence point,
conditionally sequential absorbing is stronger than weakly compatible, which will be
shown in our Example ..

Example . Let X = [,+∞) and let d be the usual metric on X. Define f , g : X → X as
follows:

fx =

{
x
 if x ∈ [, ],
x –  if x > ,

gx =

{
x
 if x ∈ [, ],
x –  if x > .

Let us consider the sequence xn = 
n for n = , , . . . . Then

lim
n
fxn = lim

n


n

= , lim
n
gxn = lim

n


n

= ,

lim
n
fgxn = lim

n


n

=  = f (),

lim
n
gfxn = lim

n


n

=  = g().

Thus f and g are conditionally reciprocal continuous and subsequentially continuous.We
can see that f and g are neither weak reciprocal continuous nor g-reciprocal continuous.
To see this, consider the sequence xn =  + 

n for n = , , . . . , then

lim
n
fxn = lim

n

(
 +


n

)
= , lim

n
gxn = lim

n

(
 +


n

)
= ,

lim
n
fgxn = lim

n

(
 +


n

)
=  �= f (),

lim
n
gfxn = lim

n

(
 +


n

)
=  �= g(),

lim
n
ffxn = lim

n

(
 +


n

)
=  �= f (),

lim
n
ggxn = lim

n

(
 +


n

)
=  �= g().

Note that f and g do not have a coincidence point.
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Example . Let X = R and let d be the usual metric on X. Define f , g : X → X as follows:

fx = x and gx = x +  for all x ∈ X.

Then it is easy to see that the pair (f , g) is reciprocal continuous, weak reciprocally con-
tinuous and conditionally reciprocally continuous but neither subsequentially continuous
nor sequentially continuous of type (Ag) and (Af ). Note that the pair has no coincidence
point.

In view of the above examples, we observe that in the event of no coincidence point,
subsequential continuity as well as sequential continuity of type (Ag) and (Af ) are dif-
ferent from reciprocal continuity (respectively g-reciprocal and conditionally reciprocal
continuity). However, in the context of a unique coincidence point (common fixed point),
subsequential continuity as well as sequential continuity of type (Ag) and (Af ) are equiva-
lent to conditionally reciprocal continuity.
The motivation of the following definition can be predicted from the proof of the last

step in our Theorem ..

Definition . Two self-mappings f and g of a metric space (X,d) are called pseudo-
reciprocal continuous (PRC) (with respect to conditionally sequential absorbing) if,
whenever the set of sequences {xn} satisfying limn fxn = limn gxn is nonempty, there
exists a sequence {yn} (satisfying limn fyn = limn gyn = t (say), limn d(fyn, fgyn) =  and
limn d(gyn, gfyn) = ) such that limn fgyn = ft and limn gfyn = gt.

Common fixed point theorems
Assume that φ,ψ : [,∞)→ [,∞) are two functions such that
(a) φ is nondecreasing, continuous and φ() =  < φ(t) for every t > ;
(b) ψ is nondecreasing, right-continuous, and ψ(t) < t for every t > .
To prove our first result, we use the following lemma.

Lemma . [] For every function ψ : [,∞) → [,∞), let ψn be the nth iterate of ψ .
Then the following hold:

(i) if ψ is nondecreasing, then for each t > , limn→∞ ψn(t) =  implies ψ(t) < t;
(ii) if ψ is right-continuous with ψ(t) < t for t > , then limn→∞ ψn(t) = .

Theorem. Let f and g be two pseudo-reciprocal continuous (w.r.t. conditionally sequen-
tial absorbing) self-mappings of a complete metric space (X,d) such that fX ⊆ gX, and let
φ,ψ : [,∞)→ [,∞) be two functions satisfying (a) and (b). If for all x, y ∈ X,

φ
(
d(fx, fy)

) ≤ ψ
(
φ
(
M(x, y)

))
, (.)

where

M(x, y) =max

{
d(gx, gy),d(fx, gx),d(fy, gy),

d(gx, fy) + d(fx, gy)


}
,

then f and g have a unique common fixed point provided (f , g) is conditionally sequential
absorbing.

http://www.fixedpointtheoryandapplications.com/content/2013/1/187
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Proof Let x ∈ X and since fX ⊆ gX, so we have a sequence {pn} defined by

pn = fxn = gxn+. (.)

Now we show that {pn} is a Cauchy sequence. We have

M(xn,xn+) = max

{
d(gxn, gxn+),d(fxn, gxn),d(fxn+, gxn+),

d(gxn, fxn+) + d(fxn, gxn+)


}

= max

{
d(pn–,pn),d(pn,pn–),d(pn+,pn),

d(pn–,pn+) + d(pn,pn)


}

= max

{
d(pn–,pn),d(pn+,pn),

d(pn–,pn+)


}

= max
{
d(pn–,pn),d(pn+,pn)

}
.

If we supposeM(xn,xn+) = d(pn,pn+), then

φ
(
d(fxn, fxn+)

) ≤ ψ
(
φ
(
M(xn,xn+)

))
= ψ

(
φ
(
d(pn,pn+)

))
= ψ

(
φ
(
d(fxn, fxn+)

))
< φ

(
d(fxn, fxn+)

)
,

which is a contradiction. Therefore

M(xn,xn+) = d(pn–,pn).

Similarly,

M(xn,xn–) = d(pn–,pn–).

If for some n we have either pn = pn– or pn = pn+, then by condition (.) we obtain that
the sequence {pn} is definitely constant and thus it is a Cauchy sequence. Suppose pn �= pn–
for each n, then from condition (.) we have

φ
(
d(pn,pn–)

)
= φ

(
d(fxn, fxn–)

) ≤ ψ
(
φ
(
M(xn,xn–)

))
= ψ

(
φ
(
d(pn–,pn–)

))
< φ

(
d(pn–,pn–)

)
,

and for all n ∈ N ,

φ
(
d(pn,pn+)

)
< φ

(
d(pn–,pn)

)
.

Now, we have

φ
(
d(pn+,pn)

) ≤ ψ
(
φ
(
d(pn,pn–)

)) ≤ · · · ≤ ψn(φ(
d(p,p)

))
, (.)
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and then, by Lemma .(ii),

lim
n→∞ψn(φ(

d(pn+,pn)
))

= 

⇒ lim
n→∞φ

(
d(pn+,pn)

)
= 

⇒ lim
n→∞d(pn+,pn) = . (.)

Now we prove that {pn} is Cauchy.
Suppose not, then ∃ε >  such that d(pn,pm) ≥ ε for infinite value of m and n with

m < n. This assumes that there exist two sequences {mk}, {nk} of natural numbers with
mk < nk such that

d(pmk ,pnk+) > ε. (.)

It is not restrictive to suppose that nk is the least positive integer exceeding mk and
satisfying (.). We have

ε < d(pmk ,pnk+)

≤ d(pmk ,pnk–) + d(pnk–,pnk ) + d(pnk ,pnk+)

≤ ε + d(pnk–,pnk ) + d(pnk ,pnk+).

Then

d(pmk ,pnk+) → ε as k → ∞. (.)

We note

d(pmk ,pnk+) – d(pmk ,pmk+) – d(pnk+,pnk+)

≤ d(pmk+,pnk+) ≤ d(pmk ,pnk+) – d(pmk ,pmk+) – d(pnk+,pnk+),

and therefore

d(pmk+,pnk+) → ε as k → ∞. (.)

Now, we have

M(xnk+,xmk+) = max

{
d(pmk ,pnk+),d(pnk+,pnk+),d(pmk ,pmk+),

d(pmk+,pnk+) + d(pmk ,pnk+)


}

= d(pmk ,pnk+) + dk , (.)

where dk →  as k → +∞ and dk ≥  for all k. Then from

φ
(
d(pmk+,pnk+)

)
= φ

(
d(fxnk+, fxmk+)

) ≤ ψ
(
φ
(
M(xnk+,xmk+)

))
= ψ

(
φ
(
d(pmk ,pnk+) + dk

))
, (.)
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as k → +∞, φ being continuous and ψ right-continuous, we get

φ(ε) ≤ ψ
(
φ(ε)

)
< φ(ε).

This is a contradiction. Therefore {pn} is a Cauchy sequence. Since (X,d) is a complete
metric space, therefore ∃t ∈ X such that

pn = fxn = gxn+ → t as n→ ∞. (.)

Since the pair (f , g) is conditionally sequential absorbing, therefore there exists a sequence
{yn} in X such that fyn → u, gyn → u (say) satisfying

lim
n
d(fyn, fgyn) =  and lim

n
d(gyn, gfyn) = , (.)

and by pseudo-reciprocal continuity (w.r.t. conditionally sequential absorbing) of (f , g), we
have

lim
n
fgyn = fu and lim

n
gfyn = gu. (.)

In view of (.) and (.), we get fu = gu = u, i.e., u is a common fixed point of f and g .
The uniqueness of a common fixed point follows easily from contractive condition (.).

�

Example . Let X = [, ] with the usual metric d. Define self-maps f and g as follows:

fx =

{
+x
 if x ∈ [,  ),

 if x ∈ [  , ],

gx =

⎧⎪⎨
⎪⎩


 + x if x ∈ [,  ),

 if x = 

 ,

 if x ∈ (  , ].

Then f and g satisfy all the conditions of Theorem . with f (X) = [  ,

 ) ⊆ [  , ) = g(X).

Here, f and g are conditionally sequential absorbing and pseudo-reciprocal continuous
(w.r.t. conditionally sequential absorbing) in respect of the constant sequence xn = 

 . Let
us consider the sequence xn = 

n+ , then

lim
n
fxn = lim

n

(


+


n + 

)
=


= lim

n

(


+


n + 

)
= lim

n
gxn,

lim
n
fgxn = lim

n
f
(


+


n + 

)
=


= f

(



)
,

lim
n
gfxn = lim

n
g
(


+


n + 

)
=



�= g
(



)
,

lim
n
ffxn = lim

n
f
(


+


n + 

)
=


= f

(



)
,

lim
n
ggxn = lim

n
g
(


+


n + 

)
=



�= g
(



)
.

Thus, (f , g) is not a reciprocal as well as not a g-reciprocal continuous pair. Also the pair
(f , g) is neither compatible, f -compatible nor g-compatible.
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If we take φ(t) = t and ψ(t) = kt, k ∈ [, ), then it can be verified that f and g satisfy
contraction condition (.) with k = 

 . Here, x = 
 is the unique common fixed point of f

and g , which is also a point of discontinuity.
On the other hand, notice that at x = , f and g do not satisfy the condition

max
{
d(ggx, fgx),d(ffx, gfx)

} ≤ ϕ
(
d(fx, gx)

)
used in Theorem .. Here, it is worth noting that none of the earlier relevant theorems,
for example, Theorem ., Theorem . and Theorem ., can be used in the context of
this example. One more interesting part of this example is that neither f (X) nor g(X) is
closed. Thus the result of Singh and Mishra [] cannot be applicable in the context of
this example.

Theorem . Let f and g be pseudo-reciprocal continuous (w.r.t. conditionally sequential
absorbing) and noncompatible self-mappings of a metric space (X,d) satisfying

d(fx, fy) <max

{
d(gx, gy),

k[d(fx, gx) + d(fy, gy)]


,
d(fx, gy) + d(fy, gx)



}
, (.)

where  ≤ k < . If f and g are conditionally sequential absorbing, then f and g have a
unique common fixed point.

Proof Since f and g are noncompatible maps, there exists a sequence {xn} in X such that
fxn → t and gxn → t for some t in X but either limn d(fgxn, gfxn) �=  or the limit does
not exist. Also, the pair (f , g) is conditionally sequential absorbing; therefore, there ex-
ists a sequence {yn} in X such that limn fyn = limn gyn = u (say) with limn d(fyn, fgyn) = 
and limn d(gyn, gfyn) = . Now, by the pseudo-reciprocal continuity (w.r.t. conditionally
sequential absorbing) of the pair (f , g), we have fgyn → fu and gfyn → gu. In view of these
limits, we get u is a common fixed point of f and g .
Now, suppose that there exists another common fixed pointw of f and g such thatw �= u.

Then, on using (.), we have

d(fw, fu) <max

{
d(gw, gu),

k[d(fw, gw) + d(fu, gu)]


,
d(fw, gu) + d(fu, gw)



}
.

Thus, we have d(w,u) < k
d(w,u) < d(w,u), a contradiction and hence w = u. �

Example . Again consider Example .wherein the pair (f , g) satisfies all the conditions
of Theorem . for all k ∈ [, ). Note that at x = , f and g do not satisfy the condition

d(x, fx) �=max
{
d(x, gx),d(fx, gx)

}
,

whenever the right-hand side is nonzero. Thus Theorem . is a genuine extension and
improvement of Theorem . due to Pant and Bisht [].

Observation The proof of Theorem ., Theorem . and examples above immediately
suggest us defining another type of continuity as follows.
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Definition . Two self-mappings f and g of a metric space (X,d) are called pseudo-
reciprocal continuous (PRC) (with respect to pseudo-compatible) if whenever the set of
sequences {xn} satisfying limn fxn = limn gxn is nonempty, there exists a sequence {yn} (sat-
isfying limn fyn = limn gyn = t (say); limn d(fgyn, gfyn) = ; and limn d(fgzn, gfzn) =  for any
associated sequence {zn} of {yn}) such that limn fgyn = ft and limn gfyn = gt.

However, the notions of pseudo-compatibility and pseudo-reciprocal continuity (w.r.t.
pseudo-compatibility) are no more applicable in the context of the existence of non-
unique common fixed points for a pair of maps. This fact is illustrated in Example .
below. At the same time, conditionally sequential absorbing and pseudo-reciprocal conti-
nuity (w.r.t. conditionally sequential absorbing) are easily applicable.

Theorem . Let f and g be reciprocal (or g-reciprocal) continuous and noncompatible
self-mappings of a metric space (X,d) satisfying (.). Then the pair (f , g) has a unique
common fixed point provided it is conditionally sequential absorbing. Moreover, f and g
are discontinuous at the common fixed point.

Proof Since f and g are noncompatible, there exists a sequence {xn} in X such that
limn fxn = limn gxn = t for some t ∈ X, but limn d(fgxn, gfxn) is either nonzero or not ex-
istent. Also, since f and g are conditionally sequential absorbing and limn fxn = limn gxn =
t, there exists a sequence {yn} in X, satisfying limn fyn = limn gyn = u (say), such that
limn d(fyn, fgyn) =  and limn d(gyn, gfyn) = . The reciprocal continuity of the pair (f , g)
implies that limn fgyn = fu and limn gfyn = gu. Thus, in view of these limits, we obtain fu =
gu = u. If we consider the pair (f , g) g-reciprocal continuous, then we have limn ffyn = fu
and limn gfyn = gu. Since limn d(gyn, gfyn) = , so we have gu = u. Now, suppose fu �= u. On
using (.), we get d(fu,u) < k

d(fu,u) < d(fu,u), a contradiction and hence fu = u. Thus
u is a common fixed point of f and g . Applying (.), we can show the uniqueness of the
common fixed point.
We now show that f and g are discontinuous at the common fixed point u. If possible,

suppose f is continuous at u. Then, considering the sequence {xn} of the present theorem
and on using (.), we get t = u and hence by the continuity of f , we have ffxn → fu = u
and fgxn → fu = u. Now, reciprocal (or g-reciprocal) continuity of the pair (f , g) implies
that gfxn → gu = u. This further yields that limn d(fgxn, gfxn) = , which contradicts the
fact that limn d(fgxn, gfxn) is either nonzero or non-existent. Hence f is discontinuous at
the fixed point.
Next, suppose that g is continuous at u. Then, for the sequence {xn}, we get gfxn →

gu = u and ggxn → gu = u. If (f , g) is reciprocal continuous, then we have fgxn → fu = u,
and if it is g-reciprocal continuous, then on using (.), we get fgxn → fu = u. Thus, we
obtain limn d(fgxn, gfxn) = , a contradiction. Therefore f and g are discontinuous at their
common fixed point. �

Example . Let X = [, ] with the usual metric d. Define f , g : X → X as follows:

fx =

{
 if x = ,x > ,
 if  < x≤ ,

gx =

⎧⎪⎨
⎪⎩
 if x = ,x≥ ,
 if  < x≤ ,
x+
 if  < x < .
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Then f and g satisfy all the conditions of Theorem .. It can be verified in this example
that f and g satisfy contractive condition (.) for all k ∈ [, ). To see that f and g are
noncompatible, consider the sequence {xn} in X such that xn =  + εn, then fxn → , gxn =
( + εn

 ) → , fgxn → , gfxn → , and so limn d(fgxn, gfxn) �= . Also here the pair (f , g)
is g-reciprocal continuous. To see this, let {xn} be a sequence in X such that limn fxn =
limn gxn = t for some t in X. Then t = , xn =  or xn =  + εn, ffxn →  = f () and gfxn →
 = g(). The pair (f , g) is conditionally sequential absorbing in respect of the constant
sequence {yn} given by yn = . Here, x =  is the unique common fixed point where f and
g are discontinuous.
Note that at x = , f and g do not satisfy the condition

d(x, fx) �=max
{
d(x, gx),d(fx, gx)

}
,

whenever the right-hand side is nonzero. Also notice that at x = , f and g do not satisfy

max
{
d(ggx, fgx),d(ffx, gfx)

} ≤ ϕ
(
d(fx, gx)

)
.

Thus, Theorem . is a genuine extension and improvement of Theorem . due to Pant
and Bisht [] and Theorem . due to Rezapour and Shahzad [].

In the absence of contractive condition (.), the following corollaries are straightfor-
ward from Theorems . and ..

Corollary . Let f and g be pseudo-reciprocal continuous (w.r.t. conditionally sequential
absorbing) and noncompatible self-mappings of a metric space (X,d). Then f and g have a
common fixed point provided it is conditionally sequential absorbing.

Corollary . Let f and g be reciprocal (or g-reciprocal) continuous and noncompatible
self-mappings of a metric space (X,d). Then the pair (f , g) has a common fixed point pro-
vided it is conditionally sequential absorbing.

The following examples illustrate the above corollaries.

Example . Consider X = [, ] and let d be the usual metric on X. Define f , g : X → X
as

fx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if x ∈ {} ∪ (, )∪ (, )∪ (, )∪ (, )
∪ (, )∪ (, )∪ (, ),

x+
 if  < x ≤ ,
 if x = , ,
 if x = ,
 if x = , ,
. if x = ,
 if x = ,
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gx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if x ∈ {} ∪ [, )∪ (, )∪ (, )∪ (, )
∪ (, )∪ (, )∪ (, ),

 if  < x ≤ ,
x+
 if x ∈ (, ),
 if x = , , , ,
. if x = ,
 if x = ,
 if x = .

Here f and g satisfy all the conditions of Corollary .. In view of the constant se-
quence xn =  or xn = , the pair (f , g) is conditionally sequential absorbing and pseudo-
reciprocal continuous (w.r.t. conditionally sequential absorbing). For noncompatibility as
well as non-reciprocal continuity, let us consider the sequence xn =  + ( n ), then we have

fxn → , gxn =
(
 +


n

)
→ 

lim
n
fgxn = lim

n

(


+


n

)
=



�= f (),

lim
n
gfxn =  = g(),

and so limn d(fgxn, gfxn) �= . Here,  and  are two common fixed points of f and g . Also
the pair is not weakly compatible as f and g do not commute at their coincidence point
x = .
Note that at x =  and y =  the present example does not satisfy condition (.) for

any k ∈ [, ) and also Lipschitz-type condition used in [] for any k ≥ . Also notice that
at x = , the involved maps do not satisfy any of the conditions:

(i) d(x, fx) �=max{d(x, gx),d(fx, gx)},
(ii) d(x, gx) �=max{d(x, gx),d(gx, fx)},
(iii) d(x, gx) �=max{d(x, fx),d(gx, fx)}, and
(iv) d(fx, f x) �=max{d(gx, gfx),d(fx, gx),d(f x, gfx),d(fx, gfx),d(gx, f x)},

whenever the right-hand side is nonzero. Here, it is worth noting that none of the Theo-
rem . due to Pant and Bisht [] and the main results contained in Pant and Pant []
and Gopal et al. [] can be used in the context of Corollary ..

Example . ConsiderX = [, ] and let d be the usual metric onX. Define f , g : X → X
as

fx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if x ∈ [, )∪ (, )∪ (, )∪ (, )
∪ (, )∪ (, )∪ (, ),

 if x = , ,
 if x = ,
 if x = , ,
. if x = ,
 if x = ,
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gx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if x ∈ {} ∪ (, )∪ (, )∪ (, )∪ (, )
∪ (, )∪ (, )∪ (, ),

 if x ∈ (, ],
 if x = , , , ,
. if x = ,
 if x = ,
 if x = .

In this example the pair (f , g) is noncompatible as well as reciprocal continuous and
satisfies all the conditions of Corollary .. Let us consider the sequence xn = , then
fxn → , gxn →  and

fgxn →  = f (),

gfxn →  = g(),

therefore limn d(fgxn, gfxn) �= , and so (f , g) is noncompatible. Here,  and  are two com-
mon fixed points of f and g .

Finally, we present an example which shows that the requirement of conditionally se-
quential absorbing property is necessary for producing common fixed points of mappings
satisfying non-expansive or Lipschitz-type conditions besides exhibiting the limitations
of commuting properties of the pairs utilized in earlier related results of Pant and Bisht
[], Pant and Pant [] and Jungck and Rhoades [].

Example . Let X = [, ] endowed with the usual metric d and f , g : X → X by

fx =

{
 if ≤ x <  or x > ,

 if x = ,

gx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
 if ≤ x ≤ ,
x+
 if  < x ≤ ,
 if  < x < / or x > /,
 if x = /.

Then by a routine calculation, it can be verified that f (X) ⊆ g(X) and d(fx, fy) ≤ kd(gx, gy)
for all x, y ∈ X, where k ≥ . Also, f and g are a noncompatible and weakly commuting
(and hence occasionally weakly compatible and conditionally commuting) pair. In order
to show that (f , g) is noncompatible, the sequence xn =  + /n; n > , n ∈ N satisfies the
requirements. Also, it is straightforward to verify that the pair (f , g) is pseudo-compatible
as well as pseudo-reciprocal continuous (w.r.t. pseudo-compatible), but the pair is not
conditionally sequential absorbing in respect of xn =  or  + /n. On the other hand, at
x = , it can be verified that the mappings f and g do not satisfy any one of the conditions
described by (i), (ii), (iii) or (iv) mentioned earlier. Notice that the estimated pair has no
common fixed point.

Observations The following definitions can be considered as variants of conditionally
sequential absorbing. Two self-mappings f and g of a metric space (X,d) are called con-
ditionally sequential absorbing
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(i) of type (A) if, whenever the set of sequences {xn} satisfying limn fxn = limn gxn is
nonempty, there exists a sequence {yn} satisfying limn fyn = limn gyn = t (say) such
that limn d(fyn,ffyn) =  and limn d(gyn, gfyn) = ;

(ii) of type (B) if, whenever the set of sequences {xn} satisfying limn fxn = limn gxn is
nonempty, there exists a sequence {yn} satisfying limn fyn = limn gyn = t (say) such
that limn d(fyn, fgyn) =  and limn d(gyn, ggyn) = ;

(iii) of type (C) if, whenever the set of sequences {xn} satisfying limn fxn = limn gxn is
nonempty, there exists a sequence {yn} satisfying limn fyn = limn gyn = t (say) such
that limn d(fyn,ffyn) =  and limn d(gyn, ggyn) = .

Wecanhave somemore variants by interchanging the place of f and g . In respect of these
variants, we can also define the corresponding pseudo-reciprocal continuity, for example,
two self-mappings f and g of a metric space (X,d) are called pseudo-reciprocal continuous
of type (A) if, whenever the set of sequences {xn} satisfying limn fxn = limn gxn is nonempty,
there exists a sequence {yn} (satisfying limn fyn = limn gyn = t (say), limn d(fyn,ffyn) =  and
limn d(gyn, gfyn) = ) such that limn ffyn = ft and limn gfyn = gt.

Remark . The conclusion of our previous results will remain true if we replace the con-
ditionally sequential absorbing and pseudo-reciprocal continuity by any one of the above
variants of conditionally sequential absorbing and corresponding pseudo-reciprocal con-
tinuity. However, in the context of a unique coincidence or common fixed point, all these
variants coincide with each others.
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