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Abstract
In this paper, we prove some fixed point theorems for N-generalized hybrid mappings
in both uniformly convex metric spaces and CAT(0) spaces. We also introduce a new
iteration method for approximating a fixed point of N-generalized hybrid mappings
in CAT(0) spaces and obtain �-convergence to a fixed point of N-generalized hybrid
mappings in such spaces. Our results improve and extend the corresponding results
existing in the literature.
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1 Introduction and preliminaries
Let C be a nonempty closed subset of a metric space (X,d) and let T be a mapping of
C into itself. The set of all fixed points of T is denoted by F(T) = {x ∈ C : x = Tx}. In
, Takahashi [] introduced the concept of convex metric spaces by using the convex
structure as follows.

Definition . Let (X,d) be a metric space. A mapping W : X × X × [, ] → X is said to
be a convex structure on X if for each x, y ∈ X and λ ∈ [, ],

d
(
z,W (x, y,λ)

) ≤ λd(z,x) + ( – λ)d(z, y)

for all z ∈ X. A metric space (X,d) together with a convex structure W is called a convex
metric space which will be denoted by (X,d,W ).

A nonempty subset C of X is said to be convex if W (x, y,λ) ∈ C for all x, y ∈ C and λ ∈
[, ]. Clearly, a normed space and each of its convex subsets are convex metric spaces,
but the converse does not hold. For each x, y ∈ X and λ ∈ [, ], it is known that a convex
metric space has the following properties [, ]:

(i) W (x,x,λ) = x,W (x, y, ) = y andW (x, y, ) = x;
(ii) d(x,W (x, y,λ)) = ( – λ)d(x, y) and d(y,W (x, y,λ)) = λd(x, y).
In , Shimizu and Takahashi [] introduced the concept of uniform convexity in

convex metric spaces and studied some properties of these spaces. A convex metric space
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(X,d,W ) is said to be uniformly convex if for any ε > , there exists δε >  such that for all
r >  and x, y, z ∈ X with d(z,x)≤ r, d(z, y) ≤ r and d(x, y)≥ rε imply that d(z,W (x, y,  )) ≤
( – δε)r. Obviously, uniformly convex Banach spaces are uniformly convex metric spaces.
Let C be a nonempty closed and convex subset of a convex metric space (X,d,W ) and

let {xn} be a bounded sequence in X. For x ∈ X, we define amapping r(·, {xn}) : X → [,∞)
by

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

Clearly, r(·, {xn}) is a continuous and convex function. The asymptotic radius of {xn} rela-
tive to C is given by

r
(
C, {xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ C

}
,

and the asymptotic center of {xn} relative to C is the set

A
(
C, {xn}

)
=

{
x ∈ C : r

(
x, {xn}

)
= r

(
C, {xn}

)}
.

It is clear that the asymptotic centerA(C, {xn}) is always closed and convex. It may either
be empty or consist of one or many points. The asymptotic center A(C, {xn}) is singleton
for uniformly convex Banach spaces [, ] or CAT() spaces []. The following lemma
obtained by Phuengrattana and Suantai [] is useful for our results.

Lemma . Let C be a nonempty closed and convex subset of a complete uniformly con-
vex metric space (X,d,W ) and let {xn} be a bounded sequence in X. Then A(C, {xn}) is a
singleton set.

One of the special spaces of uniformly convexmetric spaces is a CAT() space; see []. It
was noted in [] that any CAT(κ) space (κ > ) is uniformly convex in a certain sense but it
is not aCAT() space. Fixed point theory inCAT() spaces was first studied by Kirk [, ].
He showed that every nonexpansive mapping defined on a bounded closed convex subset
of a complete CAT() space always has a fixed point. Since then, the fixed point theory for
single-valued and multivalued mappings in CAT() spaces has been rapidly developed,
and many papers have appeared (e.g., see [–]).
Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a

geodesic from x to y) is a map c from a closed interval [, l] ⊂ R to X such that c() = x,
c(l) = y and d(c(t), c(t)) = |t – t| for all t, t ∈ [, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (ormetric) segment joining x and y. When
it is unique, this geodesic is denoted by [x, y]. Write c(α + ( – α)l) = αx ⊕ ( – α)y for
α ∈ (, ). The space (X,d) is said to be a geodesic metric space if every two points of X are
joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic
joining x and y for each x, y ∈ X. A subset Y of X is said to be convex if Y includes every
geodesic segment joining any two of its points.
A geodesic triangle 	(x,x,x) in a geodesic metric space (X,d) consists of three points

x, x, x in X (the vertices of 	) and a geodesic segment between each pair of vertices
(the edges of 	). A comparison triangle for the geodesic triangle 	(x,x,x) in (X,d) is a

http://www.fixedpointtheoryandapplications.com/content/2013/1/188
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triangle	(x,x,x) := 	(x̄, x̄, x̄) in the Euclidean planeE such that dE (x̄i, x̄j) = d(xi,xj)
for i, j ∈ {, , }.
A geodesic metric space is said to be a CAT() space if all geodesic triangles satisfy the

following comparison axiom: Let 	 be a geodesic triangle in X and let 	 be a comparison
triangle for 	. Then 	 is said to satisfy the CAT() inequality if for all x, y ∈ 	 and all
comparison points x̄, ȳ ∈ 	,

d(x, y) ≤ dE (x̄, ȳ).

It is well known that any complete, simply connected Riemannian manifold having non-
positive sectional curvature is a CAT() space. Other examples include pre-Hilbert spaces
[], R-trees [], the complex Hilbert ball with a hyperbolic metric [], and many others.
If z, x, y are points in a CAT() space and ifm[x, y] is the midpoint of the segment [x, y],

then the CAT() inequality implies

d
(
z,m[x, y]

) ≤ 

d(z,x) +



d(z, y) –



d(x, y). (CN)

This is the (CN) inequality of Bruhat and Tits [], which is equivalent to

d
(
z,λx⊕ ( – λ)y

) ≤ λd(z,x) + ( – λ)d(z, y) – λ( – λ)d(x, y) (CN*)

for any λ ∈ [, ]. The (CN*) inequality has appeared in []. Moreover, if X is a CAT()
space and x, y ∈ X, then for any λ ∈ [, ], there exists a unique point λx⊕ ( – λ)y ∈ [x, y]
such that

d
(
z,λx⊕ ( – λ)y

) ≤ λd(z,x) + ( – λ)d(z, y)

for any z ∈ X. It follows that CAT() spaces have a convex structureW (x, y,λ) = λx⊕ ( –
λ)y.

Remark .
(i) By using the (CN) inequality, it is easy to see that CAT() spaces are uniformly

convex.
(ii) A geodesic metric space is a CAT() space if and only if it satisfies the (CN)

inequality; see [].

In , Dhompongsa et al. [] introduced the following notation inCAT() spaces: Let
x, . . . ,xN be points in a CAT() space X and λ, . . . ,λN ∈ (, ) with

∑N
i= λi = , we write

N⊕
i=

λixi := ( – λN )
(

λ

 – λN
x ⊕ λ

 – λN
x ⊕ · · · ⊕ λN–

 – λN
xN–

)
⊕ λNxN . (.)

The definition of
⊕

is an ordered one in the sense that it depends on the order of points
x, . . . ,xN . Under (.) we obtain that

d

( N⊕
i=

λixi, y

)
≤

N∑
i=

λid(xi, y) for each y ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2013/1/188
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In , Lim [] introduced the concept of �-convergence in a general metric space.
Later in , Kirk and Panyanak [] extended the concept of Lim to a CAT() space.

Definition . [] A sequence {xn} in a CAT() space X is said to �-converge to x ∈ X if
x is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case,
we write �-limn→∞ xn = x and call x the �-limit of {xn}.

Lemma . [] Every bounded sequence in a complete CAT() space has a �-convergent
subsequence.

For any nonempty subset C of a CAT() space X, let π := πC be the nearest point projec-
tion mapping from X to a subset C of X. In [], it is known that if C is closed and convex,
the mapping π is well defined, nonexpansive, and the following inequality holds:

d(x, y) ≥ d(x,πx) + d(πx, y)

for all x ∈ X and y ∈ C. By using the same argument as in [, Lemma .], we can prove
the following result for nearest point projection mappings in CAT() spaces.

Lemma . Let C be a nonempty closed and convex subset of a complete CAT() space X,
let π : X → C be the nearest point projection mapping, and let {xn} be a sequence in X. If
d(xn+,p) ≤ d(xn,p) for all p ∈ C and n ∈N, then {πxn} converges strongly to some element
in C.

Proof Let m > n. By the (CN) inequality and the property of π , it follows that

d(πxm,πxn) ≤ d(xm,πxm) + d(xm,πxn) – d
(
xm,

πxm ⊕ πxn


)

≤ d(xm,πxm) + d(xm,πxn) – d(xm,πxm)

= d(xm,πxn) – d(xm,πxm)

≤ d(xn,πxn) – d(xm,πxm). (.)

This implies that

d(xm,πxm) ≤ d(xn,πxn) form > n.

Then limn→∞ d(xn,πxn) exists. Lettingm,n→ ∞ in (.), we have that {πxn} is a Cauchy
sequence in a closed subset C of a complete CAT() space X, hence it converges to some
element in C. �

Let C be a nonempty closed and convex subset of a Hilbert spaceH . Amapping T : C →
C is called generalized hybrid if there exist α,β ∈R such that

α‖Tx – Ty‖ + ( – α)‖x – Ty‖ ≤ β‖Tx – y‖ + ( – β)‖x – y‖

for all x, y ∈ C. We note that the generalized hybrid mappings generalize several well-
known mappings. For example, a generalized hybrid mapping is nonexpansive for α = 

http://www.fixedpointtheoryandapplications.com/content/2013/1/188
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and β = , nonspreading for α =  and β = , and hybrid for α = 
 and β = 

 . In ,
Kocourek et al. [] proved the fixed point theorems for generalized hybrid mappings in
Hilbert spaces. Later in , Takahashi and Yao [] extended the results of Kocourek et
al. to uniformly convex Banach spaces.
Recently, Maruyama et al. [] introduced a new nonlinear mapping in a Hilbert space

as follows. Let N ∈ N. A mapping T : C → C is called N-generalized hybrid if there are
α, . . . ,αN ,β, . . . ,βN ∈ R such that

N∑
k=

αk
∥∥TN+–kx – Ty

∥∥ +

(
 –

N∑
k=

αk

)
‖x – Ty‖

≤
N∑
k=

βk
∥∥TN+–kx – y

∥∥ +

(
 –

N∑
k=

βk

)
‖x – y‖

for all x, y ∈ C. They obtained the existence and weak convergence theorems forN-gener-
alized hybrid mappings in Hilbert spaces. Hojo et al. [] also studied the fixed point the-
orems for N-generalized hybrid mappings in Hilbert spaces and provided an example of
N-generalized hybrid mappings which are not generalized hybrid mappings as follows.

Example . Let H be a Hilbert space, A = {x ∈ H : ‖x‖ ≤ } and define a mapping T :
H →H as follows:

Tx =

⎧⎨
⎩ for all x ∈ A;

x
‖x‖ for all x /∈ A.

We observe that the N-generalized hybrid mappings generalize several well-known
mappings, for instance, nonexpansive mappings, nonspreading mappings, hybrid map-
pings, λ-hybrid mappings, generalized hybrid mappings, and -generalized hybrid map-
pings. Many researchers have studied the fixed point theorems of those mappings in both
Hilbert spaces and Banach spaces (e.g., see [, , –]). However, no researcher has
studied the fixed point theorems for N-generalized hybrid mappings in more general
spaces. So, in this paper, we are interested in studying and extending those mappings to
both uniformly convex metric spaces and CAT() spaces.

2 Fixed point theorems in uniformly convexmetric spaces
We first define N-generalized hybrid mappings in convex metric spaces. Let C be a
nonempty subset of a convex metric space (X,d,W ). Let N ∈ N. A mapping T : C → C
is called N-generalized hybrid if there are α, . . . ,αN ,β, . . . ,βN ∈R such that

N∑
k=

αkd
(
TN+–kx,Ty

) +
(
 –

N∑
k=

αk

)
d(x,Ty)

≤
N∑
k=

βkd
(
TN+–kx, y

) +
(
 –

N∑
k=

βk

)
d(x, y)

for all x, y ∈ C. Now, we prove a fixed point theorem for N-generalized hybrid mappings
in complete uniformly convex metric spaces.

http://www.fixedpointtheoryandapplications.com/content/2013/1/188
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Theorem . Let C be a nonempty closed and convex subset of a complete uniformly con-
vex metric space (X,d,W ) and let T : C → C be an N-generalized hybrid mapping with∑N

k= αk ∈ (–∞, ] ∪ [,∞) and
∑N

k= βk ∈ [, ]. Then T has a fixed point if and only if
there exists an x ∈ C such that {Tnx} is bounded.

Proof The necessity is obvious. Conversely, we assume that there exists an x ∈ C such that
{Tnx} is bounded. We will show that F(T) is nonempty. From Lemma ., A(C, {Tnx})
is a singleton set. Let A(C, {Tnx}) = {z}. Since T is N-generalized hybrid, there are
α, . . . ,αN ,β, . . . ,βN ∈ R such that

N∑
k=

αkd
(
Tn+N+–kx,Tz

) +
(
 –

N∑
k=

αk

)
d
(
Tnx,Tz

)

≤
N∑
k=

βkd
(
Tn+N+–kx, z

) +
(
 –

N∑
k=

βk

)
d
(
Tnx, z

). (.)

If
∑N

k= αk ∈ [,∞) and
∑N

k= βk ∈ [, ], then (.) becomes

N∑
k=

αkd
(
Tn+N+–kx,Tz

) ≤
N∑
k=

βkd
(
Tn+N+–kx, z

) +
(
 –

N∑
k=

βk

)
d
(
Tnx, z

)

+

( N∑
k=

αk – 

)
d
(
Tnx,Tz

).
This implies that

lim sup
n→∞

d
(
Tnx,Tz

) ≤ lim sup
n→∞

d
(
Tnx, z

).
If

∑N
k= αk ∈ (–∞, ] and

∑N
k= βk ∈ [, ], then (.) becomes

(
 –

N∑
k=

αk

)
d
(
Tnx,Tz

) ≤
N∑
k=

βkd
(
Tn+N+–kx, z

) +
(
 –

N∑
k=

βk

)
d
(
Tnx, z

)

–
N∑
k=

αkd
(
Tn+N+–kx,Tz

).
This implies again that

lim sup
n→∞

d
(
Tnx,Tz

) ≤ lim sup
n→∞

d
(
Tnx, z

).
Therefore, we have

r
(
Tz,

{
Tnx

}) ≤ r
(
z,

{
Tnx

})
.

Since Tz ∈ C and r(z, {Tnx}) = inf{r(y, {Tnx}) : y ∈ C}, it implies that Tz = z. Hence, F(T) is
nonempty. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/188
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As a direct consequence of Theorem ., we obtain a fixed point theorem for N-gener-
alized hybrid mappings in uniformly convex metric spaces as follows.

Theorem . Let C be a nonempty bounded closed and convex subset of a complete uni-
formly convex metric space (X,d,W ) and let T : C → C be an N-generalized hybrid map-
ping with

∑N
k= αk ∈ (–∞, ]∪ [,∞) and

∑N
k= βk ∈ [, ]. Then T has a fixed point.

We can show that if T is an N-generalized hybrid mapping and x = Tx, then for any
y ∈ C, we get

N∑
k=

αkd(x,Ty) +

(
 –

N∑
k=

αk

)
d(x,Ty) ≤

N∑
k=

βkd(x, y) +

(
 –

N∑
k=

βk

)
d(x, y)

and hence d(x,Ty) ≤ d(x, y). This means that an N-generalized hybrid mapping with a
fixed point is quasi-nonexpansive. Then, using the methods of the proof of Theorem .
in [], we can prove the following.

Corollary . Let C be a nonempty convex subset of a complete uniformly convex metric
space (X,d,W ). Suppose that T : C → C is an N-generalized hybrid mapping and has a
fixed point. Then F(T) is closed and convex.

Remark .
(i) Theorems . and . extend and generalize the corresponding results in [, –,

–] to N-generalized hybrid mappings on uniformly convex metric spaces.
(ii) In CAT() spaces, if we setW (x, y,λ) := λx⊕ ( – λ)y, then Theorems . and .

can be applied to these spaces under the assumption that∑N
k= αk ∈ (–∞, ]∪ [,∞) and

∑N
k= βk ∈ [, ].

3 Fixed point theorems in CAT(0) spaces
In this section, we study the existence and �-convergence theorems for N-generalized
hybrid mappings in complete CAT() spaces.
We first recall the definition of a Banach limit. Let μ be a continuous linear func-

tional on l∞, the Banach space of bounded real sequences, and (a,a, . . .) ∈ l∞. We write
μn(an) instead of μ((a,a, . . .)). We call μ a Banach limit if μ satisfies ‖μ‖ = μ(, , . . .) = 
and μn(an) = μn(an+) for each (a,a, . . .) ∈ l∞. For a Banach limit μ, we know that
lim infn→∞ an ≤ μn(an) ≤ lim supn→∞ an for all (a,a, . . .) ∈ l∞. So if (a,a, . . .) ∈ l∞ with
limn→∞ an = c, then μn(an) = c; see [] for more details.
Now, we obtain the following lemma in CAT() spaces.

Lemma . Let C be a nonempty closed and convex subset of a complete CAT() space X,
let {xn} be a bounded sequence in X, and let μ be a Banach limit. If a function f : C →R is
defined by

f (z) = μnd(xn, z) for all z ∈ C,

then there exists a unique z ∈ C such that

f (z) =min
{
f (z) : z ∈ C

}
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/188
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Proof It is easy to show that f is continuous. By (CN) inequality, we obtain that

f
(
x⊕ y


)
≤ 


f (x) +



f (y) –



d(x, y) for all x, y ∈ C.

This implies by Proposition . in [] that there exists a unique z ∈ C such that f (z) =
min{f (z) : z ∈ C}. �

By using Lemma ., we can prove the following fixed point theorem for N-generalized
hybrid mappings in CAT() spaces without the assumptions that

∑N
k= αk ∈ (–∞, ] ∪

[,∞) and
∑N

k= βk ∈ [, ].

Theorem . Let C be a nonempty closed and convex subset of a complete CAT() space
X and let T : C → C be an N-generalized hybrid mapping. Then T has a fixed point if and
only if there exists an x ∈ C such that {Tnx} is bounded.

Proof The necessity is obvious. Conversely, we assume that there exists an x ∈ C such
that {Tnx} is bounded. Let μ be a Banach limit. Since T isN-generalized hybrid, there are
α, . . . ,αN ,β, . . . ,βN ∈ R such that

N∑
k=

αkd
(
Tn+N+–kx,Tz

) +
(
 –

N∑
k=

αk

)
d
(
Tnx,Tz

)

≤
N∑
k=

βkd
(
Tn+N+–kx, z

) +
(
 –

N∑
k=

βk

)
d
(
Tnx, z

)

for any z ∈ C and n ∈N∪ {}. Since {Tnx} is bounded, we have
N∑
k=

αkμnd
(
Tn+N+–kx,Tz

) +
(
 –

N∑
k=

αk

)
μnd

(
Tnx,Tz

)

≤
N∑
k=

βkμnd
(
Tn+N+–kx, z

) +
(
 –

N∑
k=

βk

)
μnd

(
Tnx, z

).
This implies that

μnd
(
Tnx,Tz

) ≤ μnd
(
Tnx, z

)
for all z ∈ C. It follows by Lemma . that Tz = z. Hence, F(T) is nonempty. �

As a direct consequence of Theorem ., we obtain a fixed point theorem for N-gener-
alized hybrid mappings in CAT() spaces as follows.

Theorem. Let C be a nonempty bounded closed and convex subset of a completeCAT()
space X and let T : C → C be an N-generalized hybrid mapping. Then T has a fixed point.

Remark . Theorems . and . extend and generalize the corresponding results in [,
–, –] to N-generalized hybrid mappings on CAT() spaces.

Next, we study the �-convergence theorem for N-generalized hybrid mappings in
CAT() spaces. Before proving the theorem, we need the following lemma.

http://www.fixedpointtheoryandapplications.com/content/2013/1/188
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Lemma . Let C be a nonempty closed and convex subset of a complete CAT() space X
and let T : C → C be an N-generalized hybrid mapping with

∑N
k= αk ∈ (–∞, ] ∪ [,∞)

and
∑N

k= βk ∈ [,∞). If {xn} is a bounded sequence in C with �-limn→∞ xn = x and
limn→∞ d(xn,Tixn) =  for all i = , , . . . ,N , then x ∈ F(T).

Proof Since T is an N-generalized hybrid mapping, there are α, . . . ,αN ,β, . . . ,βN ∈ R

such that

N∑
k=

αkd
(
TN+–kxn,Tx

) +
(
 –

N∑
k=

αk

)
d(xn,Tx)

≤
N∑
k=

βkd
(
TN+–kxn,x

) +
(
 –

N∑
k=

βk

)
d(xn,x). (.)

Case :
∑N

k= αk ∈ [,∞) and
∑N

k= βk ∈ [,∞). It follows by (.) that

N∑
k=

αkd
(
TN+–kxn,Tx

)

≤
N∑
k=

βkd
(
TN+–kxn,x

) +
(
 –

N∑
k=

βk

)
d(xn,x) +

( N∑
k=

αk – 

)
d(xn,Tx)

≤
N∑
k=

βk
(
d
(
TN+–kxn,xn

) + d
(
TN+–kxn,xn

)
d(xn,x) + d(xn,x)

)

+

(
 –

N∑
k=

βk

)
d(xn,x) +

( N∑
k=

αk – 

)(
d
(
xn,TN+–kxn

)
+ d

(
xn,TN+–kxn

)
d
(
TN+–kxn,Tx

)
+ d

(
TN+–kxn,Tx

))

= d(xn,x) +

( N∑
k=

βk +
N∑
k=

αk – 

)
d
(
TN+–kxn,xn

)

+ 
N∑
k=

βkd
(
TN+–kxn,xn

)
d(xn,x)

+ 

( N∑
k=

αk – 

)
d
(
xn,TN+–kxn

)
d
(
TN+–kxn,Tx

)

+

( N∑
k=

αk – 

)
d
(
TN+–kxn,Tx

).

This implies that

d
(
TN+–kxn,Tx

)
≤ d(xn,x) +

( N∑
k=

βk +
N∑
k=

αk – 

)
d
(
TN+–kxn,xn

)
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+ 
N∑
k=

βkd
(
TN+–kxn,xn

)
d(xn,x)

+ 

( N∑
k=

αk – 

)
d
(
xn,TN+–kxn

)
d
(
TN+–kxn,Tx

)
.

Since {xn} is bounded and limn→∞ d(xn,Tixn) =  for all i = , , . . . ,N , we have that
{Txn}, {Txn}, . . . , {TNxn} are bounded. So, we have

d
(
TN+–kxn,Tx

)
≤ d(xn,x) +

( N∑
k=

βk +
N∑
k=

αk – 

)
d
(
TN+–kxn,xn

)

+ 
N∑
k=

βkd
(
TN+–kxn,xn

)
M + 

( N∑
k=

αk – 

)
d
(
xn,TN+–kxn

)
M

= d(xn,x) +

( N∑
k=

βk +
N∑
k=

αk – 

)
d
(
TN+–kxn,xn

)(
d
(
TN+–kxn,xn

)
+ M

)
,

whereM =max≤k≤N sup{d(xn,x),d(TN+–kxn,Tx) : n ∈N}.
Case :

∑N
k= αk ∈ (–∞, ] and

∑N
k= βk ∈ [,∞). In the same way as Case , we can show

that

d
(
TN+–kxn,Tx

)
≤ d(xn,x) +

( N∑
k=

βk –
N∑
k=

αk

)
d
(
TN+–kxn,xn

)(
d
(
TN+–kxn,xn

)
+ M

)
.

By Case , Case , and the assumption limn→∞ d(xn,Tixn) =  for all i = , , . . . ,N , we
obtain

lim sup
n→∞

d(xn,Tx) ≤ lim sup
n→∞

d(xn,x).

Since �-limn→∞ xn = x, it follows by the uniqueness of asymptotic centers that Tx = x.
Hence, x ∈ F(T). �

Fixed point iteration methods are very useful for approximating a fixed point of various
nonlinear mappings such as Mann iteration, Ishikawa iteration, Noor iteration and so on.
We now introduce a new iteration method for approximating a fixed point of mappings
in a CAT() space X as follows: Let C be a nonempty closed and convex subset of X, let
T : C → C be a mapping and N ∈N. For x ∈ C, the sequence {xn} generated by

xn+ =
N⊕
i=

λ(i)
n T

ixn for all n ∈N, (.)

where {λ(i)
n } is a sequence in [, ] for all i = , , . . . ,N with

∑N
i= λ

(i)
n = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/188
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Remark . If we put

W (N)
n =

N⊕
i=

λ
(i)
n∑N

j= λ
(j)
n
Tixn,

then by (.) we get

W (N)
n =

∑N–
j= λ

(j)
n∑N

j= λ
(j)
n
W (N–)

n ⊕ λ
(N)
n∑N

j= λ
(j)
n
TNxn. (.)

Indeed, we put δ
(i,N)
n = λ

(i)
n∑N

j= λ
(j)
n
for i = , , . . . ,N . Thus

W (N)
n =

N⊕
i=

λ
(i)
n∑N

j= λ
(j)
n
Tixn =

N⊕
i=

δ(i,N)
n Tixn

=
(
 – δ(N ,N)

n
)( δ

(,N)
n

 – δ
(N ,N)
n

xn ⊕ δ
(,N)
n

 – δ
(N ,N)
n

Txn ⊕ · · · ⊕ δ
(N–,N)
n

 – δ
(N ,N)
n

TN–xn
)

⊕ δ(N ,N)
n TNxn

=
(
 – δ(N ,N)

n
)(

δ(,N–)
n xn ⊕ δ(,N–)

n Txn ⊕ · · · ⊕ δ(N–,N–)
n TN–xn

) ⊕ δ(N ,N)
n TNxn

=
(
 – δ(N ,N)

n
)( λ

()
n∑N–

j= λ
(j)
n
xn ⊕ λ

()
n∑N–

j= λ
(j)
n
Txn ⊕ · · · ⊕ λ

(N–)
n∑N–
j= λ

(j)
n
TN–xn

)

⊕ δ(N ,N)
n TNxn

=
(
 – δ(N ,N)

n
)
W (N–)

n ⊕ δ(N ,N)
n TNxn

=
∑N–

j= λ
(j)
n∑N

j= λ
(j)
n
W (N–)

n ⊕ λ
(N)
n∑N

j= λ
(j)
n
TNxn.

Therefore, (.) is justified.
Using Lemma ., we can prove the �-convergence theorem for N-generalized hybrid

mappings in complete CAT() spaces as follows.

Theorem . Let C be a nonempty closed and convex subset of a complete CAT() space
X and let T : C → C be an N-generalized hybrid mapping with F(T) �= ∅ and

∑N
k= αk ∈

(–∞, ] ∪ [,∞) and
∑N

k= βk ∈ [,∞). Let π : C → F(T) be the nearest point projection
mapping. Suppose that {xn} is a sequence in C defined by (.) with  < a ≤ λ

(i)
n ≤ b <  for

all i = , , . . . ,N . Then {xn} �-converges to a fixed point u of T , where u = limn→∞ πxn.

Proof Since T is N-generalized hybrid and F(T) �= ∅, we get T is quasi-nonexpansive.
Then, for p ∈ F(T), we have

d(xn+,p) = d

( N⊕
i=

λ(i)
n T

ixn,p

)

≤
N∑
i=

λ(i)
n d

(
Tixn,p

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/188
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≤
N∑
i=

λ(i)
n d(xn,p)

= d(xn,p).

Therefore, limn→∞ d(xn,p) exists and hence {xn} is bounded.
For each p ∈ F(T), we obtain, by (.), (.), and the (CN*) inequality, that

d(xn+,p)

= d

( N⊕
i=

λ
(i)
n∑N

j= λ
(j)
n
Tixn,p

)

= d
(
W (N)

n ,p
)

= d
(∑N–

j= λ
(j)
n∑N

j= λ
(j)
n
W (N–)

n ⊕ λ
(N)
n∑N

j= λ
(j)
n
TNxn,p

)

≤
∑N–

j= λ
(j)
n∑N

j= λ
(j)
n
d
(
W (N–)

n ,p
) + λ

(N)
n∑N

j= λ
(j)
n
d
(
TNxn,p

)

–
λ
(N)
n∑N

j= λ
(j)
n

∑N–
j= λ

(j)
n∑N

j= λ
(j)
n
d
(
W (N–)

n ,TNxn
)

=
N–∑
j=

λ(j)
n d

(
W (N–)

n ,p
) + λ(N)

n d
(
TNxn,p

) – λ(N)
n

N–∑
j=

λ(j)
n d

(
W (N–)

n ,TNxn
)

=
N–∑
j=

λ(j)
n d

(∑N–
j= λ

(j)
n∑N–

j= λ
(j)
n
W (N–)

n ⊕ λ
(N–)
n∑N–
j= λ

(j)
n
TN–xn,p

)

+ λ(N)
n d

(
TNxn,p

)

– λ(N)
n

N–∑
j=

λ(j)
n d

(
W (N–)

n ,TNxn
)

≤
N–∑
j=

λ(j)
n

(∑N–
j= λ

(j)
n∑N–

j= λ
(j)
n
d
(
W (N–)

n ,p
) + λ

(N–)
n∑N–
j= λ

(j)
n
d
(
TN–xn,p

)

–
∑N–

j= λ
(j)
n∑N–

j= λ
(j)
n

λ
(N–)
n∑N–
j= λ

(j)
n
d
(
W (N–)

n ,TN–xn
)) + λ(N)

n d
(
TNxn,p

)

– λ(N)
n

N–∑
j=

λ(j)
n d

(
W (N–)

n ,TNxn
)

=
N–∑
j=

λ(j)
n d

(
W (N–)

n ,p
) + λ(N–)

n d
(
TN–xn,p

) + λ(N)
n d

(
TNxn,p

)

–
λ
(N–)
n

∑N–
j= λ

(j)
n∑N–

j= λ
(j)
n

d
(
W (N–)

n ,TN–xn
) – λ(N)

n

N–∑
j=

λ(j)
n d

(
W (N–)

n ,TNxn
)

≤
N–∑
j=

λ(j)
n d

(
W (N–)

n ,p
) + λ(N–)

n d
(
TN–xn,p

) + λ(N–)
n d

(
TN–xn,p

)

+ λ(N)
n d

(
TNxn,p

) – λ
(N–)
n

∑N–
j= λ

(j)
n∑N–

j= λ
(j)
n

d
(
W (N–)

n ,TN–xn
)
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–
λ
(N–)
n

∑N–
j= λ

(j)
n∑N–

j= λ
(j)
n

d
(
W (N–)

n ,TN–xn
) – λ(N)

n

N–∑
j=

λ(j)
n d

(
W (N–)

n ,TNxn
)

...

≤ λ()
n d

(
W ()

n ,p
) + N∑

k=

λ(k)
n d

(
Tkxn,p

) – N∑
k=

λ
(k)
n

∑k–
j= λ

(j)
n∑k

j= λ
(j)
n

d
(
W (k–)

n ,Tkxn
)

≤
N∑
k=

λ(k)
n d(xn,p) –

N∑
k=

λ
(k)
n

∑k–
j= λ

(j)
n∑k

j= λ
(j)
n

d
(
W (k–)

n ,Tkxn
)

= d(xn,p) –
N∑
k=

λ
(k)
n

∑k–
j= λ

(j)
n∑k

j= λ
(j)
n

d
(
W (k–)

n ,Tkxn
).

This implies that

N∑
k=

λ
(k)
n

∑k–
j= λ

(j)
n∑k

j= λ
(j)
n

d
(
W (k–)

n ,Tkxn
) ≤ d(xn,p) – d(xn+,p).

Since limn→∞ d(xn,p) exists and  < a≤ λ
(i)
n ≤ b <  for all i = , , . . . ,N , we get that

lim
n→∞d(xn,Txn) =  and lim

n→∞d
(
W (k–)

n ,Tkxn
)
=  for all k = , , . . . ,N . (.)

For k = , , . . . ,N , we have

d
(
xn,Tkxn

) ≤ d
(
xn,W (k–)

n
)
+ d

(
W (k–)

n ,Tkxn
)

= d

(
xn,

k–⊕
i=

λ
(i)
n∑k–

j= λ
(j)
n
Tixn

)
+ d

(
W (k–)

n ,Tkxn
)

≤
k–∑
i=

λ
(i)
n∑k–

j= λ
(j)
n
d
(
xn,Tixn

)
+ d

(
W (k–)

n ,Tkxn
)

=
k–∑
i=

λ
(i)
n∑k–

j= λ
(j)
n
d
(
xn,Tixn

)
+ d

(
W (k–)

n ,Tkxn
)
.

This implies by (.) that

lim
n→∞d

(
xn,Tkxn

)
=  for all k = , , . . . ,N . (.)

We now let ω�(xn) :=
⋃

A(C, {un}), where the union is taken over all subsequences {un} of
{xn}. We claim that ω�(xn) ⊂ F(T). Let u ∈ ω�(xn). Then there exists a subsequence {un}
of {xn} such that A(C, {un}) = {u}. By Lemma ., there exists a subsequence {unk } of {un}
such that �-limk→∞ unk = y ∈ C. It implies by (.) and Lemma . that y ∈ F(T). Then,
limn→∞ d(xn, y) exists. Suppose that u �= y. By the uniqueness of asymptotic centers, we get

lim sup
k→∞

d(unk , y) < lim sup
k→∞

d(unk ,u)

≤ lim sup
n→∞

d(un,u)
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< lim sup
n→∞

d(un, y)

= lim sup
n→∞

d(xn, y)

= lim sup
k→∞

d(unk , y).

This is a contradiction, hence u = y ∈ F(T). This shows that ω�(xn) ⊂ F(T).
Next, we show that ω�(xn) consists of exactly one point. Let {un} be a subsequence of

{xn} with A(C, {un}) = {u} and let A(C, {xn}) = {z}. Since u ∈ ω�(xn) ⊂ F(T), it follows that
limn→∞ d(xn,u) exists. We will show that z = u. To show this, suppose not. By the unique-
ness of asymptotic centers, we get

lim sup
n→∞

d(un,u) < lim sup
n→∞

d(un, z)

≤ lim sup
n→∞

d(xn, z)

< lim sup
n→∞

d(xn,u)

= lim sup
n→∞

d(un,u),

which is a contradiction, and so z = u. Hence, {xn} �-converges to a fixed point u of T .
Since F(T) is a closed convex subset of X and d(xn+,p) ≤ d(xn,p) for all p ∈ F(T) and
n ∈ N, we obtain by Lemma . that {πxn} converges strongly to some element in F(T),
say q. Thus, by the property of π , we obtain that

lim sup
n→∞

d(xn,q) ≤ lim sup
n→∞

(
d(xn,πxn) + d(πxn,q)

)
= lim sup

n→∞
d(xn,πxn)

≤ lim sup
n→∞

d(xn,u).

This implies, by the uniqueness of asymptotic centers, that q = u. This means u =
limn→∞ πxn. �

Taking N =  in Theorem ., we obtain the following �-convergence theorem of a
-generalized hybrid mapping in CAT() spaces.

Theorem. Let C be a nonempty closed and convex subset of a completeCAT() space X.
Let T : C → C be a -generalized hybrid mapping, i.e., there are α,α,β,β ∈R such that

αd
(
Tx,Ty

) + αd(Tx,Ty) + ( – α – α)d(x,Ty)

≤ βd
(
Tx, y

) + βd(Tx, y) + ( – β – β)d(x, y)

for all x, y ∈ C. Assume that F(T) �= ∅ and α + α ∈ (–∞, ]∪ [,∞) and β + β ∈ [,∞).
Let π : C → F(T) be the nearest point projectionmapping. For x ∈ C, let {xn} be a sequence
defined by

xn+ =
⊕
i=

λ(i)
n T

ixn for all n ∈ N,
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where {λ(i)
n } is a sequence in [, ] with  < a ≤ λ

(i)
n ≤ b <  for all i = , ,  and

∑
i= λ

(i)
n = .

Then {xn} �-converges to a fixed point u of T , where u = limn→∞ πxn.

TakingN =  in Theorem ., we obtain the following �-convergence theorem of a gen-
eralized hybrid mapping in CAT() spaces.

Theorem. Let C be a nonempty closed and convex subset of a completeCAT() space X.
Let T : C → C be a generalized hybrid mapping, i.e., there are α,β ∈R such that

αd(Tx,Ty) + ( – α)d(x,Ty) ≤ βd(Tx, y) + ( – β)d(x, y)

for all x, y ∈ C.Assume that F(T) �= ∅ and α ∈ (–∞, ]∪ [,∞) and β ∈ [,∞). Let π : C →
F(T) be the nearest point projection mapping. For x ∈ C, let {xn} be a sequence defined by

xn+ = λ()
n xn ⊕ λ()

n Txn for all n ∈ N,

where {λ()
n } and {λ()

n } are sequences in [, ]with  < a ≤ λ
()
n ,λ()

n ≤ b <  and λ
()
n +λ

()
n = .

Then {xn} �-converges to a fixed point u of T , where u = limn→∞ πxn.
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