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1 Introduction
Variational inequalities are one of the most interesting and intensively studied classes of
mathematical problems and there exists a considerable amount of literature [–] on the
approximate solvability of nonlinear variational inequalities. In this paper, we consider,
based on the projection methods, the approximate solvability for a system of generalized
relaxed cocoercive nonlinear variational inequalities in Hilbert spaces. The results pre-
sented in this paper extend and improve the main results in [–].
Throughout this paper, we assume that H is a real Hilbert space with the inner product

〈·, ·〉 and the induced norm ‖ · ‖. Let C be a nonempty closed convex subset of H , and let
PC be the metric projection of H onto C. Let Ti : C × C → H , gi : C → C and fi : C →
H be relaxed cocoercive mappings for each i = , . We consider a system of generalized
nonlinear variational inequality (SGNVI) problem as follows: find an element (x∗, y∗) ∈
C ×C such that{

〈λT(y∗,x∗) + g(x∗) – f(y∗),x – g(x∗)〉 ≥ , ∀x ∈ C and λ > ,
〈μT(x∗, y∗) + g(y∗) – f(x∗),x – g(y∗)〉 ≥ , ∀x ∈ C and μ > .

(.)

SGNVI problem (.) is equivalent to the following projection problem:{
g(x∗) = PC(f(y∗) – λT(y∗,x∗)), ∀λ > ,
g(y∗) = PC(f(x∗) –μT(x∗, y∗)), ∀μ > .

(.)
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Next we consider some special cases of SGNVI problem (.), where I is the identity
mapping.
() If g = g = I , then SGNVI problem (.) is reduced to the following: find an element

(x∗, y∗) ∈ C ×C such that

{
〈λT(y∗,x∗) + x∗ – f(y∗),x – x∗〉 ≥ , ∀x ∈ C and λ > ,
〈μT(x∗, y∗) + y∗ – f(x∗),x – y∗〉 ≥ , ∀x ∈ C and μ > .

(.)

() If f = f = I , then SGNVI problem (.) is reduced to the following: find an element
(x∗, y∗) ∈ C ×C such that

{
〈λT(y∗,x∗) + g(x∗) – y∗,x – g(x∗)〉 ≥ , ∀x ∈ C and λ > ,
〈μT(x∗, y∗) + g(y∗) – x∗,x – g(y∗)〉 ≥ , ∀x ∈ C and μ > .

(.)

() If g = g = f = f = I , then SGNVI problem (.) is reduced to the following: find an
element (x∗, y∗) ∈ C ×C such that

{
〈λT(y∗,x∗) + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C and λ > ,
〈μT(x∗, y∗) + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C and μ > .

(.)

() If T and T are univariate mappings, then SGNVI problem (.) is reduced to the
following: find an element (x∗, y∗) ∈ C ×C such that

{
〈λT(y∗) + g(x∗) – f(y∗),x – g(x∗)〉 ≥ , ∀x ∈ C and λ > ,
〈μT(x∗) + g(y∗) – f(x∗),x – g(y∗)〉 ≥ , ∀x ∈ C and μ > .

(.)

() If g = g = f = f = I , T and T are univariate mappings, then SGNVI problem (.)
is reduced to the following: find an element (x∗, y∗) ∈ C ×C such that

{
〈λT(y∗) + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C and λ > ,
〈μT(x∗) + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C and μ > .

(.)

() If g = g = f = f = I and μ = , then SGNVI problem (.) is reduced to the
following: find an element x∗ ∈ C such that

〈
T

(
x∗,x∗),x – x∗〉 ≥ , ∀x ∈ C. (.)

2 Preliminaries
In order to prove our main results in the next section, we recall several definitions and
lemmas.

Definition . Let T : C →H be a mapping.
() T is said to be β-Lipschitz continuous if there exists a constant β >  such that

‖Tx – Ty‖ ≤ β‖x – y‖, ∀x, y ∈ C.
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() T is said to be monotone if

〈Tx – Ty,x – y〉 ≥ , ∀x, y ∈ C.

() T is said to be δ-strongly monotone if there exists a constant δ >  such that

〈Tx – Ty,x – y〉 ≥ δ‖x – y‖, ∀x, y ∈ C.

This implies that

‖Tx – Ty‖ ≥ δ‖x – y‖, ∀x, y ∈ C,

that is, T is δ-expansive.
() T is said to be γ -cocoercive if there exists a constant γ >  such that

〈Tx – Ty,x – y〉 ≥ γ ‖Tx – Ty‖, ∀x, y ∈ C.

Clearly, every γ -cocoercive mapping T is 
γ
-Lipschitz continuous.

() T is said to be relaxed γ -cocoercive if there exists a constant γ >  such that

〈Tx – Ty,x – y〉 ≥ (–γ )‖Tx – Ty‖, ∀x, y ∈ C.

() T is said to be relaxed (γ , δ)-cocoercive if there exist two constants γ , δ >  such that

〈Tx – Ty,x – y〉 ≥ (–γ )‖Tx – Ty‖ + δ‖x – y‖, ∀x, y ∈ C.

Definition . A mapping T : C × C → H is said to be relaxed (γ , δ)-cocoercive if there
exist two constants γ , δ >  such that for all x,x∗ ∈ C,

〈
T(x, y) – T

(
x∗, y∗),x – x∗〉 ≥ (–γ )

∥∥T(x, y) – T
(
x∗, y∗)∥∥ + δ

∥∥x – x∗∥∥, ∀y, y∗ ∈ C.

Definition . Amapping T : C×C →H is said to be β-Lipschitz continuous in the first
variable if there exists a constant β >  such that for all x,x∗ ∈ C,

∥∥T(x, y) – T
(
x∗, y∗)∥∥ ≤ β

∥∥x – x∗∥∥, ∀y, y∗ ∈ C.

Definition . PC : H → C is called a metric projection if for every point x ∈ H , there
exists a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

Lemma . PC :H → C is a metric projection, then PC is a nonexpansive mapping, i.e.,

‖PCx – PCy‖ ≤ ‖x – y‖, ∀x, y ∈H .
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Lemma . [] Let {an}, {bn} and {cn} be three nonnegative real sequences such that

an+ ≤ ( – λn)an + bn + cn, ∀n≥ n,

where n is some nonnegative integer, {λn} is a sequence in (, ) with
∑∞

n= λn = ∞, bn =
o(λn) and

∑∞
n= cn < ∞. Then limn→∞ an = .

3 Main results
In this section, we present the projection methods and give the convergence analysis
of SGNVI problem (.) involving relaxed (γ , δ)-cocoercive and β-Lipschitz continuous
mappings in Hilbert spaces.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
Ti : C × C → H be a relaxed (γi, δi)-cocoercive and αi-Lipschitz continuous mapping in
the first variable, let gi : C → C be a relaxed (ηi,ρi)-cocoercive and βi-Lipschitz continuous
mapping, and let fi : C → H be a relaxed (ηi,ρi)-cocoercive and β i-Lipschitz continuous
mapping for each i = , . Suppose that (x∗, y∗) ∈ C × C is a solution to SGNVI problem
(.). For any (x, y) ∈ C ×C, the sequences {xn} and {yn} are generated by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
tn+ = ( – an)xn + an(xn – g(xn) + PC(f(yn) – λT(yn,xn))), n≥ ,
xn+ = PCtn+, n≥ ,
zn = yn – g(yn) + PC(f(xn) –μT(xn, yn)), n≥ ,
yn = ( – bn)xn + bnPCzn, n≥ ,

(.)

where λ,μ >  and the following conditions are satisfied:

()  < an,bn ≤ ; ()
∞∑
n=

an = ∞; ()
∞∑
n=

( – bn) < ∞;

()  ≤ θ, θ < ; () θ + θ ≥ ;

()  < (θ + θ)(θ + θ) < ( – θ)( – θ);

where

θ =
√
 – λδ + λγα


 + λα

 , θ =
√
 – ρ + β

 + ηβ
 ,

θ =
√
 – ρ + β


 + ηβ


 , θ =

√
 – μδ + μγα


 +μα

 ,

θ =
√
 – ρ + β

 + ηβ
 , θ =

√
 – ρ + β


 + ηβ


.

Then the sequences {xn} and {yn} converge strongly to x∗ and y∗, respectively.

Proof Since (x∗, y∗) ∈ C ×C is a solution to SGNVI problem (.), it follows that

{
x∗ = x∗ – g(x∗) + PC(f(y∗) – λT(y∗,x∗)),
y∗ = y∗ – g(y∗) + PC(f(x∗) –μT(x∗, y∗)).

http://www.fixedpointtheoryandapplications.com/content/2013/1/189
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For n≥ , we have

∥∥xn+ – x∗∥∥ =
∥∥PCtn+ – PCx∗∥∥ ≤ ∥∥tn+ – x∗∥∥

=
∥∥( – an)xn + an

(
xn – g(xn) + PC

(
f(yn) – λT(yn,xn)

))
– x∗∥∥

≤ ( – an)
∥∥xn – x∗∥∥ + an

∥∥(
xn – g(xn) + PC

(
f(yn) – λT(yn,xn)

))
–

(
x∗ – g

(
x∗) + PC

(
f
(
y∗) – λT

(
y∗,x∗)))∥∥

≤ ( – an)
∥∥xn – x∗∥∥ + an

∥∥xn – x∗ –
(
g(xn) – g

(
x∗))∥∥

+ an
∥∥PC

(
f(yn) – λT(yn,xn)

)
– PC

(
f
(
y∗) – λT

(
y∗,x∗))∥∥

≤ ( – an)
∥∥xn – x∗∥∥ + an

∥∥xn – x∗ –
(
g(xn) – g

(
x∗))∥∥

+ an
∥∥f(yn) – f

(
y∗) – λ

(
T(yn,xn) – T

(
y∗,x∗))∥∥

≤ ( – an)
∥∥xn – x∗∥∥ + an

∥∥xn – x∗ –
(
g(xn) – g

(
x∗))∥∥

+ an
∥∥yn – y∗ –

(
f(yn) – f

(
y∗))∥∥

+ an
∥∥yn – y∗ – λ

(
T(yn,xn) – T

(
y∗,x∗))∥∥. (.)

Since g is a relaxed (η,ρ)-cocoercive and β-Lipschitz continuous mapping, we have

∥∥xn – x∗ –
(
g(xn) – g

(
x∗))∥∥

=
∥∥xn – x∗∥∥ – 

〈
g(xn) – g

(
x∗),xn – x∗〉 + ∥∥g(xn) – g

(
x∗)∥∥

≤ ∥∥xn – x∗∥∥ – 
(
(–η)

∥∥g(xn) – g
(
x∗)∥∥ + ρ

∥∥xn – x∗∥∥) + β

∥∥xn – x∗∥∥

=
(
 – ρ + β


)∥∥xn – x∗∥∥ + η

∥∥g(xn) – g
(
x∗)∥∥

≤ (
 – ρ + β


)∥∥xn – x∗∥∥ + ηβ


∥∥xn – x∗∥∥

≤ θ

∥∥xn – x∗∥∥, (.)

where θ =
√
 – ρ + β

 + ηβ
 . In a similar way, we can obtain that

∥∥yn – y∗ –
(
f(yn) – f

(
y∗))∥∥ ≤ θ

∥∥yn – y∗∥∥, (.)

where θ =
√
 – ρ + β


 + ηβ


 . By the assumption thatT is a relaxed (γ, δ)-cocoercive

and α-Lipschitz continuous mapping in the first variable, we have

∥∥yn – y∗ – λ
(
T(yn,xn) – T

(
y∗,x∗))∥∥

=
∥∥yn – y∗∥∥ – λ

〈
T(yn,xn) – T

(
y∗,x∗), yn – y∗〉 + λ∥∥T(yn,xn) – T

(
y∗,x∗)∥∥

≤ ∥∥yn – y∗∥∥ – λ
(
(–γ)

∥∥T(yn,xn) – T
(
y∗,x∗)∥∥ + δ

∥∥yn – y∗∥∥)
+ λ∥∥T(yn,xn) – T

(
y∗,x∗)∥∥

= ( – λδ)
∥∥yn – y∗∥∥ +

(
λγ + λ)∥∥T(yn,xn) – T

(
y∗,x∗)∥∥

≤ ( – λδ)
∥∥yn – y∗∥∥ +

(
λγ + λ)α


∥∥yn – y∗∥∥

= θ

∥∥yn – y∗∥∥, (.)
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where θ =
√
 – λδ + λγα


 + λα

 . According to (.), (.), (.) and (.), we obtain
that

∥∥xn+ – x∗∥∥ ≤ [
 – an( – θ)

]∥∥xn – x∗∥∥ + an(θ + θ)
∥∥yn – y∗∥∥. (.)

Next, we estimate ‖yn – y∗‖. From (.), we see that

∥∥yn – y∗∥∥ =
∥∥( – bn)xn + bnPCzn – y∗∥∥

≤ ( – bn)
∥∥xn – y∗∥∥ + bn

∥∥PCzn – PCy∗∥∥
≤ ( – bn)

∥∥xn – y∗∥∥ + bn
∥∥zn – y∗∥∥

= ( – bn)
∥∥xn – y∗∥∥ + bn

∥∥yn – g(yn) + PC
(
f(xn) –μT(xn, yn)

)
–

(
y∗ – g

(
y∗) + PC

(
f

(
x∗) –μT

(
x∗, y∗)))∥∥

≤ ( – bn)
∥∥xn – y∗∥∥ + bn

∥∥yn – y∗ –
(
g(yn) – g

(
y∗))∥∥

+ bn
∥∥PC

(
f(xn) –μT(xn, yn)

)
– PC

(
f

(
x∗) –μT

(
x∗, y∗))∥∥

≤ ( – bn)
∥∥xn – y∗∥∥ + bn

∥∥yn – y∗ –
(
g(yn) – g

(
y∗))∥∥

+ bn
∥∥xn – x∗ –

(
f(xn) – f

(
x∗))∥∥

+ bn
∥∥xn – x∗ –μ

(
T(xn, yn) – T

(
x∗, y∗))∥∥. (.)

Similarly, we obtain that

∥∥yn – y∗ –
(
g(yn) – g

(
y∗))∥∥ ≤ θ

∥∥yn – y∗∥∥, (.)

where θ =
√
 – ρ + β

 + ηβ
 , and

∥∥xn – x∗ –
(
f(xn) – f

(
x∗))∥∥ ≤ θ

∥∥xn – x∗∥∥, (.)

where θ =
√
 – ρ + β


 + ηβ


, and

∥∥xn – x∗ –μ
(
T(xn, yn) – T

(
x∗, y∗))∥∥ ≤ θ

∥∥xn – x∗∥∥, (.)

where θ =
√
 – μδ + μγα


 +μα

 . According to (.), (.), (.) and (.), we ob-
tain that

∥∥yn – y∗∥∥ ≤ ( – bn)
∥∥xn – y∗∥∥ + bnθ

∥∥yn – y∗∥∥
+ bnθ

∥∥xn – x∗∥∥ + bnθ
∥∥xn – x∗∥∥

≤ ( – bn)
∥∥xn – x∗∥∥ + ( – bn)

∥∥x∗ – y∗∥∥
+ bnθ

∥∥yn – y∗∥∥ + bn(θ + θ)
∥∥xn – x∗∥∥, (.)

that is,

( – bnθ)
∥∥yn – y∗∥∥ ≤ ( – bn)

∥∥x∗ – y∗∥∥ +
[
 – bn + bn(θ + θ)

]∥∥xn – x∗∥∥. (.)
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By conditions (), () and (), we have


 – bnθ

≤ 
 – θ

and  – bn + bn(θ + θ) ≤ θ + θ. (.)

Substituting (.) into (.), we have

∥∥yn – y∗∥∥ ≤  – bn
 – θ

∥∥x∗ – y∗∥∥ +
θ + θ

 – θ

∥∥xn – x∗∥∥. (.)

According (.) and (.), for n ≥ , we have

∥∥xn+ – x∗∥∥ ≤
[
 – an

(
 – θ –

(θ + θ)(θ + θ)
 – θ

)]∥∥xn – x∗∥∥
+ an

(θ + θ)
 – θ

( – bn)
∥∥x∗ – y∗∥∥

≤
[
 – an

(
 – θ –

(θ + θ)(θ + θ)
 – θ

)]∥∥xn – x∗∥∥
+
(θ + θ)
 – θ

( – bn)
∥∥x∗ – y∗∥∥. (.)

From conditions (), (), () and (), we get

an
(
 – θ –

(θ + θ)(θ + θ)
 – θ

)
∈ (, ),

∞∑
n=

an
(
 – θ –

(θ + θ)(θ + θ)
 – θ

)
= ∞

and

∞∑
n=

(θ + θ)
 – θ

( – bn)
∥∥x∗ – y∗∥∥ <∞.

The conditions in Lemma . are satisfied, then ‖xn – x∗‖ →  (as n → ∞), i.e., xn → x∗

(as n→ ∞).
On the one hand, from condition () we know that –bn →  (as n→ ∞). On the other

hand, from (.) and the result that xn → x∗ (as n → ∞), we can get ‖yn – y∗‖ →  (as
n→ ∞), i.e., yn → y∗ (as n→ ∞).
This completes the proof of Theorem .. �

When g = g = I , f = f = I , then we have θ = θ = , θ = θ = , respectively. And from
Theorem . we can get the following results immediately.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
Ti : C×C →H be a relaxed (γi, δi)-cocoercive and αi-Lipschitz continuous mapping in the
first variable, and let fi : C →H be a relaxed (ηi,ρ i)-cocoercive and β i-Lipschitz continuous
mapping for each i = , . Suppose that (x∗, y∗) ∈ C × C is a solution to problem (.). For
any (x, y) ∈ C ×C, the sequences {xn} and {yn} are generated by

{
xn+ = ( – an)xn + anPC(f(yn) – λT(yn,xn)), n≥ ,
yn = ( – bn)xn + bnPC(f(xn) –μT(xn, yn)), n ≥ ,

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/189
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where λ,μ >  and the following conditions are satisfied:

()  < an,bn ≤ ; ()
∞∑
n=

an = ∞; ()
∞∑
n=

( – bn) < ∞;

() θ + θ ≥ ; ()  < (θ + θ)(θ + θ) < ;

where

θ =
√
 – λδ + λγα


 + λα

 , θ =
√
 – ρ + β


 + ηβ


 ,

θ =
√
 – μδ + μγα


 +μα

 , θ =
√
 – ρ + β


 + ηβ


.

Then the sequences {xn} and {yn} converge strongly to x∗ and y∗, respectively.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
Ti : C×C →H be a relaxed (γi, δi)-cocoercive and αi-Lipschitz continuous mapping in the
first variable, and let gi : C → C be a relaxed (ηi,ρi)-cocoercive and βi-Lipschitz continuous
mapping for each i = , . Suppose that (x∗, y∗) ∈ C × C is a solution to problem (.). For
any (x, y) ∈ C ×C, the sequences {xn} and {yn} are generated by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
tn+ = ( – an)xn + an(xn – g(xn) + PC(yn – λT(yn,xn))), n≥ ,
xn+ = PCtn+, n≥ ,
zn = yn – g(yn) + PC(xn –μT(xn, yn)), n≥ ,
yn = ( – bn)xn + bnPCzn, n≥ ,

(.)

where λ,μ >  and the following conditions are satisfied:

()  < an,bn ≤ ; ()
∞∑
n=

an = ∞; ()
∞∑
n=

( – bn) < ∞;

()  ≤ θ, θ < ; () θ ≥ ; ()  < θθ < ( – θ)( – θ);

where

θ =
√
 – λδ + λγα


 + λα

 , θ =
√
 – ρ + β

 + ηβ
 ,

θ =
√
 – μδ + μγα


 +μα

 , θ =
√
 – ρ + β

 + ηβ
 .

Then the sequences {xn} and {yn} converge strongly to x∗ and y∗, respectively.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
Ti : C×C →H be a relaxed (γi, δi)-cocoercive and αi-Lipschitz continuous mapping in the
first variable for each i = , . Suppose that (x∗, y∗) ∈ C × C is a solution to problem (.).
For any (x, y) ∈ C ×C, the sequences {xn} and {yn} are generated by

{
xn+ = ( – an)xn + anPC(yn – λT(yn,xn)), n≥ ,
yn = ( – bn)xn + bnPC(xn –μT(xn, yn)), n ≥ ,

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/189
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where λ,μ >  and the following conditions are satisfied:

()  < an,bn ≤ ; ()
∞∑
n=

an = ∞; ()
∞∑
n=

( – bn) < ∞;

() θ ≥ ; ()  < θθ < ;

where

θ =
√
 – λδ + λγα


 + λα

 , θ =
√
 – μδ + μγα


 +μα

 .

Then the sequences {xn} and {yn} converge strongly to x∗ and y∗, respectively.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let Ti :
C →H be a relaxed (γi, δi)-cocoercive and αi-Lipschitz continuous mapping, let gi : C → C
be a relaxed (ηi,ρi)-cocoercive and βi-Lipschitz continuous mapping, and let fi : C →H be
a relaxed (ηi,ρi)-cocoercive and β i-Lipschitz continuous mapping for each i = , . Suppose
that (x∗, y∗) ∈ C × C is a solution to problem (.). For any (x, y) ∈ C × C, the sequences
{xn} and {yn} are generated by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
tn+ = ( – an)xn + an(xn – g(xn) + PC(f(yn) – λT(yn))), n ≥ ,
xn+ = PCtn+, n≥ ,
zn = yn – g(yn) + PC(f(xn) –μT(xn)), n≥ ,
yn = ( – bn)xn + bnPCzn, n≥ ,

(.)

where λ,μ >  and the following conditions are satisfied:

()  < an,bn ≤ ; ()
∞∑
n=

an = ∞; ()
∞∑
n=

( – bn) < ∞;

()  ≤ θ, θ < ; () θ + θ ≥ ;

()  < (θ + θ)(θ + θ) < ( – θ)( – θ);

where

θ =
√
 – λδ + λγα


 + λα

 , θ =
√
 – ρ + β

 + ηβ
 ,

θ =
√
 – ρ + β


 + ηβ


 , θ =

√
 – μδ + μγα


 +μα

 ,

θ =
√
 – ρ + β

 + ηβ
 , θ =

√
 – ρ + β


 + ηβ


.

Then the sequences {xn} and {yn} converge strongly to x∗ and y∗, respectively.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
Ti : C → H be a relaxed (γi, δi)-cocoercive and αi-Lipschitz continuous mapping for each
i = , . Suppose that (x∗, y∗) ∈ C×C is a solution to problem (.). For any (x, y) ∈ C×C,
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the sequences {xn} and {yn} are generated by

{
xn+ = ( – an)xn + anPC(yn – λT(yn)), n≥ ,
yn = ( – bn)xn + bnPC(xn –μT(xn)), n≥ ,

(.)

where λ,μ >  and the following conditions are satisfied:

()  < an,bn ≤ ; ()
∞∑
n=

an = ∞; ()
∞∑
n=

( – bn) < ∞;

() θ ≥ ; ()  < θθ < ;

where

θ =
√
 – λδ + λγα


 + λα

 , θ =
√
 – μδ + μγα


 +μα

 .

Then the sequences {xn} and {yn} converge strongly to x∗ and y∗, respectively.

For μ = , bn =  in Corollary ., we arrive at the following result.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C × C → H be a relaxed (γ, δ)-cocoercive and α-Lipschitz continuous mapping in
the first variable. Suppose that x∗ ∈ C is a solution to problem (.). For any x ∈ C, the
sequence {xn} is generated by

xn+ = ( – an)xn + anPC
(
xn – λT(xn,xn)

)
, n ≥ , (.)

where λ >  and the following conditions are satisfied:

()  < an ≤ ; ()
∞∑
n=

an = ∞; ()  < θ < ;

where

θ =
√
 – λδ + λγα


 + λα

 .

Then the sequence {xn} converges strongly to x∗.
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