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Abstract
In this paper, we prove several common fixed point theorems for nonlinear mappings
with a function φ in fuzzy metric spaces. In these fixed point theorems, very simple
conditions are imposed on the function φ . Our results improve some recent ones in
the literature. Finally, an example is presented to illustrate the main result of this paper.
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1 Introduction
The concept of fuzzy metric spaces was defined in different ways [–]. Grabiec [] pre-
sented a fuzzy version of the Banach contraction principle in a fuzzy metric space in
Kramosi andMichalek’s sense. Fang [] proved some fixed point theorems in fuzzy metric
spaces, which improved, generalized, unified and extended some main results of Edel-
stein [], Istratescu [], Sehgal and Bharucha-Reid [].
In order to obtain a Hausdorff topology, George and Veeramani [, ] modified the

concept of fuzzy metric space due to Kramosil and Michalek []. Many fixed point theo-
rems in complete fuzzy metric spaces in the sense of George and Veeramani (GV) [, ]
have been obtained. For example, Singh and Chauhan [] proved some common fixed
point theorems for four mappings in GV fuzzy metric spaces. Gregori and Sapena []
proved that each fuzzy contractive mapping has a unique fixed point in a complete GV
fuzzy metric space, in which fuzzy contractive sequences are Cauchy.
In , Bhaskar and Lakshmikantham [] introduced the concept of coupled fixed

point in metric spaces and obtained some coupled fixed point theorems with the applica-
tion to a bounded value problem. Based on Bhaskar and Lakshmikantham’s work, many
researchers have obtained more coupled fixed point theorems in metric spaces and cone
metric spaces; see [, ]. Recently, the investigation of coupled fixed point theorems has
been extended frommetric spaces to probabilistic metric spaces and fuzzy metric spaces;
see [–]. In [], the authors gave the following results.

Theorem SAS [, Theorem .] Let a ∗ b > ab for all a,b ∈ [, ] and let (X,M,∗) be
a complete fuzzy metric space such that M has an n-property. Let F : X × X → X and
g : X → X be two functions such that

M
(
F(x, y),F(u, v),kt

) ≥ M(gx, gu, t) ∗M(gy, gv, t)
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for all x, y,u, v ∈ X, where  < k < , F(X × X) ⊆ g(X) and g is continuous and commutes
with F . Then there exists a unique x ∈ X such that x = gx = F(x,x).

Let � = {φ :R+ → R
+}, where R+ = [,+∞) and each φ ∈ � satisfies the following con-

ditions:

(φ-) φ is nondecreasing,
(φ-) φ is upper semicontinuous from the right,
(φ-)

∑∞
n= φn(t) < +∞ for all t > , where φn+(t) = φ(φn(t)), n ∈N.

In [], Hu proved the following result.

Theorem of Hu [, Theorem ] Let (X,M,∗) be a complete fuzzy metric space, where ∗
is a continuous t-norm of H-type. Let F : X ×X → X and g : X → X be two mappings and
let there exist φ ∈ � such that

M
(
F(x, y),F(u, v),φ(t)

) ≥ M(gx, gu, t) ∗M(gy, gv, t)

for all x, y,u, v ∈ X, t > . Suppose that F(X × X) ⊆ g(X) and that g is continuous, F and g
are compatible. Then there exists x ∈ X such that x = gx = F(x,x), that is, F and g have a
unique common fixed point in X.

In this paper, inspired by Sedghi et al. and Hu’s work mentioned above, we prove some
common fixed point theorems for φ-contractive mappings in fuzzy metric spaces, in
which a very simple condition is imposed on the function φ. Our results improve the
corresponding ones of Sedghi et al. [] and Hu []. Finally, an example is presented to
illustrate the main result in this paper.

2 Preliminaries
Definition . [] A binary operation ∗ : [, ]× [, ] → [, ] is a continuous t-norm if
∗ satisfies the following conditions:
() ∗ is associative and commutative,
() ∗ is continuous,
() a ∗  = a for all a ∈ [, ],
() a ∗ b ≤ c ∗ d whenever a ≤ c and b≤ d for all a,b, c,d ∈ [, ].
Two typical examples of the continuous t-norm are a ∗ b = ab and a ∗ b =min{a,b} for

all a,b ∈ [, ].

Definition . [] A t-norm ∗ is said to be of Hadžić type (for short H-type) if the family
of functions {∗m(t)}∞m= is equicontinuous at t = , where

∗(t) = t ∗ t, ∗m+(t) = t ∗ (∗m(t)
)
, m = , , . . . , t ∈ [, ].

The t-norm ∗ is an example of t-norm of H-type, but t-norm ∗ is not of H-type. Some
other t-norm of H-type can be found in [].

Definition . (Kramosil and Michalek []) A fuzzy metric space (in the sense of
Kramosil and Michalek) is a triple (X,M,∗), where X is a nonempty set, ∗ is a continu-
ous t-norm andM : X × [,∞) is a mapping, satisfying the following:

http://www.fixedpointtheoryandapplications.com/content/2013/1/191
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(KM-) M(x, y, ) =  for all x, y ∈ X ,
(KM-) M(x, y, t) =  for all t >  if and only if x = y,
(KM-) M(x, y, t) =M(y,x, t) for all x, y ∈ X and all t > ,
(KM-) M(x, y, ·) : [,∞) → [, ] is left continuous for all x, y ∈ X ,
(KM-) M(x, y, t + s) ≥ M(x, z, t) ∗M(y, z, s) for all x, y, z ∈ X and all t, s > .

In Definition ., if M is a fuzzy set on X × (,∞) and (KM-), (KM-), (KM-) are
replaced with the following (GV-), (GV-), (GV-), respectively, then (X,M,∗) is called a
fuzzy metric space in the sense of George and Veeramani []:
(GV-) M(x, y, t) >  for all t >  and all x, y ∈ X ,
(GV-) M(x, y, t) =  for some t >  if and only if x = y,
(GV-) M(x, y, ·) : (,∞)→ [, ] is continuous.

Lemma . [] Let (X,M,∗) be a fuzzy metric space in the sense of GV. Then M(x, y, ·) is
nondecreasing for all x, y ∈ X.

Definition . (George and Veeramani []) Let (X,M,∗) be a fuzzy metric space. A se-
quence {xn} in X is called an M-Cauchy sequence if for each ε ∈ (, ) and t > , there is
n ∈ N such that M(xn,xm, t) >  – ε for all m,n ≥ n. The fuzzy metric space (X,M,∗) is
calledM-complete if everyM-Cauchy sequence is convergent.

Definition . [] An element (x, y) ∈ X ×X is called a coupled coincidence point of the
mappings F : X ×X → X and g : X → X if

F(x, y) = g(x), F(y,x) = g(y).

Here (gx, gy) is called a coupled point of coincidence.

Definition . [] An element x ∈ X×X is called a common fixed point of themappings
F : X ×X → X and g : X → X if

F(x,x) = g(x) = x.

Definition . [] Let (X,M,∗) be a fuzzy metric space. The mappings F and g , where
F : X ×X → X and g : X → X, are said to be compatible if for all t > ,

lim
n→∞M

(
g
(
F(xn, yn)

)
,F

(
g(xn), g(yn)

)
, t

)
=  and

lim
n→∞M

(
g
(
F(yn,xn)

)
,F

(
g(yn), g(xn)

)
, t

)
= 

whenever {xn} and {yn} are sequences in X such that limn→∞ F(xn, yn) = limn→∞ g(xn) = x
and limn→∞ F(xn, yn) = limn→∞ g(xn) = y for some x, y ∈ X.

In [], Abbas et al. introduced the concept of w-compatible mappings. Here we give a
similar concept in fuzzy metric spaces as follows.

Definition . Let (X,M,∗) be a fuzzy metric space, and let F : X × X → X and g : X →
X be two mappings. F and g are said to be weakly compatible (or w-compatible) if they

http://www.fixedpointtheoryandapplications.com/content/2013/1/191


Wang et al. Fixed Point Theory and Applications 2013, 2013:191 Page 4 of 15
http://www.fixedpointtheoryandapplications.com/content/2013/1/191

commute at their coupled coincidence points, i.e., if (x, y) is a coupled coincidence point
of g and F , then g(F(x, y)) = F(gx, gy).

3 Main results
In this section, the fuzzy metric space (X,M,∗) is in the sense of GV and the fuzzy metric
M is assumed to satisfy the condition supt>M(x, y, t) =  for all x, y ∈ X.
By using the continuity of ∗ and [, Lemma ], we get the following result.

Lemma . Let n ∈ N, let gn : (,∞) → (,∞), and let Fn : R → [, ]. Assume that
sup{F(t) : t > } =  and

lim
n→∞ gn(t) = , Fn

(
gn(t)

) ≥ ∗n(F(t)), ∀t > .

If each Fn is nondecreasing, then limn→∞ Fn(t) =  for any t > .

Theorem . Let (X,M,∗) be a fuzzy metric space under a continuous t-norm ∗ of H-
type. Let φ : (,∞) → (,∞) be a function satisfying that limn→∞ φn(t) =  for any t > .
Let F : X ×X → X and g : X → X be two mappings with F(X ×X) ⊆ g(X) and assume that
for any t > ,

M
(
F(x, y),F(u, v),φ(t)

) ≥ M(gx, gu, t) ∗M(gy, gv, t) (.)

for all x, y,u, v ∈ X. Suppose that F(X ×X) is complete and that g and F are w-compatible,
then g and F have a unique common fixed point x∗ ∈ X, that is, x∗ = g(x∗) = F(x∗,x∗).

Proof Since F(X ×X)⊆ g(X), there exist two sequences {xn} and {yn} in X such that

gxn+ = F(xn, yn) and gyn+ = F(yn,xn) for all n ∈N∪ {}. (.)

From (.) and (.) we have

M
(
gxn, gxn+,φ(t)

)
=M

(
F(xn–, yn–),F(xn, yn),φ(t)

)
≥ M(gxn–, gxn, t) ∗M(gyn–, gyn, t) (.)

and

M
(
gyn, gyn+,φ(t)

)
=M

(
F(yn–,xn–),F(yn,xn),φ(t)

)
≥ M(gyn–, gyn, t) ∗M(gxn–, gxn, t). (.)

It follows from (.) and (.) that

M
(
gxn, gxn+,φn(t)

) ∗M
(
gyn, gyn+,φn(t)

)
≥ ∗(M(

gxn–, gxn,φn–(t)
) ∗M

(
gyn–, gyn,φn–(t)

))
≥ · · · ≥ ∗n(M(gx, gx, t) ∗M(gy, gy, t)

)
.
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Let En(t) =M(gxn, gxn+, t) ∗M(gyn, gyn+, t). Then

En
(
φn(t)

) ≥ ∗(En–
(
φn–(t)

)) ≥ · · · ≥ ∗n(E(t)
)
.

Since φn(t) →  and supt> E(t) = , by Lemma . we have

lim
n→∞En(t) = .

Noting that min{M(gxn, gxn+, t),M(gyn, gyn+, t)} ≥ En(t), we get that

lim
n→∞M(gxn, gxn+, t) = lim

n→∞M(gyn, gyn+, t) = , ∀t > . (.)

For any fixed t > , since limn→∞ φn(t) = , there exists n = n(t) ∈N such that φn+(t) <
φn (t) < t. Next we show by induction that for any k ∈ N ∪ {}, there exists bk ∈ N such
that

M
(
gxn, gxn+k ,φn (t)

) ∗M
(
gyn, gyn+k ,φn (t)

)
≥ ∗bk

(
M

(
gxn, gxn+,φn (t) – φn+(t)

) ∗M
(
gyn, gyn+,φn (t) – φn+(t)

))
. (.)

It is obvious for k =  since M(gxn, gxn,φn (t)) =M(gyn, gyn,φn (t)) = . Assume that (.)
holds for some k ∈N. Since φn (t) – φn+(t) > , by (KM-) we have

M
(
gxn, gxn+k+,φn (t)

)
=M

(
gxn, gxn+k+,φn (t) – φn+(t) + φn+(t)

)
≥ M

(
gxn, gxn+,φn (t) – φn+(t)

) ∗M
(
gxn+, gxn+k+,φn+(t)

)
. (.)

It follows from (.) and (.) that

M
(
gxn+, gxn+k+,φn+(t)

)
=M

(
F(xn, yn),F(xn+k , yn+k),φn+(t)

)
≥ M

(
gxn, gxn+k ,φn (t)

) ∗M
(
gyn, gyn+k ,φn (t)

)
≥ ∗bk

(
M

(
gxn, gxn+,φn (t) – φn+(t)

) ∗M
(
gyn, gyn+,φn (t) – φn+(t)

))
. (.)

Now from (.) and (.) we get

M
(
gxn, gxn+k+,φn (t)

)
≥ M

(
gxn, gxn+,φn (t) – φn+(t)

) ∗ [∗bk
(
M

(
gxn, gxn+,φn (t) – φn+(t)

)
∗M

(
gyn, gyn+,φn (t) – φn+(t)

))]
. (.)

Similarly, we have

M
(
gyn, gyn+k+,φn (t)

)
≥ M

(
gyn, gyn+,φn (t) – φn+(t)

) ∗ [∗bk
(
M

(
gyn, gyn+,φn (t) – φn+(t)

)
∗M

(
gxn, gxn+,φn (t) – φn+(t)

))]
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/191
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From (.) and (.) we conclude that

M
(
gxn, gxn+k+,φn (t)

) ∗M
(
gyn, gyn+k+,φn (t)

)
≥ M

(
gxn, gxn+,φn (t) – φn+(t)

) ∗M
(
gyn, gyn+,φn (t) – φn+(t)

)
∗ [∗bk

(
M

(
gxn, gxn+,φn (t) – φn+(t)

) ∗M
(
gyn, gyn+,φn (t) – φn+(t)

))]
= ∗bk+

(
M

(
gxn, gxn+,φn (t) – φn+(t)

) ∗M
(
gyn, gyn+,φn (t) – φn+(t)

))
.

Since bk+ = bk + ∈N, this implies that (.) holds for k+. Therefore, there exists bk ∈N

such that (.) holds for each k ∈N∪ {}.
Now we prove that {F(xn, yn)} and {F(yn,xn)} are Cauchy sequences in X. Let t >  and

ε > . Since limn→∞ φn(t) = , there exists n = n(t) ∈ N such that φn+(t) < φn (t) < t.
Since {∗n : n ∈ N} is equicontinuous at  and ∗() = , there is δ >  such that

if s ∈ ( – δ, ], then ∗n (s) >  – ε for all n ∈N. (.)

By (.), one has limn→∞ M(gxn, gxn+,φn (t) – φn+(t)) = limn→∞ M(gyn, gyn+,φn (t) –
φn+(t)) = . Since ∗ is continuous, there is N ∈ N such that for all n >N ,

M
(
gxn, gxn+,φn (t) – φn+(t)

) ∗M
(
gyn, gyn+,φn (t) – φn+(t)

)
>  – δ.

Hence, by (.) (replacing n with n) and (.), we get

M
(
gxn, gxn+k ,φn (t)

) ∗M
(
gyn, gyn+k ,φn (t)

)
>  – ε

for any k ∈N∪ {}. Since

min
{
M

(
gxn, gxn+k ,φn (t)

)
,M

(
gyn, gyn+k ,φn (t)

)}
≥ M

(
gxn, gxn+k ,φn (t)

) ∗M
(
gyn, gyn+k ,φn (t)

)
,

one has

min
{
M

(
gxn, gxn+k ,φn (t)

)
,M

(
gyn, gyn+k ,φn (t)

)}
>  – ε.

By monotonicity ofM, we have, for any k ∈N∪ {},

min
{
M(gxn, gxn+k , t),M(gyn, gyn+k , t)

}
≥ min

{
M

(
gxn, gxn+k ,φn (t)

)
,M

(
gyn, gyn+k ,φn (t)

)}
>  – ε.

Thus {gxn} and {gyn}, i.e., {F(xn, yn)} and {F(yn,xn)} are Cauchy sequences in X. Since
F(X × X) is complete and F(X × X) ⊆ g(X), there exist x̂, ŷ ∈ X such that {F(xn, yn)} con-
verges to gx̂ and {F(yn,xn)} converges to gŷ.

http://www.fixedpointtheoryandapplications.com/content/2013/1/191
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Next we prove that gx̂ = F(x̂, ŷ) and gŷ = F(ŷ, x̂). Let t > ; since limn→∞ φn(t) = , there
exists n = n(t) ∈ N such that φn (φ(t)) < φ(t). By (KM-) and (.), we have

M
(
F(x̂, ŷ), gx̂,φ(t)

)
≥ M

(
F(x̂, ŷ),F(xn+n , yn+n ),φ

n+(t)
)

∗M
(
F(xn+n , yn+n ), g(x̂),φ(t) – φn+(t)

)
≥ M

(
gx̂, gxn+n ,φ

n (t)
) ∗M

(
gŷ, gyn+n ,φ

n (t)
)

∗M
(
F(xn+n , yn+n ), g(x̂),φ(t) – φn+(t)

)
. (.)

Note that {gxn} → gx̂, {gyn} → gŷ and {F(xn+n , yn+n )} → gx̂. Thus, letting n → ∞ in
(.), we have

M
(
F(x̂, ŷ), gx̂,φ(t)

) ≥  ∗  = .

By induction we can get

M
(
F(x̂, ŷ), gx̂,φn(t)

) ≥ .

By (GV-) one has F(x̂, ŷ) = gx̂. Similarly, we can prove that F(ŷ, x̂) = gŷ.
Next we prove that if (x∗, y∗) ∈ X × X is another coupled coincidence point of g and F ,

then gx̂ = gx∗ and gŷ = gy∗. In fact, by (.) we have

M
(
gx̂, gx∗,φ(t)

)
=M

(
F(x̂, ŷ),F

(
x∗, y∗),φ(t)) ≥ M

(
gx̂, gx∗, t

) ∗M
(
gŷ, gy∗, t

)
and

M
(
gŷ, gy∗,φ(t)

)
=M

(
F(ŷ, x̂),F

(
y∗,x∗),φ(t)) ≥ M

(
gŷ, gy∗, t

) ∗M
(
gx̂, gx∗, t

)
.

It follows that

M
(
gx̂, gx∗,φ(t)

) ∗M
(
gŷ, gy∗,φ(t)

) ≥ ∗(M(
gx̂, gx∗, t

) ∗M
(
gŷ, gy∗, t

))
.

By induction we get

min
{
M

(
gx̂, gx∗,φn(t)

)
,M

(
gŷ, gy∗,φn(t)

)}
≥ M

(
gx̂, gx∗,φn(t)

) ∗M
(
gŷ, gy∗,φn(t)

) ≥ ∗n(M(
gx̂, gx∗, t

) ∗M
(
gŷ, gy∗, t

))
.

It follows from Lemma . and (GV-) that gx̂ = gx∗ and gŷ = gy∗. This shows that g and F
have the unique coupled point of coincidence.
Now we show that gx̂ = gŷ and gŷ = gx̂. In fact, from (.) we get

M
(
gx̂, gyn,φ(t)

)
=M

(
F(x̂, ŷ),F(yn–,xn–),φ(t)

)
≥ M(gx̂, gyn–, t) ∗M(gŷ, gxn–, t) (.)

and

M
(
gŷ, gxn,φ(t)

)
=M

(
F(ŷ, x̂),F(xn–, yn–),φ(t)

)
≥ M(gŷ, gxn–, t) ∗M(gx̂, gyn–, t). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/191
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LetMn(t) =M(gŷ, gxn, t) ∗M(gx̂, gyn, t). From (.) and (.) it follows that

Mn
(
φn(t)

) ≥ ∗(Mn–
(
φn–(t)

)) ≥ · · · ≥ ∗n(M(t)
)
.

By Lemma . we get limn→∞ Mn(t) = , which implies that

lim
n→∞M(gŷ, gxn, t) = lim

n→∞M(gx̂, gyn, t) = .

Since {gxn} converges to gx̂ and {gyn} converges to gŷ, we see that gŷ = gx̂.
Now let u = gx̂. Then we have u = gŷ since gx̂ = gŷ. Since g and F are w-compatible, we

have

gu = g(gx̂) = g
(
F(x̂, ŷ)

)
= F(gx̂, gŷ) = F(u,u),

which implies that (u,u) is a coupled coincidence point of g and F . Since g and F have a
unique coupled point of coincidence, we can conclude that gu = gx̂, i.e., gu = u. Therefore,
we have u = gu = F(u,u). Finally, we prove the uniqueness of a common fixed point of g
and F . Let v ∈ X be such that v = gv = F(v, v). By (.) we have

M
(
u, v,φ(t)

)
=M

(
F(u,u),F(v, v),φ(t)

) ≥ M(gu, gv, t) ∗M(gu, gv, t) = ∗(M(u, v, t)
)
,

which implies that

M
(
u, v,φn(t)

) ≥ ∗n(M(u, v, t)
)
.

By Lemma . and (GV-), we see that u = v. This completes the proof. �

Theorem . Let (X,M,∗) be a fuzzy metric space under a continuous t-norm ∗ of H-
type. Let φ : (,∞) → (,∞) be a function satisfying that limn→∞ φn(t) = ∞ for any t > .
Suppose that g : X → X and F : X ×X → X are two mappings such that F(X ×X) ⊆ g(X),
and assume that for any t > ,

M
(
F(x, y),F(p,q), t

) ≥ M
(
gx, gp,φ(t)

) ∗M
(
gy, gq,φ(t)

)
(.)

for all x, y,p,q ∈ X. Suppose that F(X ×X) is complete and that g and F are w-compatible,
then g and F have a unique common fixed point in x∗ ∈ X, that is, x∗ = gx∗ = F(x∗,x∗).

Proof Since F(X×X) ⊆ g(X), we can construct two sequences {xn} and {yn} in X such that

gxn+ = F(xn, yn) and gyn+ = F(yn,xn), for all n ∈N∪ {}. (.)

From (.) and (.) we have

M(gxn, gxn+, t) =M
(
F(xn–, yn–),F(xn, yn), t

)
≥ M

(
gxn–, gxn,φ(t)

) ∗M
(
gyn–, gyn,φ(t)

)
(.)
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and

M(gyn, gyn+, t) =M
(
F(yn–,xn–),F(yn,xn), t

)
≥ M

(
gyn–, gyn,φ(t)

) ∗M
(
gxn–, gxn,φ(t)

)
. (.)

Now, let En(t) =M(gxn–, gxn, t) ∗ M(gyn–, gyn, t). From (.) and (.) we get En+(t) ≥
En(φ(t)). It follows that

En+(t)≥ ∗(En
(
φ(t)

)) ≥ · · · ≥ ∗n(E
(
φn(t)

))
. (.)

Since limt→∞ E(t) = limt→∞ M(gx, gx, t) ∗ M(gy, gy, t) =  and limn→∞ φn(t) = ∞ for
each t > , we have limn→∞ E(φn(t)) = . By Lemma . we have

lim
n→∞En(t) =  for all t > . (.)

For any fixed t > , since limn→∞ φn(t) = ∞, there exists n = n(t) ∈ N such that
φn+(t) > φn (t) > t. Similarly, since limn→∞ φn(φn+(t) – φn (t)) = ∞, there exists m =
m(t) ∈ N such that φm (φn+(t) – φn (t)) > φn+(t) – φn (t). By (.) we have

M
(
gxn+m , gxn+m+,φ

n+(t) – φn (t)
)

≥ En+m

(
φ
(
φn+(t) – φn (t)

))
≥ · · · ≥ ∗m

(
En

(
φm

(
φn+(t) – φn (t)

)))
≥ ∗m

(
En

(
φn+(t) – φn (t)

))
. (.)

Next we show by induction that for any k ∈N∪ {}, there exists bk ∈N such that

M
(
gxn+m , gxn+m+k ,φ

n+(t)
) ≥ ∗bk

(
En

(
φn+(t) – φn (t)

))
and

M
(
gyn+m , gyn+m+k ,φ

n+(t)
) ≥ ∗bk

(
En

(
φn+(t) – φn (t)

))
.

(.)

This is obvious for k =  since M(gxn+m , gxn+m ,φn+(t)) =  and M(gyn+m , gyn+m ,
φn+(t)) = . Assume that (.) holds for some k ∈N. By (.), (.), (.) and (KM-),
we have

M
(
gxn+m , gxn+m+k+,φ

n+(t)
)

=M
(
gxn+m , gxn+m+k+,φ

n+(t) – φn (t) + φn (t)
)

≥ M
(
gxn+m , gxn+m+,φ

n+(t) – φn (t)
) ∗M

(
gxn+m+, gxn+m+k+,φ

n (t)
)

=M
(
gxn+m , gxn+m+,φ

n+(t) – φn (t)
)

∗M
(
F(xn+m , yn+m ),F(xn+m+k , yn+m+k),φ

n (t)
)

≥ M
(
gxn+m , gxn+m+,φ

n+(t) – φn (t)
) ∗ (

M
(
gxn+m , gxn+m+k ,φ

n+(t)
)

∗M
(
gyn+m , gyn+m+k ,φ

n+(t)
))

≥ M
(
gxn+m , gxn+m+,φ

n+(t) – φn (t)
) ∗ (∗bk

(
En

(
φn+(t) – φn (t)

))
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≥ ∗m (En
(
φn+(t) – φn (t)

) ∗ (∗bk
(
En

(
φn+(t) – φn (t)

))
= ∗(m+bk )

(
En

(
φn+(t) – φn (t)

))
.

Similarly, we can prove that

M
(
gyn+m , gyn+m+k+,φ

n+(t)
) ≥ ∗(m+bk )

(
En

(
φn+(t) – φn (t)

))
.

Since bk+ = (m + bk) ∈N, (.) holds for k + . Therefore, there exists bk ∈N such that
(.) holds for all k ∈N∪ {}.
Let t >  and ε > . By hypothesis, {∗n : n ∈ N} is equicontinuous at  and ∗() = , so

there is δ >  such that

if s ∈ ( – δ, ], then ∗n (s) >  – ε for all n ∈N. (.)

Since by (.) limn→∞ En(φn+(t) – φn (t)) = , there is N ∈ N such that for all n > N,
En(φn+(t) – φn (t)) ∈ ( – δ, ]. Hence, it follows from (.) and (.) that

M
(
gxn+m , gxn+m+k ,φ

n+(t)
) ∗M

(
gyn+m , gyn+m+k ,φ

n+(t)
)
>  – ε

for all n >N and any k ∈N∪ {}. Noting that (.) and (.), we have

min
{
M(gxn+m+n+, gxn+m+n++k , t),M(gyn+m+n+, gyn+m+n++k , t)

}
≥ ∗n+

(
M

(
gxn+m , gxn+m+k ,φ

n+(t)
) ∗M

(
gyn+m , gyn+m+k ,φ

n+(t)
))

>  – ε.

This implies that for all k ∈N,

M(gxm, gxm+k , t) >  – ε and M(gym, gym+k , t) >  – ε,

where m > N + n +m + . Thus {gxn} and {gyn}, i.e., {F(xn, yn)} and {F(yn,xn)} are the
Cauchy sequences. Since F(X × X) is complete and F(X × X) ⊆ g(X), there exists (x̂, ŷ) ∈
X ×X such that {F(xn, yn)} converges to gx̂ and {F(yn,xn)} converges to gŷ.
Next we prove that gx̂ = F(x̂, ŷ) and gŷ = F(ŷ, x̂). By (KM-) and (.), we have, for any

t > ,

M
(
F(x̂, ŷ),F(xn, yn), t

) ≥ M
(
gx̂, gxn,φ(t)

) ∗M
(
gŷ, gyn,φ(t)

)
. (.)

Since limn→∞ gxn = gx̂ and limn→∞ gyn = gŷ, letting n → ∞ in (.), we have
limn→∞ F(xn, yn) = F(x̂, ŷ). Noting that limn→∞ F(xn, yn) = gx̂, we have F(x̂, ŷ) = gx̂. Simi-
larly, we can prove that F(ŷ, x̂) = gŷ.
Let u = gx̂ and v = gŷ. Since g and F are w-compatible, we have

gu = g(gx̂) = g
(
F(x̂, ŷ)

)
= F(gx̂, gŷ) = F(u, v) and

gv = g(gŷ) = g
(
F(ŷ, x̂)

)
= F(gŷ, gx̂) = F(v,u).

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/191
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This shows that (u, v) is a coupled coincidence point of g and F . Nowwe prove that gu = gx̂
and gv = gŷ. In fact, from (.) we have

M(gu, gxn, t) =M
(
F(u, v),F(xn–, yn–), t

)
≥ M

(
gu, gxn–,φ(t)

) ∗M
(
gv, gyn–t ,φ(t)

)
and

M(gv, gyn, t) =M
(
F(v,u),F(yn–,xn–), t

) ≥M
(
gv, gyn–,φ(t)

) ∗M
(
gu, gxn–t ,φ(t)

)
.

LetMn(t) =M(gu, gxn, t) ∗M(gv, gyn, t). Then we have

Mn(t) ≥ ∗(Mn–
(
φ(t)

)) ≥ · · · ≥ ∗n(M
(
φn(t)

))
.

Since limn→∞ φn(t) = ∞ and ∗ is continuous, we have

∗n(M
(
φn(t)

))
= ∗n(M(

gv, gx,φn(t)
) ∗M

(
gu, gy,φn(t)

)) →  as n→ ∞.

This shows that Mn(t) →  as n → ∞, and so we have gu = gx̂ and gv = gŷ. Therefore, we
have gu = u and gv = v. Now, from (.) it follows that u = gu = F(u, v) and v = gv = F(v,u).
Finally, we prove that u = v. In fact, by (.) we have, for any t > ,

M(u, v, t) =M
(
F(u, v),F(v,u), t

) ≥ M
(
gu, gv,φ(t)

)∗M(
gv, gu,φ(t)

)
= ∗(M(

u, v,φ(t)
))
.

By induction we can get M(u, v, t) ≥ ∗n(M(u, v,φn(t))). Letting n → ∞ and noting that
φn(t) → ∞ as n → ∞, we have M(u, v, t) =  for any t > , i.e., u = v. Therefore, u is a
common fixed point of g and F . The uniqueness of u is similar to the final proof line of
Theorem .. This completes the proof. �

In Theorem . and Theorem ., if we let gx = x for all x ∈ X, we get the following result.

Corollary . Let (X,M,∗) be a fuzzy metric space under a continuous t-norm ∗ of H-
type. Let φ : (,∞) → (,∞) be a function satisfying that limn→∞ φn(t) =  for any t > .
Let F : X ×X → X be a mapping, and assume that for any t > ,

M
(
F(x, y),F(p,q),φ(t)

) ≥ M(x,p, t) ∗M(p,q, t)

for all x, y,p,q ∈ X. Suppose that F(X × X) is complete. Then F has a unique fixed point
x∗ ∈ X, that is, x∗ = F(x∗,x∗).

Corollary . Let (X,M,∗) be a fuzzymetric space under a continuous t-norm ∗ of H-type.
Let φ : (,∞) → (,∞) be a function satisfying that limn→∞ φn(t) = ∞ for any t > . Let
F : X ×X → X be a mapping, and assume that for any t > ,

MF(x,y),F(p,q)(t)≥ Mx,p(t) ∗Mp,q
(
φ(t)

)

for all x, y,p,q ∈ X. Suppose that F(X × X) is complete. Then F has a unique fixed point
x∗ ∈ X, that is, x∗ = F(x∗,x∗).
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Now, we illustrate Theorem . by the following example.

Example . Let X = [,  ) ∪ { 
 } and x ∗ y = min(x, y) for all x, y ∈ X. Define M(x, y, t) =

t
t+|x–y| for all x, y ∈ X and t > . Then (X,M,∗) is a fuzzymetric space, but it is not complete.
Define two mappings g : X → X and F : X ×X → X by

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

x
 if x ∈ [,  ],

x if x ∈ (  ,

 ),


 if x = 



and

F(x, y) =

⎧⎨
⎩

x
 if x ∈ [,  ),

 if x = 

 .

It is easy to see that g and F are not commuting since g(F(  ,

 )) �= F(g(  ), g(


 )), F(X×X) ⊆

g(X), and F(X ×X) is complete.

Let φ : (,∞) → (,∞) by

φ(t) =

⎧⎨
⎩


 , t = ,
t
 , t �= .

Then limn→∞ φn(t) =  for any t > .
Now, we verify (.) for t �= . We shall consider the following four cases.
Case . Let x �= 

 and u �= 
 . In this case there are four possibilities:

Case .. Let x ∈ [,  ] and u ∈ [,  ]. Then we have

M
(
F(x, y),F(u, v),φ(t)

)
=

t


t
 + | x – u

 |

=
t

t + | x – u
 |

≥ t
t + | x – u

 |

≥ min

{
t

t + | x – u
 |
,

t
t + | y – v

 |
}

≥ min
{
M

(
g(x), g(u), t

)
,M

(
g(y), g(v), t

)}
for all y, v ∈ X.

Case .. Let x ∈ [,  ] and u ∈ (  ,

 ). Then

M
(
F(x, y),F(u, v),φ(t)

)
=

t


t
 + | x – u

 |

=
t

t + ( u –
x
 )

http://www.fixedpointtheoryandapplications.com/content/2013/1/191


Wang et al. Fixed Point Theory and Applications 2013, 2013:191 Page 13 of 15
http://www.fixedpointtheoryandapplications.com/content/2013/1/191

≥ t
t + (u – x

 )

≥ min

{
t

t + |u – x
 |
,

t
t + | y – v

 |
}

≥ min
{
M

(
g(x), g(u), t

)
,M

(
g(y), g(v), t

)}
for all y, v ∈ X.

Case .. Let x ∈ (  ,

 ) and u ∈ [,  ]. This case is similar to Case ..

Case .. Let x ∈ (  ,

 ) and u ∈ (  ,


 ). Then

M
(
F(x, y),F(u, v),φ(t)

)
=

t


t
 + | x – u

 |

=
t

t + | x – u
 |

≥ t
t + | x – u

 |

≥ min

{
t

t + |x – u| ,
t

t + | y – v
 |

}

≥ min
{
M

(
g(x), g(u), t

)
,M

(
g(y), g(v), t

)}
for all y, v ∈ X.

Case . Let x = 
 and u = 

 . Then we have

M
(
F(x, y),F(u, v),φ(t)

)

=M
(
F
(


, y

)
,F

(


, v

)
,φ(t)

)
=

t


t
 + | 

 –

 |

=  ≥ min

{
M

(
g
(



)
, g

(



)
, t

)
,M

(
g(y), g(v), t

)}
for all y, v ∈ X.

Case . Let x = 
 and u �= 

 . Then we have:
Case .. If u ∈ [,  ], then

M
(
F(x, y),F(u, v),φ(t)

)
=M

(
F
(


, y

)
,F(u, v),φ(t)

)

=
t


t
 + | 

 –
u
 |

=
t

t + | 
 –

u
 | ≥ t

t + |  – u| ≥ t
t + |  – u

 |

≥ min

{
M

(
g
(



)
, g(u), t

)
,M

(
g(y), g(v), t

)}
for all y, v ∈ X.

Case .. If u ∈ (  ,

 ), then

M
(
F(x, y),F(u, v),φ(t)

)
=M

(
F
(


, y

)
,F(u, v),φ(t)

)

=
t


t
 + | 

 –
u
 |

=
t

t + | 
 –

u
 | ≥ t

t + |  – u|

≥ min

{
M

(
g
(



)
, g(u), t

)
,M

(
g(y), g(v), t

)}
for all y, v ∈ X.
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Case . x �= 
 and u = 

 . This case is similar to Case .
For t = , since M(F(x, y),F(u, v),φ()) = M(F(x, y),F(u, v),  ), by Cases - above, we

can see that M(F(x, y),F(u, v),φ()) ≥ min{M(gx, gu, ),M(gy, gv, )} for all x, y,u, v ∈ X. It
is easy to see that (, ) is a coupled coincidence point of g and F . Also, g and F are
w-compatible at (, ). By Theorem ., we conclude that g and F have a unique com-
mon fixed point in X. Obviously, in this example,  is the unique common fixed point of
g and F .
Since g(x) is not continuous at x = 

 and (X,M,∗) is not complete, Hu’s Theorem . [,
Theorem ] cannot be applied to Example ..

Remark . Our results improve the ones of Sedghi et al. [] as follows:
(i) from kt to φ(t);
(ii) the functions F and g are not required to be commutable.
Our results also improve the corresponding ones of Hu [] as follows:
(a) in our Theorem ., the function φ(t) is only required to satisfy the condition

limn→∞ φn(t) =  for any t > . However, the function φ(t) in Hu’s result is required
to satisfy the conditions (φ-)-(φ-);

(b) in our results, the mappings F and g are required to be weakly compatible, but in
Hu’s result the mappings F and g are required to be compatible.

Also, in our results the mapping g is not required to be continuous, but the condition is
imposed on the mapping g in the results of Sedghi et al. and Hu.
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