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Abstract
We have described a decirculation process which marks perturbations of network
structure that are necessary for nonlinear network dynamics to proceed from one
circulating state (a limit cycle) to another stable state (a limit cycle or a fixed point).
Armed with the decirculation process, a sort of decirculating maps and their
structural properties have also been built, dedicated to showing that circulation
breaking taking place in nonlinear network dynamics can collaborate harmoniously
toward the completion of network structure that generates attractors (equilibrium
states). Here we wish to extend the notion of decirculating maps to the notion of
depathing maps. The extension allows us to reshape network structure not only on
the occasion of circulating states but on the occasion of any required path states. This
gives a crucial improvement in generating circulating state shifts more feasibly.
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1 Introduction
Pattern generation in complex biological systemsmay be understood bymeans of the con-
cepts of nonlinear network dynamics [, ]. The modeled systems can be formed by large
numbers of interacting units whose dynamical properties tend to emerge through the col-
lective interactions of many units. The modeled systems generally reach one of possible
multiple stable states (alternative stable states) [–], which have multistability governed
by the control parameters assigned to evolutionary network structure. State shifts between
multiple stable states can be induced by the decirculation process [], whichmarks a quan-
tified determinant of the reshape of network structure that is sufficient for shifts from one
circulating state (a limit cycle) to another stable state (a limit cycle or a fixed point). The
decirculation process is generally stated as follows: ‘the occurrence of a loop of unit states
in the modeled systems leads to a change in network connections, which feeds back to
reinforce interacting units to tend to break the circulation of unit states in this loop.’
Armed with the decirculation process, a sort of decirculating maps and their structural

properties are built in [, ], dedicated to showing that circulation breaking taking place
in nonlinear network dynamics can collaborate harmoniously toward the completion of
network structure that generates attractors (equilibrium states). Here we wish to extend
the notion of decirculating maps to the notion of depathing maps. The extension allows
us to reshape network structure not only on the occasion of circulating states but on the
occasion of any required path states. Hence it can generate circulating state shifts more

© 2013 Shih and Tsai; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.fixedpointtheoryandapplications.com/content/2013/1/195
mailto:fstsai@abel.math.ntnu.edu.tw
http://creativecommons.org/licenses/by/2.0


Shih and Tsai Fixed Point Theory and Applications 2013, 2013:195 Page 2 of 8
http://www.fixedpointtheoryandapplications.com/content/2013/1/195

feasibly. It reveals the depathing process which is generally stated as follows: ‘the occur-
rence of a path of unit states in the modeled systems leads to a change in network con-
nections, which feeds back to reinforce interacting units to tend to break the flow of unit
states in this path.’ Operator construction for path breaking is also put in the section at the
end, displaying the tendency toward path breaking aiming to control nonlinear network
dynamics.

2 Depathingmaps
Let {, }n denote the binary code consisting of all -strings of fixed length n. Denote by
� = [x,x, . . . ,xp] a path of states in {, }n, meaning that p > , x,x, . . . ,xp ∈ {, }n, and
x �= xi for some i ∈ {, , . . . ,p}. Specifically, we call that � is a loop if x = xp.
For every i, j = , , . . . ,n, we assign an integer, denoted by cij(�), according to the rule

cij(�) = xj
(
xi – xi

)
+ xj

(
xi – xi

)
+ · · · + xp–j

(
xp–i – xpi

)
. ()

We refer to the resulting matrix C(�) = (cij(�)) as the depathing map of �. (If � is a loop,
then the depathingmapC(�) is equivalent to the decirculatingmapdefined in [, ], where
we have explained why the terminology is used in connection with circulation breaking.)
For example, let � = [,,, ,].
Then

C(�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

         
      – – – 
       – – 
       – – 
         
– – – – –     
– – – – –     
 – – – – –    
  – –      
         

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider the dynamical system of n coupled units modeled by the equation [, ]

x(t + ) =HA
(
x(t), s(t)

)
, t = , , . . . , ()

where x(t) = (x(t),x(t), . . . ,xn(t)) ∈ {, }n is the vector of unit states at time t, A = (aij) ∈
Mn(R) is the coupling matrix of n coupled units, s(t) ⊂ {, , . . . ,n} denotes the units that
adjust their states at time t, and HA(·, s(t)) is a function whose ith component is defined
by

[
HA

(
x, s(t)

)]
i = 1

( n∑
j=

aijxj – bi

)
if i ∈ s(t),

otherwise [HA(x, s(t))]i = xi, where bi ∈R is the threshold of unit i and the function 1 is the
Heaviside function: 1(u) =  for u≥ , otherwise , which describes an instantaneous unit
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pulse. The dynamical system generates the vector of unit states according to (), resulting
in the phase flow x(t), t = , , . . . .
With the depathing map C(�), we are bound to consider the linear functional A −→

〈A,C(�)〉 on the Hilbert spaceMn(R) of all real n×nmatrices endowed with the Hilbert-
Schmidt inner product 〈·, ·〉.

Theorem . Let � = [x,x, . . . ,xp] be a path of states in {, }n. If A ∈Mn(R) and b ∈R
n

satisfy

〈
A,C(�)

〉 ≥ 〈
b,x – xp

〉
, ()

then for any initial unit state x() ∈ {, }n and any updating s(t)⊂ {, , . . . ,n}, t = , , . . . ,
the resulting phase flow x(t) of () cannot behave in

x(T) = x,x(T + ) = x, . . . ,x(T + p) = xp

for each T = , , . . . .

Proof For any -string x = xx · · ·xn, we define

(x) = {i;xi = ,  ≤ i≤ n},
(x) = {i;xi = ,  ≤ i≤ n}.

Suppose, by contradiction, that there exist b ∈ R
n, x() ∈ {, }n, s(t) ⊂ {, , . . . ,n}, t =

, , . . . , and T ≥  such that x(T) = x,x(T + ) = x, . . . ,x(T + p) = xp. Let

�+ =
{
t;

(
x(t)

) ∩ 
(
x(t + )

) �= ∅,T ≤ t < T + p
}
,

�– =
{
t;

(
x(t)

) ∩ 
(
x(t + )

) �= ∅,T ≤ t < T + p
}
.

Then �+ �= ∅ and �– �= ∅. Indeed, if �+ = ∅ or �– = ∅, then

x(T) = x(T + ) = · · · = x(T + p),

contradicting the path assumption x(T) �= x(T + p). According to (), we have

〈
A,C(�)

〉
=

∑
i,j

aij
( ∑
≤m<p

xmj x
m
i –

∑
≤m<p

xmj x
m+
i

)

=
∑

≤m<p

(∑
i,j

aijxmj x
m
i –

∑
i,j

aijxmj x
m+
i

)

=
∑

≤m<p

(〈
Ax(T +m),x(T +m)

〉
–

〈
Ax(T +m),x(T +m + )

〉)

=
∑

≤m<p

〈
Ax(T +m),x(T +m) – x(T +m + )

〉
. ()
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Since (x(t)) ∩ (x(t + )) ⊂ s(t) and (x(t)) ∩ (x(t + )) ⊂ s(t) for each t = , , . . . , we
conclude from () that

∑
≤m<p

〈
Ax(T +m),x(T +m) – x(T +m + )

〉

< –
∑
t∈�+

∑
j∈(x(t))∩(x(t+))

bj +
∑
t∈�–

∑
j∈(x(t))∩(x(t+))

bj

=
∑

≤m<p

〈
b,x(T +m) – x(T +m + )

〉

=
〈
b,x(T) – x(T + p)

〉
. ()

Combining () and () shows that 〈A,C(�)〉 < 〈b,x –xp〉, contradicting (), and that com-
pletes the proof. �

3 Operator control on path breaking
Denote by � = [x,x, . . . ,xp] a path of states in {, }n. For eachm = , , . . . ,p, we say that
the state xm is in the positionm of the path �. For each -string x = xx · · ·xn, let

(x) = {i;xi = ,  ≤ i≤ n},
(x) = {i;xi = ,  ≤ i≤ n}.

Let us recall that the symmetric difference of two sets U and V is the set U �V , each
of whose elements belongs to U but not to V , or belongs to V but not to U . For every
i = , , . . . ,n, let

Mi(�) =
{
m; i ∈ 

(
xm–)�

(
xm

)
,m = , , . . . ,p

}
,

Mi(�)+ =
{
m; i ∈ 

(
xm

) \ (xm–),m = , , . . . ,p
}
, ()

Mi(�)– =
{
m; i ∈ 

(
xm–) \ (xm)

,m = , , . . . ,p
}
.

HereMi(�) denotes the collection of the positionsm of the path�, in which unit i changes
its state from xm–

i =  to xmi =  or from xm–
i =  to xmi = , whereasMi(�)+ (resp.,Mi(�)–)

denotes the collection of the positions m of the path �, in which unit i changes its state
from xm–

i =  to xmi =  (resp., changes its state from xm–
i =  to xmi = ). For every i, j =

, , . . . ,n, define

ϒij(�) = �
(
Mi(�)+ ∩Mj(�)+

)
+ �

(
Mi(�)– ∩Mj(�)–

)
– �

(
Mi(�)+ ∩Mj(�)–

)
– �

(
Mi(�)– ∩Mj(�)+

)
, ()

which can be regarded as a measure of synchronous activity between units i, j, that is,
if units i, j tend to change their states synchronously (resp., asynchronously) in �, then
ϒij(�) >  (resp., ϒij(�) < ). For every i, j = , , . . . ,n, define

�ij(�) =min
{
�Mi(�), �Mj(�)

}
, ()
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which can be regarded as ameasure of self-sustaining activity of units i, j, that is, if unit i or
j tends to maintain more self-sustaining states in � than unit i′ or j′, then �ij(�) < �i′j′ (�).
We refer to the resulting matrices ϒ(�) = (ϒij(�)) and �(�) = (�ij(�)) as the measure of
synchronous activity and the measure of self-sustaining activity derived from the path �

of states in {, }n, respectively.
Let � = [x,x, . . . ,xp,x]. Denote by 〈·, ·〉 the Hilbert-Schmidt inner product in Mn(R),

i.e., if A = (aij) and B = (bij) ∈ Mn(R), then 〈A,B〉 = tr(ABT ) =
∑

i,j aijbij. Define I(�) =
(xp)∩ (x). Let

D(�) =
{
DSY +DSK;DSY =DT

SY ∈Mn(R),DSK = –DT
SK ∈Mn(R) with

(DSK)ij ≥  for each (i, j) ∈ (

(
x

) × 
(
xp

)) \ (
I(�)× I(�)

)
, and〈|DSK|,�(�)

〉
<

〈
DSY,ϒ(�) –C

([
xp,x

])〉}
, ()

where |DSK| = (|(DSK)ij|). The setD(�) collects all the combining operations of the opera-
torsDSY andDSK, whichwill determine a clamp of networkmodification byA+DSY+DSK.
Fix DSY + DSK ∈ D(�). Define I(�) = (xp) ∩ (x) and I(�) = (xp) ∩ (x). Since

I(�)∩ I(�) = ∅, I(�)∪ I(�) = (xp), I(�)∩ I(�) = ∅, and I(�)∪ I(�) = (x), we have

(

(
x

) × 
(
xp

)) \ (
I(�)× I(�)

)
=

(
I(�)× I(�)

) ∪ (
I(�)× 

(
x(p)

))
,

and hence, by (),

〈
DSK,C

([
xp,x

])〉
=

∑
(i,j)∈I(�)×(x(p))

(DSK)ij –
∑

(i,j)∈I(�)×(x(p))

(DSK)ij

=
∑

(i,j)∈I(�)×I(�)

(DSK)ij +
∑

(i,j)∈I(�)×I(�)

(DSK)ij –
∑

(i,j)∈I(�)×(x(p))

(DSK)ij

≤ . ()

Furthermore, according to the proof in [, Theorem ], the following assertion holds:

〈
DSY +DSK,C(�)

〉 ≥ 〈
DSY,ϒ(�)

〉
–

〈|DSK|,�(�)
〉
. ()

Combining (), (), and () shows that

〈
DSY +DSK,C(�)

〉
=

〈
DSY +DSK,C(�) –C

([
xp,x

])〉
≥ 〈

DSY,ϒ(�)
〉
–

〈|DSK|,�(�)
〉

–
〈
DSY,C

([
xp,x

])〉
–

〈
DSK,C

([
xp,x

])〉
> .

With the notation and arguments above, we describe operator control on path breaking
as follows.

Theorem . Let A ∈ Mn(R) and b ∈ R
n. Let � = [x,x, . . . ,xp] be a path of states in

{, }n. Then, for every operator DSY +DSK ∈D(�), there exists γ ≥  such that

〈
A + γ (DSY +DSK),C(�)

〉 ≥ 〈
b,x – xp

〉
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/195
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Hence, by Theorem ., the dynamical system of n coupled units modeled by the equation

x(t + ) =HA+γ (DSY+DSK)
(
x(t), s(t)

)
, t = , , . . . ,

cannot behave in

x(T) = x,x(T + ) = x, . . . ,x(T + p) = xp

for each T = , , . . . .

In the following, we give an example to construct a sort of operatorsDSY +DSK ∈D(�).
Let n =  and p = . Let � = [x,x,x,x,x] = [,,,
,]. Then

I(�) = 
(
xp

) ∩ 
(
x

)
= {, },

I(�) = 
(
xp

) ∩ 
(
x

)
= {, , },

I(�) = 
(
xp

) ∩ 
(
x

)
= {, , }.

Associate to each i ∈ {, , . . . ,n} a real number εi such that
() for each i, j ∈ {, , . . . ,n}, if (∑m xmi )/(Mi(�) + ) > (

∑
m xmj )/(Mj(�) + ), then

εi ≤ εj;
()

∑
≤i≤nMi(�)εi +

∑
i∈I(�) εi > 

(seeTable  for a choice of εi).Wemay select y = (y, y, . . . , yn) ∈R
n andDSY = (yiyj+δijεi) ∈

Mn(R), where δij =  if i = j, otherwise , such that exactly one of the following holds:
() yi ≥  for i ∈ (xp) and

∑
i∈I(�) yi ≤

∑
i∈I(�) yi;

() yi ≤  for i ∈ (xp) and
∑

i∈I(�) yi ≥
∑

i∈I(�) yi
(see Table  for a choice of yi and Table  for DSY). Consider the shift function σ on
{, , . . . ,p} given by

σ (k)≡ k +  mod p + 

for each k = , , . . . ,p. Since (yiyj) ∈ Mn(R) is positive semidefinite, we have

〈
DSY,ϒ(�) –C

([
xp,x

])〉
=

∑
≤m≤p

〈
DSY

(
xm – xσ (m)), (xm – xσ (m))〉

–
∑

j∈(xp)
yj

( ∑
i∈I(�)

yi –
∑

i∈I(�)

yi
)
–

∑
i∈I(�)

εi

≥
∑

≤m<p

∑
i∈(xm)�(xσ (m))

εi +
∑

i∈I(�)

εi

=
∑
≤i≤n

Mi(�)εi +
∑

i∈I(�)

εi > .

For such a choice of DSY, let ε >  be such that

γ� =
(〈
DSY,ϒ(�) –C

([
xp,x

])〉
– ε

)
/
∥∥�(�)

∥∥ ≥ , ()
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Table 1 Operator construction: choose εi and yi

� = [1111100000, 0011111000, 0000111110, 0111110000, 0001111100]
i 1 2 3 4 5 6 7 8 9 10
Mi(�) 1 3 3 2 0 1 3 3 2 0∑

m xmi 1 2 3 4 5 4 3 2 1 0
(
∑

m xmi )/(Mi(�) + 1) 1/2 1/2 3/4 4/3 5 2 3/4 1/2 1/3 0
εi 0.8 0.5 0.5 –0.7 –1.8 –1 –0.3 0.5 1.2 1.5
yi 3 1 –1 0 0.5 1 1 1 0 –1

Table 2 Operator construction: construct the operatorDSY = (yiyj + δijεi)

9.8 3 –3 0 1.5 3 3 3 0 –3
3 1.5 –1 0 0.5 1 1 1 0 –1
–3 –1 1.5 0 –0.5 –1 –1 –1 0 1
0 0 0 –0.7 0 0 0 0 0 0
1.5 0.5 –0.5 0 –1.55 0.5 0.5 0.5 0 –0.5
3 1 –1 0 0.5 0 1 1 0 –1
3 1 –1 0 0.5 1 0.7 1 0 –1
3 1 –1 0 0.5 1 1 1.5 0 –1
0 0 0 0 0 0 0 0 1.2 0
–3 –1 1 0 –0.5 –1 –1 –1 0 2.5

Table 3 Operator construction: construct the operatorDSK = αS satisfying (12) and (13)

0 0 –0.015 0 0.005 0 0.02 0.01 –0.015 –0.01
0 0 0.01 0 0.015 0.01 0.015 0.015 0.01 –0.005
0.015 –0.01 0 0.015 0 0.01 0.01 0.01 0.005 0.01
0 0 –0.015 0 –0.005 0.005 0.01 0.01 0 –0.01
–0.005 –0.015 0 0.005 0 0.005 0.01 0.005 0.015 0
0 –0.01 –0.01 –0.005 –0.005 0 –0.01 0.015 0.01 –0.02
–0.02 –0.015 –0.01 –0.01 –0.01 0.01 0 0.005 0.015 0.005
–0.01 –0.015 –0.01 –0.01 –0.005 –0.015 –0.005 0 0.005 0.015
0.015 –0.01 –0.005 0 –0.015 –0.01 –0.015 –0.005 0 0
0.01 0.005 –0.01 0.01 0 0.02 –0.005 –0.015 0 0

Table 4 Operator construction: construct the combining operationDSY +DSK

9.8 3 –3.015 0 1.505 3 3.02 3.01 –0.015 –3.01
3 1.5 –0.99 0 0.515 1.01 1.015 1.015 0.01 –1.005
–2.985 –1.01 1.5 0.015 –0.5 –0.99 –0.99 –0.99 0.005 1.01
0 0 –0.015 –0.7 –0.005 0.005 0.01 0.01 0 –0.01
1.495 0.485 –0.5 0.005 –1.55 0.505 0.51 0.505 0.015 –0.5
3 0.99 –1.01 –0.005 0.495 0 0.99 1.015 0.01 –1.02
2.98 0.985 –1.01 –0.01 0.49 1.01 0.7 1.005 0.015 –0.995
2.99 0.985 –1.01 –0.01 0.495 0.985 0.995 1.5 0.005 –0.985
0.015 –0.01 –0.005 0 –0.015 –0.01 –0.015 –0.005 1.2 0
–2.99 –0.995 0.99 0.01 –0.5 –0.98 –1.005 –1.015 0 2.5

where ‖�(�)‖ = 〈�(�),�(�)〉 
 . Then, for any choice of S ∈Mn(R) with S = –ST and Sij ≥ 

for each (i, j) ∈ ((x)× (xp)) \ (I(�)× I(�)), we set DSK = αS, where α ∈R is such that

‖DSK‖ = 〈DSK,DSK〉 
 = α〈S,S〉 

 ≤ γ� ()

(see Table  for a choice of DSK). Thus, by () and (), we have

〈|DSK|,�(�)
〉
<

〈
DSY,ϒ(�) –C

([
xp,x

])〉
.

Hence DSY +DSK ∈D(�) (see Table  for a choice of DSY +DSK).
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