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Abstract
In this paper we present some fixed point results for the sum S + T of two mappings
where S is a strict contraction and T is not necessarily weakly compact and satisfies a
new condition formulated in terms of an axiomatic measure of weak
noncompactness. Our fixed point results extend and improve several earlier results in
the literature. In particular, our results encompass the analogues of Krasnosel’skii’s and
Sadovskii’s fixed point theorems for sequentially weakly continuous mappings and a
number of their generalizations. Finally, an application to integral equations is given
to illustrate the usability of the obtained results.
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1 Introduction
In , Schauder proved that every continuous and compact mapping from a nonempty
closed convex subset of a Banach space to itself has a fixed point. This result remained
an important tool to solve differential and integral equations. In several situations, where
the condition of compactness creates some difficulties, the Tychonov fixed point theo-
rem appears as a good alternative. It asserts that every weakly continuous and weakly
compact mapping from a nonempty closed convex subset of a Banach space to itself has
a fixed point. As long as the Banach space is reflexive, the weak compactness offers no
problem since every bounded subset is relatively weakly compact and therefore the weak
continuity suffices to prove nice existence results for differential and integral equations
[, ]. In , De Blasi [] introduced the concept of measure of weak noncompact-
ness and proved the analogue of Sadovskii’s fixed point theorem for the weak topology
(see also []). As stressed in [], in many applications, it is always not possible to show
the weak continuity of the involved mappings, while the sequential weak continuity of-
fers no problem. This is mainly due to the fact that Lebesgue’s dominated convergence
theorem is valid for sequences but not for nets. Recall that a mapping between two Ba-
nach spaces is sequentially weakly continuous if it maps weakly convergent sequences
into weakly convergent sequences. So, Arino, Gautier and Penot proved the analogue
of Schauder’s fixed point theorem for sequentially weakly continuous mappings. Since
then, several fixed point theorems have been proved for sequentially weakly continuous
mappings of Darbo type, Sadovskii type [, ] and Krasnosel’skii type [–] and many
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others. More recently, a generalized version of Sadovskii’s fixed point theorem for se-
quentially weakly continuous mappings has been proved in []. Based on the concept
of power-convex condensing mapping, this new fixed point theorem allowed, in many
applications, to avoid some contractiveness conditions generated by the use of classical
Sadovskii’s fixed point theorem. Roughly speaking, the idea was to reason on the iterates
of the givenmapping instead of themapping itself. Stimulated by some real world applica-
tions, we introduce the concept of power-convex condensing pair of sequentially weakly
continuous mappings. We prove some fixed point theorems for the sum S + T where S
is a strict contraction while T is power-convex condensing w.r.t. S. In some applications,
the concepts of ws-compactness and ww-compactness seem to be more practical than
the sequential weak continuity. These concepts arise naturally in the study of both inte-
gral and partial differential equations in nonreflexive Banach spaces (see [, –] and
the references therein). We prove some fixed point theorems for the sum S + T where S
is a ww-compact strict contraction while T is ws-compact and power-convex condensing
w.r.t. S without the sequential weak continuity of the involved mappings. The presented
results extend all the fixed point theorems quoted above. As an application, we investigate
the existence of continuous solutions to a perturbed Volterra integral equation which ex-
tends the corresponding results of [] and many others. For convenience, we first recall
some basic concepts and notations. Let E be a Banach space, let �E be the collection of all
nonempty bounded subsets of E, and let WE be the subset of �E consisting of all weakly
compact subsets of E. Let Br denote the closed ball in E centered at  with radius r > .
The De Blasi [] measure of weak noncompactness is the map w : �E → [,∞) defined
by

w(A) = inf{r >  : there exists a setW ∈WE such that A⊆W + Br}

for all A ∈ �E . For completeness, we enumerate some properties of wwhich we will tacitly
use in the sequel. Let A,B ∈ �E , then we have the following:
() w(A) =  if and only if A is relatively weakly compact;
() w(A) = w(Aw), where Aw is the weak closure of A;
() w(co(A)) = w(A), where co(A) denotes the convex hull of A;
() if A⊂ B, then w(A) ≤ w(B);
() w(A∪ B) =max{w(A),w(B)};
() w(λA) = |λ|w(A) for λ ∈R, where λA = {λx : x ∈ A};
() w(A + B)≤ w(A) +w(B), where A + B = {x + y : x ∈ A, y ∈ B};
() if An is a sequence of nonempty, weakly closed subsets of E with A bounded and

A ⊇ A ⊇ · · · ⊇ An · · · with limn→∞ w(An) = , then
⋂∞

n=An 
= ∅ and
w(

⋂∞
n=An) = .

By a measure of weak noncompactness, we mean a map μ : �E → R
+ satisfying the

properties ()-() quoted above. In what follows, we need the following definition. Let E
be a Banach space, let M be a nonempty closed convex subset of E, and let S,T : M → E
be two nonlinear mappings and x ∈ E. For any N ⊆M, we set

F (,x)(T ,S,N) = {x ∈M : x = Sx + Ty for some y ∈N}
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and

F (n,x)(T ,S,N) =F (,x)
(
T ,S, co

(
F (n–,x)(T ,S,N)∪ {x}

))

for n = , , . . . .

Definition . Let E be a Banach space, let M be a nonempty closed convex subset of E,
and let μ be a measure of weak noncompactness on E. Let T ,S : M → E be two bounded
mappings (i.e., they take bounded sets into bounded ones) and x ∈ M. We say that T is
an S-convex-power condensing operator about x and n w.r.t. μ if for any bounded set
N ⊆M with μ(N) >  we have

μ
(
F (n,x)(T ,S,N)

)
< μ(N). (.)

Obviously, T : M →M is power-convex condensing with respect toμ about x and n []
if and only if it is a -convex-power condensing operator about x and n w.r.t. μ.

The following results are crucial for our purposes.Wefirst state a theoremofAmbrosetti
type (see [] for a proof ).

Theorem . Let E be a Banach space and let H ⊆ C([,T],E) be bounded and equicon-
tinuous. Then the map t → w(H(t)) is continuous on [,T] and

w(H) = sup
t∈[,T]

w
(
H(t)

)
= w

(
H[,T]

)
,

where H(t) = {h(t) : h ∈H} and H[,T] =
⋃

t∈[,T]{h(t) : h ∈H}.

Theorem . [, Theorem ] Let S be a Hausdorff compact space and E be a Banach
space. A bounded sequence (fn) ⊂ C(S,E) converges weakly to f ∈ C(S,E) if and only if, for
every t ∈ S, the sequence (fn(t)) converges weakly (in E) to f (t).

Definition . Amapping T : D(T)⊂ X → X is called k-Lipschitzian if ‖Tx–Ty‖ ≤ k‖x–
y‖ for all x, y ∈D(T). T is called strict contraction if k ∈ [, ) and nonexpansive if k = .

Lemma . [] LetM be a subset of E and let T :M → E be a k-Lipschitzianmap.Assume
that T is a sequentially weakly continuous map. Then w(T(A)) ≤ kw(A) for each bounded
subset A of M; here, w(·) stands for the De Blasi measure of weak noncompactness.

Definition . We say that T : D(T) ⊂ X → X is demiclosed if for any sequence {xn}
weakly convergent to an element x∗ ∈D(T) with {Txn} norm-convergent to an element y,
then Tx∗ = y.

Theorem . [, Theorem ..] Let M be a bounded closed convex subset of a Banach
space X, and let T be a nonexpansive mapping of M into M. Then, for each ε > , there is
an xε ∈M such that ‖Txε – xε‖ < ε.
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2 Fixed point theory for the sum in the weak topology
Theorem. LetM be a nonempty bounded closed convex subset of a Banach space E, and
let μ be a measure of weak noncompactness on E. Suppose that T : M → E and S : E → E
are two mappings satisfying:

(i) T is sequentially weakly continuous,
(ii) S is a strict contraction,
(iii) there are an integer n and a vector x ∈ E such that T is S-power-convex

condensing w.r.t. μ about x and n,
(iv) if x = Sx + Ty, for some y ∈M, then x ∈M,
(v) if {xn} is a sequence in F (n,x)(T ,S,M) such that xn ⇀ x, then Sxn ⇀ Sx.

Then T + S has at least one fixed point in M.

Proof Let y ∈ M. The map which assigns to each x ∈ E the value Sx + Ty defines a strict
contraction mapping from E into itself and so it has a unique fixed point in E by the con-
tractionmapping principle []. Let us denote by τ : M → E themapwhich assigns to each
y ∈ M the unique point in M such that τ (y) = Sτ (y) + Ty. From assumption (iv) we infer
that τ (M) ⊂M. Notice

τ (N) =F (,x)(T ,S,N)

for all N ⊂M. Let

� =
{
N ⊆M, co(N) =N ,x ∈ N and τ (N)⊆N

}
.

The set � is nonempty since M ∈ �. Set C =
⋂

N∈� N . Now we show that for any positive
integer n we have

C = co
(
F (n,x)(T ,S,C)∪ {x}

)
. P(n)

To see this, we proceed by induction. Clearly C is a closed convex subset of M and
τ (C) ⊆ C. Thus C ∈ �. This implies co(τ (C) ∪ {x}) ⊆ C. Hence τ (co(τ (C) ∪ {x})) ⊆
τ (C) ⊆ co(τ (C) ∪ {x}). Consequently, co(τ (C) ∪ {x}) ∈ �. Hence C ⊆ co(τ (C) ∪ {x}).
As a result co(τ (C) ∪ {x}) = C. This shows that P() holds. Let n be fixed and suppose
P(n) holds. This implies

F (n+,x)(T ,S,C) = F (,x)
(
T ,S, co

(
F (n,x)(T ,S,C)∪ {x}

))
= τ

(
co

(
F (n,x)(T ,S,C)∪ {x}

))
= τ (C).

Consequently,

co
(
F (n+,x)(T ,S,C)∪ {x}

)
= co

(
τ (C)∪ {x}

)
= C. (.)

Thus, for all n≥  we have

C = co
(
F (n,x)(T ,S,C)∪ {x}

)
. (.)
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Using the properties of the measure of weak noncompactness, we get

μ(C) = μ
(
co

(
F (n,x)(T ,S,C)∪ {x}

))
,

which yields thatC is weakly compact.We claimnow that τ : C → C is sequentially weakly
continuous. Indeed, let {yn} be a sequence inC such that yn ⇀ y inC. Since τ (C) ⊆ C, then
there exists a subsequence {ynk } of {yn} such that τynk ⇀ z for some z ∈ C. By (v) Sτynk ⇀

Sz. Also from (i) it follows that Tynk ⇀ Ty and hence the equality τynk = Sτ (ynk ) + Tynk
gives us z = Sz + Ty. By uniqueness, we conclude that τ (y) = z.
Accordingly, we have

τ (ynk ) ⇀ τ (y). (.)

Now a standard argument shows that

τ (yn) ⇀ τ (y). (.)

Suppose the contrary, then there exist a weak neighborhoodNw of τ (y) and a subsequence
{ynj} of {yn} such that τ (ynj ) /∈ Nw for all j ≥ . Naturally, (ynj ) converges weakly to y. Then,
arguing as before, we may extract a subsequence (ynjk ) of (ynj ) such that τ (ynjk ) ⇀ τ (y),
which is absurd since τ (ynjk ) /∈Nw for all k ≥ . Finally, τ is weakly sequentially continuous.
Applying the Arino-Gautier-Penot fixed point theorem [], we infer that there exists x ∈ C
such that

x = τ (x) = S
(
τ (x)

)
+ Tx = Sx + Tx. �

It is worthwhile to emphasize that Theorem . encompasses a lot of previously known
results. In particular, if we take B =  in Theorem ., we recapture the following fixed
point theorem, which was proved in [, Theorem .].

Corollary . Let M be a nonempty bounded closed convex subset of a Banach space X.
Suppose that T : M → M is weakly sequentially continuous and there exist an integer n
and a vector x ∈ E such that T is power-convex condensing about x and n. Then T has
at least one fixed point in M.

Another consequence of Theorem . is the following result, which is a sharpening of
[, Theorem .].

Corollary . Let M be a nonempty bounded closed convex subset of a Banach space E.
Suppose that T : M → E and S : E → E are two mappings satisfying:

(i) T is sequentially weakly continuous,
(ii) S is a strict contraction with constant k,
(iii) there exists an integer n such that F (n,x)(T ,S,M) is relatively weakly compact,
(iv) if x = Sx + Ty, for some y ∈M, then x ∈M,
(v) if {xn} is a sequence in F (n,x)(T ,S,M) such that xn ⇀ x, then Sxn ⇀ Sx.

Then T + S has at least one fixed point in M.
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In order to state another consequence of Theorem ., the following abstract lemma is
very useful.

Lemma . Assume that the conditions (i), (ii) and (iv) of Theorem . hold. If, moreover,
S is sequentially weakly continuous and T(M) is relatively weakly compact, then the set
F :=F (,x)(T ,S,M) := {x ∈M : x = Sx + Ty for some y ∈M} is relatively weakly compact.

Proof From the definition of F it follows that

F ⊂ S(F ) + T(M). (.)

Keeping in mind that T(M) is relatively weakly compact and using Lemma ., we get

w(F ) ≤ w
(
S(F )

)
+w

(
T(M)

)
= w

(
S(F )

)
≤ kw(F ).

Since  ≤ k < , then w(F ) =  and therefore F is relatively compact. �

On the basis of Lemma ., the followingKrasnosel’skii-type fixed point theorem follows
from Theorem ..

Corollary . [, Theorem .] Let M be a nonempty bounded closed convex subset of
a Banach space E. Suppose that T : M → E and S : E → E are two sequentially weakly
continuous mappings satisfying:

(i) T(M) is relatively weakly compact,
(ii) S is a strict contraction,
(iii) if x = Sx + Ty, for some y ∈M, then x ∈M.

Then T + S has at least one fixed point in M.

Now we consider the case where S is nonexpansive.

Theorem . Let E be a Banach space and μ be a measure of weak noncompactness on E.
Let M be a nonempty bounded closed convex subset of E, and let T ,S : M → X be two
sequentially weakly continuous mappings satisfying:

(i) there are an integer n and a vector x ∈ E such that T is S-power-convex condensing
w.r.t. μ,

(ii) S is a nonexpansive mapping,
(iii) if (xn) is a sequence ofM such that ((I – S)xn) is weakly convergent, then the

sequence (xn) has a weakly convergent subsequence,
(iv) I – S is injective and demiclosed,
(v) Tx + Sy ∈M for all x, y ∈M.

Then T + S has at least one fixed point in M.

Proof Let z ∈ T(M). The map which assigns to each x ∈M the value Sx + z defines a non-
expansive mapping from M into M. In view of Theorem ., there exists a sequence (xn)

http://www.fixedpointtheoryandapplications.com/content/2013/1/196
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inM such that

(I – S)xn – z → . (.)

By assumption (iii) we have that (xn) has a subsequence, say (xnk ), which converges to some
x ∈ M. Since (I – S) is demiclosed, then z = (I – S)x. Hence z ∈ (I – S)M. Consequently,
T(M) ⊆ (I – S)(M). Let us denote by τ the map which assigns to each y ∈ M the point
τ (y) ∈M such that (I – S)τ (y) = Ty. Since I – S is injective, then τ : M →M is well defined.
It is easily seen that

τ (N) =F (,x)(T ,S,N)

for all N ⊂M. Let

� =
{
N ⊆M, co(N) =N ,x ∈ N and τ (N)⊆N

}
.

The set � is nonempty sinceM ∈ �. Set C =
⋂

N∈� N . Proceeding by induction, we have

C = co
(
F (n,x)(T ,S,C)∪ {x}

)
P(n)

for any integer n. Using the properties of the measure of weak noncompactness, we get

μ(C) = μ
(
co

(
F (n,x)(T ,S,C)∪ {x}

))
,

which yields thatC is weakly compact. The reasoning inTheorem. shows that τ : C → C
is sequentially weakly continuous. Applying theArino-Gautier-Penot fixed point theorem,
we infer that there exists x ∈ C such that

x = τ (x) = S
(
τ (x)

)
+ Tx = Sx + Tx. �

An easy consequence of Theorem . is the following.

Corollary . Let M be a nonempty bounded closed convex subset of a reflexive Banach
space E, and let μ be a measure of weak noncompactness on E. Suppose that T ,S :M → E
are two continuous mappings satisfying:

(i) there are an integer n and a vector x ∈ E such that T is S-power-convex condensing
w.r.t. μ,

(ii) S is nonexpansive,
(iii) I – S is injective and demiclosed,
(iv) Tx + Sy ∈M for all x, y ∈M.

Then S + T has at least one fixed point in M.

Proof Keeping in mind that every bounded subset in a reflexive Banach space is relatively
weakly compact, the result follows from Theorem .. �

Corollary . Let M be a nonempty bounded closed convex subset of a uniformly convex
Banach space E. Suppose that T ,S :M → E are two continuous mappings satisfying:

http://www.fixedpointtheoryandapplications.com/content/2013/1/196
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(i) there are an integer n and a vector x ∈ E such that T is S-power-convex condensing
w.r.t. μ,

(ii) S is nonexpansive and I – S is injective,
(iii) Tx + Sy ∈M for all x, y ∈M.

Then T + S has at least one fixed point in M.

Proof Note that in a uniformly convex space we have S is nonexpansive implies I – S is
demiclosed (see []). Moreover, every uniformly convex Banach space is reflexive. The
result follows from Corollary .. �

In some applications, the sequential weak continuity condition is not easy to be verified.
We thus consider the following two conditions: let T :D(T) ⊂ E → E be a map.
(H) If (xn)n∈N is a weakly convergent sequence in D(T), then (Txn)n∈N has a strongly

convergent subsequence in E.
(H) If (xn)n∈N is a weakly convergent sequence in D(T), then (Txn)n∈N has a weakly

convergent subsequence in E.

Remark . Continuous mappings satisfying (H) are called ws-compact mappings and
continuous mappings satisfying (H) are called ww-compact mappings. Note that ws-
compact and ww-compact mappings are not necessarily weakly continuous [].

Now we state the following result.

Theorem. LetM be a nonempty bounded closed convex subset of a Banach space E, and
let μ be a measure of weak noncompactness on E. Suppose that T : M → E and S : E → E
are two continuous mappings satisfying:

(i) T verifies (H),
(ii) S is a strict contraction verifying (H),
(iii) there are an integer n and a vector x ∈ E such that T is S-power-convex

condensing w.r.t. μ about x and n,
(iv) if x = Sx + Ty, for some y ∈M, then x ∈M.

Then T + S has at least one fixed point in M.

Proof Let y ∈ M. The map which assigns to each x ∈ E the value Sx + Ty defines a strict
contraction mapping from E into itself and so it has a unique fixed point in E by the con-
tractionmapping principle []. Let us denote by τ : M → E themapwhich assigns to each
y ∈ M the unique point in M such that τ (y) = Sτ (y) + Ty. From assumption (iv) we infer
that τ (M) ⊂M. Notice

τ (N) =F (,x)(T ,S,N)

for all N ⊂M. Let

� =
{
N ⊆M, co(N) =N ,x ∈ N and τ (N)⊆N

}
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/196
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The set� is nonempty sinceM ∈ �. SetC =
⋂

N∈� N . The reasoning in Theorem . shows
that for any positive integer n we have

C = co
(
F (n,x)(T ,S,C)∪ {x}

)
.

Using the properties of the measure of weak noncompactness, we get

μ(C) = μ
(
co

(
F (n,x)(T ,S,C)∪ {x}

))
,

which yields thatC is weakly compact. PutD = co(τ (C)) the closed convex hull of τ (C).We
claim that D is compact. Indeed, let {xn} be a sequence in C. Since C is weakly compact,
then, up to a subsequence, we may assume that {xn} converges weakly to some x ∈ C.
Bearing in mind that T satisfies (H), we infer that {Txn} has a norm convergent sequence,
say {Txnk }, which converges to some z ∈ E. From the equality

τ (xnk ) = Sτ (xnk ) + Txnk , (.)

it follows that for any p, q we have

∥∥τ (xnp ) – τ (xnq )
∥∥ =

∥∥Sτ (xnp ) – Sτ (xnq ) + Txnp – Txnq
∥∥

≤ ∥∥Sτ (xnp ) – Sτ (xnq )
∥∥ + ‖Txnp – Txnq‖

≤ k
∥∥τ (xnp ) – τ (xnq )

∥∥ + ‖Txnp – Txnq‖.

Accordingly,

∥∥τ (xnp ) – τ (xnq )
∥∥ ≤ 

 – k
‖Txnp – Txnq‖. (.)

This implies that {τ (xnk )} is a Cauchy sequence in the Banach space E and hence it is
convergent. Thus, τ (C) is relatively compact and therefore D = co(τ (C)) is compact (see
[]).We now claim that τ : D→D is continuous. Indeed, let {xn} be a sequence inD such
that xn → x in D. The continuity of T guarantees that Txn → Tx. Hence,

∥∥τ (xn) – τ (x)
∥∥ =

∥∥Sτ (xn) – Sτ (x) + Txn – Tx
∥∥

≤ ∥∥Sτ (xn) – Sτ (x)
∥∥ + ‖Txn – Tx‖

≤ k
∥∥τ (xn) – τ (x)

∥∥ + ‖Txn – Tx‖.

Accordingly,

∥∥τ (xn) – τ (x)
∥∥ ≤ 

 – k
‖Txn – Tx‖. (.)

Consequently, τ (xn) → τ (x). This proves that τ : D → D is continuous. The Schauder
fixed point theorem guarantees the existence of x ∈ C such that

x = τ (x) = S
(
τ (x)

)
+ Tx = Sx + Tx. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/196
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The case B =  in Theorem . corresponds to the following result, which was proved
in [, Theorem .].

Corollary . Let E be a Banach space andμ be ameasure of weak noncompactness on E.
LetM ⊂ E be a nonempty closed convex and bounded subset, x ∈ E, and let n be a positive
integer. Suppose that T :M → M is power-convex condensing w.r.t. μ about x and n. If
T is ws-compact, then there exists x ∈M such that Tx = x.

Another consequence of Theorem . is the following.

Corollary . Let M be a nonempty bounded closed convex subset of a Banach space E,
and letμ be ameasure of weak noncompactness on E. Suppose that T : M → E and S : E →
E are two continuous mappings satisfying:

(i) T verifies (H),
(ii) S is a strict contraction verifying (H),
(iii) there are an integer n and a vector x such that F (n,x)(T ,S,N) is relatively weakly

compact,
(iv) if x = Sx + Ty, for some y ∈M, then x ∈M.

Then T + S has at least one fixed point in M.

On the basis of Lemma . the following Krasnosel’skii-type fixed point theorem follows
from Corollary ..

Corollary . [, Theorem .] Let M be a nonempty bounded closed convex subset of
a Banach space E. Suppose that T : M → E and S : E → E are two continuous mappings
satisfying:

(i) T(M) is relatively weakly compact and T satisfies (H),
(ii) S is a strict contraction and S verifies (H),
(iii) if x = Sx + Ty, for some y ∈M, then x ∈M.

Then T + S has at least one fixed point in M.

3 Application
In this section we shall discuss the existence of weak solutions to the Volterra integral
equation

x(t) = f
(
x(t)

)
+

∫ t


g
(
s,x(s)

)
ds, t ∈ [,T]; (.)

here g : [,T] × X → X, f : X → X and x ∈ X with X being a real Banach space. The
integral in (.) is understood to be the Pettis integral and solutions to (.) will be sought
in E := C([,T],X).
This equation will be studied under the following assumptions:
(i) For each t ∈ [,T], gt = g(t, ·) is sequentially weakly continuous (i.e., for each

t ∈ [,T], for each weakly convergent sequence (xn), the sequence gt(xn) is weakly
convergent).

(ii) For each continuous x : [,T]→ E, g(·,x(·)) is Pettis integrable on [,T].
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(iii) There exist α ∈ L[,T] and θ : [, +∞)→ (, +∞) a nondecreasing continuous
function such that ‖g(s,u)‖ ≤ α(s)θ (‖u‖) for a.e. s ∈ [,T], and all u ∈ X , with

∫ T


α(s)ds <

∫ ∞



dx
θ (x)

.

(iv) There is a constant λ ≥  such that for any bounded subset S of X and for any
t ∈ [,T], we have

w
(
g
(
[, t]× S

)) ≤ λw(S).

(v) f : X → X is sequentially weakly continuous.
(vi) There exists k ∈ [, ) such that ‖f (u) – f (v)‖ ≤ k‖u – v‖ for all u, v ∈ X .

Theorem . Let X be a Banach space and suppose (i)-(vi) hold. Then (.) has a solution
in E = C([,T],X).

Proof Let

M =
{
x ∈ C

(
[,T],X

)
:
∥∥x(t)∥∥ ≤ b(t) for t ∈ [,T] and

∥∥x(t) – x(s)
∥∥ ≤ ∣∣b(t) – b(s)

∣∣ for t, s ∈ [,T]
}
,

where

b(t) = I–
(


 – k

∫ t


α(s)ds

)
and I(z) =

∫ z

‖f ()‖
–k

dx
θ (x)

.

Clearly,

b′(t) =


 – k
α(t)θ

(
b(t)

)
and b() =


 – k

∥∥f ()∥∥ (.)

for all t ∈ [,T]. Also notice that M is a closed, convex, bounded, equicontinuous subset
of C([,T],X) with  ∈ C. To allow the abstract formulation of equation (.), we define
the following operators S,T : C([,T],X)→ C([,T],X) by

(Tx)(t) = f () +
∫ t


g
(
s,x(s)

)
ds

and

(Sx)(t) = f
(
x(t)

)
– f ().

Our strategy is to apply Theorem . to show the existence of a fixed point for the sum
S + T in M which in turn is a continuous solution for equation (.). The proof will be
divided into several steps.
Step : We show that (x = Sx + Ty, y ∈M) implies x ∈ M.

http://www.fixedpointtheoryandapplications.com/content/2013/1/196
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Let x ∈ C([,T],X) such that x = Sx + Ty with y ∈M. For all t ∈ [,T] we have

x(t) = f
(
x(t)

)
+

∫ t


g
(
s,x(s)

)
ds. (.)

Hence,

∥∥x(t)∥∥ ≤ ∥∥f (x(t))∥∥ +
∫ t



∥∥g(s,x(s))∥∥ds

≤ ∥∥f ()∥∥ + k
∥∥x(t)∥∥ +

∫ t


α(s)θ

(∥∥y(s)∥∥)
ds

≤ ∥∥f ()∥∥ + k
∥∥x(t)∥∥ +

∫ t


α(s)θ

(
b(s)

)
ds

≤ ∥∥f ()∥∥ + k
∥∥x(t)∥∥ + ( – k)

∫ t


b′(s)ds

≤ ∥∥f ()∥∥ + k
∥∥x(t)∥∥ + ( – k)

(
b(t) – b()

)
≤ k

∥∥x(t)∥∥ + ( – k)b(t).

Accordingly,

∥∥x(t)∥∥ ≤ b(t). (.)

On the other hand, let t, s ∈ [,T] with t < s and let x ∈ C([,T],X). Then

∥∥x(t) – x(s)
∥∥ ≤ ∥∥f (x(t)) – f

(
x(s)

)∥∥ +
∫ s

t

∥∥g(r,x(r))∥∥dr

≤ k
∥∥x(t) – x(s)

∥∥ +
∫ s

t
α(r)θ

(∥∥x(r)∥∥)
dr

≤ k
∥∥x(t) – x(s)

∥∥ + ( – k)
∫ s

t
b′(r)dr

≤ k
∥∥x(t) – x(s)

∥∥ + ( – k)
∣∣b(s) – b(t)

∣∣.
Accordingly,

∥∥x(t) – x(s)
∥∥ ≤ ∣∣b(t) – b(s)

∣∣. (.)

Consequently, x ∈M.
Step : Nowwe show that there is an integer n such that T is S-power-convex condens-

ing w.r.t. w about  and n, where w is the De Blasi measure of weak noncompactness. To
see this, notice, for each bounded set � ⊆M and for each t ∈ [,T], that

F (,)(T ,S,�)(t) =
{
x(t),x ∈F (,)(T ,S,�)

}
⊆ {

x(t) – f
(
x(t)

)
+ f (),x ∈F (,)(T ,S,�)

}
+

{
f
(
x(t)

)
– f (),x ∈F (,)(T ,S,�)

}
⊆ T(�)(t) +

{
f
(
x(t)

)
– f (),x ∈F (,)(T ,S,�)

}
.
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Thus

α
(
F (,)(T ,S,�)(t)

) ≤ α
(
T(�)(t)

)
+ kα

(
F (,)(T ,S,�)(t)

)
. (.)

Consequently,

w
(
F (,)(T ,S,�)(t)

) ≤ 
 – k

w
(
T(�)(t)

)
. (.)

Further,

w
(
T(�)(t)

)
= w

({
f () +

∫ t


g
(
s,x(s)

)
ds : x ∈ �

})

≤ w
(
tco

{
g
(
s,x(s)

)
: x ∈ �, s ∈ [, t]

})
= tw

(
co

{
g
(
s,x(s)

)
: x ∈ �, s ∈ [, t]

})
≤ tw

(
g
(
[, t]× �[, t]

))
≤ tλw

(
�[, t]

)
.

Theorem . implies (sinceM is equicontinuous) that

w
(
T(�)(t)

) ≤ tλw(�). (.)

Linking (.) and (.), we get

w
(
F (,)(T ,S,�)(t)

) ≤ tλ
 – k

w(�). (.)

Using (.) we obtain

w
(
F (,)(T ,S,�)(t)

)
= w

(
F (,)(T ,S, co(F (,)(T ,S,�)∪ {}(t))))

≤ 
 – k

w
(
T

(
co

(
F (,)(T ,S,�)∪ {}(t)))).

Put V = co(F (,)(T ,S,�)∪ {}). The use of (.) yields

w
(
F (,)(T ,S,�)(t)

) ≤ 
 – k

w
(
T(V )(t)

) ≤ 
 – k

w
({

f () +
∫ t


g
(
s,x(s)

)
ds : x ∈ V

})

≤ 
 – k

w
({∫ t


g
(
s,x(s)

)
ds : x ∈ V

})
.

Fix t ∈ [,T]. We divide the interval [, t] into m parts  = t < t < · · · < tm = t in such a
way that 
ti = ti – ti– = t

m , i = , . . . ,m. For each x ∈ V , we have

∫ t


g
(
s,x(s)

)
ds =

m∑
i=

∫ ti

ti–
g
(
s,x(s)

)
ds ∈

m∑
i=


tico
{
g
(
s,x(s)

)
: x ∈ V , s ∈ [ti–, ti]

}

⊆
m∑
i=


tico
(
g
(
[ti–, ti]×V

(
[ti–, ti]

)))
.
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Using again Theorem ., we infer that for each i = , . . . ,m, there is an si ∈ [ti–, ti] such
that

sup
s∈[ti–,ti]

w
(
V (s)

)
= w

(
V [ti–, ti]

)
= w

(
V (si)

)
. (.)

Consequently,

w
({∫ t


g
(
s,x(s)

)
ds : x ∈ V

})
≤

m∑
i=


tiw
(
co

(
g
(
[ti–, ti]×V

(
[ti–, ti]

))))

≤ λ

m∑
i=


tiw
(
co

(
V

(
[ti–, ti]

)))

≤ λ

m∑
i=


tiw
(
V (si)

)
.

On the other hand, ifm → ∞ then

m∑
i=


tiw
(
V (si)

) →
∫ t


w

(
V (s)

)
ds. (.)

Thus,

w
({∫ t


g
(
s,x(s)

)
ds : x ∈ V

})
≤

∫ t


w

(
V (s)

)
ds. (.)

Using the regularity, the set additivity, the convex closure invariance of the De Blasi
measure of weak noncompactness together with (.), we obtain

w
(
V (s)

)
= w

(
F (,)(T ,S,�)(s)

) ≤ sλ
 – k

w(�) (.)

and therefore

∫ t


w

(
V (s)

)
ds≤ λ

 – k
t


w(�). (.)

This implies

w
(
F (,)(T ,S,�)(t)

) ≤ (λt)

( – k)
w(�). (.)

By induction we get

w
(
F (n,)(T ,S,�)(t)

) ≤ (λt)n

n!( – k)n
w(�). (.)

Invoking Theorem . we obtain

w
(
F (n,)(T ,S,�)

) ≤ (λT)n

n!( – k)n
w(�). (.)
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Since limn→∞ (λT)n
n!(–k)n = , then there is an n with (λT)n

n!(–k)n
< . This implies

w
(
F (n,)(T ,S,�)

)
< w(�). (.)

This gives the proof of the second step.
Step : T is sequentially weakly continuous. Let {xn} be a sequence in C([,T],X) such

that xn ⇀ x for some x ∈ C([,T],X). By Theorem . we have xn(t) ⇀ x(t) in X for all
t ∈ [,T]. By assumption (i) we have g(s,xn(s)) ⇀ g(s,x(s)) for all s ∈ [,T]. The use of
the Lebesgue dominated convergence theorem for Pettis integral [, Corollary ] gives
(Txn)(t) ⇀ (Tx)(t) for all t ∈ [,T]. Using again Theorem ., we obtain Txn ⇀ Tx. Thus,
T is sequentially weakly continuous.
Applying Theorem ., we get a fixed point for S + T and hence a continuous solution

to (.). �

4 Final remarks
It is worth noticing that Theorem . generalizes the corresponding results in [] and
[]. In []X is assumed to be reflexive and an additional hypothesis (H) is also required,
while f ≡  in [].
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