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1 Introduction
Let C be a nonempty, closed and convex subset of a real Banach space E. Let T : C → C
be a nonlinear mapping. The fixed point set of T is denoted by F(T), that is, F(T) = {x ∈
C : x = Tx}. Recall that a mapping T is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖
for all x, y ∈ C, and a mapping f : C → C is called a contraction if there exists a constant
α ∈ (, ) such that ‖f (x) – f (y)‖ ≤ α‖x – y‖ for all x, y ∈ C. We use �C to denote a class of
contractions with constant α.
Fixed point problems are now arising in a wide range of applications such as optimiza-

tion, physics, engineering, economics and applied sciences.Many related problems can be
cast as the problem of finding fixed points for nonlinear mappings. The interdisciplinary
nature of fixed point problems is evident through a vast literature which includes a large
body of mathematical and algorithmic developments.
In the literature, several types of iterations have been constructed and proposed in order

to get convergence results for nonexpansive mappings in various settings. One classical
iteration process is defined as follows: x ∈ C and

xn+ = ( – αn)xn + αnTxn, ∀n≥ ,

where {αn} ⊂ (, ). This method was introduced in  by Mann [] and is known as the
Mann iteration process. However, we note that it has only weak convergence in general;
for instance, see [].
In , Ishikawa [] proposed the following two-step iteration: x ∈ C and

yn = ( – βn)xn + βnTxn,

xn+ = ( – αn)xn + αnTyn, ∀n≥ ,
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where {αn} and {βn} are sequences in (, ). This method is often called the Ishikawa iter-
ation process.
Very recently, Agarwal et al. [] introduced a new iteration process as follows: x ∈ C

and

yn = ( – βn)xn + βnTxn,

xn+ = ( – αn)Txn + αnTyn, ∀n≥ ,

where {αn} and {βn} are sequences in (, ). This method is called the S-iteration process.
The weak convergence was studied in [] for nonexpansivemappings. It was also shown in
[] that the convergence rate of the S-iteration process is faster than the Picard andMann
iteration processes for contractive mappings.
Firstly, motivated by Agarwal et al. [], we have the aim to introduce and study a new

mapping defined by the following definition.

Definition . Let C be a nonempty and convex subset of a real Banach space E.
Let T,T, . . . ,TN be a finite family of nonexpansive mappings of C into itself, and let
λ,λ, . . . ,λN be real numbers such that  ≤ λi ≤  for all i = , , . . . ,N . Define the map-
ping B : C → C as follows:

U = λT + ( – λ)I,

U = λTU + ( – λ)T,

U = λTU + ( – λ)T,

...

UN– = λN–TN–UN– + ( – λN–)TN–,

B =UN = λNTNUN– + ( – λN )TN–. (.)

Such a mapping B is called the B-mapping generated by T,T, . . . ,TN and λ,λ, . . . ,λN .
See [–] for the corresponding concept.
Secondly, using the definition above, we studyweak convergence of the followingMann-

type iteration process in a uniformly convex Banach space with a Fréchet differentiable
norm or that satisfies Opial’s condition: x ∈ C and

xn+ = ( – αn)xn + αnBnxn, ∀n≥ , (.)

where Bn is a B-mapping generated by T,T, . . . ,TN and λn,,λn,, . . . ,λn,N (see Section ).
Finally, we discuss strong convergence of the iteration scheme involving the modified

viscosity approximation method [] defined as follows: x ∈ C and

xn+ = αnf (xn) + βnxn + γnBnxn, ∀n≥ , (.)

where {αn}, {βn} and {γn} are sequences in (, ), and f ∈ �C .
More references on earlier works promoting the theory of fixed points and common

fixed points for nonexpansive mappings can be found in [–].
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Throughout this paper, we use the notation:
• ⇀ for weak convergence and → for strong convergence.
• ωω(xn) = {x : xni ⇀ x} denotes the weak ω-limit set of {xn}.

2 Preliminaries and lemmas
In this section, we begin by recalling some basic facts and lemmas which will be used in
the sequel.
Let E be a real Banach space and let U = {x ∈ E : ‖x‖ = } be the unit sphere of E. A Ba-

nach space E is said to be strictly convex if for any x, y ∈U ,

x 	= y implies
∥∥∥∥x + y



∥∥∥∥ < .

It is also said to be uniformly convex if for each ε ∈ (, ], there exists δ >  such that for
any x, y ∈U ,

‖x – y‖ ≥ ε implies
∥∥∥∥x + y



∥∥∥∥ <  – δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex. Define
a function δ : [, ]→ [, ] called themodulus of convexity of E as follows:

δ(ε) = inf

{
 –

∥∥∥∥x + y


∥∥∥∥ : x, y ∈ E,‖x‖ = ‖y‖ = ,‖x – y‖ ≥ ε

}
.

Then E is uniformly convex if and only if δ(ε) >  for all ε ∈ (, ]. A Banach space E is said
to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for all x, y ∈U . The norm is said to be uniformly Gâteaux differentiable if for y ∈U ,
the limit is attained uniformly for x ∈ U . It is said to be Fréchet differentiable if for x ∈ U ,
the limit is attained uniformly for y ∈ U . It is said to be uniformly smooth or uniformly
Fréchet differentiable if the limit (.) is attained uniformly for x, y ∈ U . The normalized
duality mapping J : E → E∗ is defined by

J(x) =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖ = ∥∥x∗∥∥}

for all x ∈ E. It is known that E is smooth if and only if the duality mapping J is single
valued, and that if E has a uniformly Gâteaux differentiable norm, J is uniformly norm-to-
weak∗ continuous on each bounded subset of E. A Banach space E is said to satisfy Opial’s
condition []. If x ∈ E and xn ⇀ x, then

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖, ∀y ∈ E,x 	= y.

Let T : C → C. Then I – T is demiclosed at  if for all sequence {xn} in C, xn ⇀ q and
‖xn – Txn‖ →  imply q = Tq. It is known that if E is uniformly convex, C is nonempty
closed and convex, and T is nonexpansive, then I – T is demiclosed at  []. For more
details, we refer the reader to [, ].

http://www.fixedpointtheoryandapplications.com/content/2013/1/198
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Lemma . [] Let E be a smooth Banach space. Then the following hold:
(i) ‖x + y‖ ≥ ‖x‖ + 〈y, J(x)〉 for all x, y ∈ E;
(ii) ‖x + y‖ ≤ ‖x‖ + 〈y, J(x + y)〉 for all x, y ∈ E.

Lemma . [] In a strictly convex Banach space E, if

‖x‖ = ‖y‖ = ∥∥λx + ( – λ)y
∥∥

for all x, y ∈ E and λ ∈ (, ), then x = y.

Lemma . [] Let {xn} and {zn} be two sequences in a Banach space E such that

xn+ = βnxn + ( – βn)zn, n≥ ,

where {βn} satisfies the conditions  < lim infn→∞ βn ≤ lim supn→∞ βn < .
If lim supn→∞(‖zn+ – zn‖ – ‖xn+ – xn‖) ≤ , then ‖zn – xn‖ →  as n→ ∞.

Lemma . [] Let E be a uniformly convex Banach space with a Fréchet differentiable
norm. Let C be a closed and convex subset of E, and let {Sn}∞n= be a family of Ln-Lipschitzian
self-mappings on C such that

∑∞
n=(Ln – ) < ∞ and F =

⋂∞
n= F(Sn) 	= ∅. For arbitrary x ∈

C, define xn+ = Snxn for all n ≥ . Then, for every p,q ∈ F , limn→∞〈xn, J(p – q)〉 exists, in
particular, for all u, v ∈ ωω(xn) and p,q ∈ F , 〈u – v, J(p – q)〉 = .

Lemma . [] Let E be a reflexive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm, let C be a nonempty closed convex subset of E, let A : C → C
be a continuous strongly pseudocontractive mapping with constant k ∈ [, ), and let T :
C → E be a continuous pseudocontractivemapping satisfying the weakly inward condition.
If T has a fixed point in C, then the path {xt} defined by

xt = tAxt + ( – t)Txt

converges strongly to a fixed point q of T as t → , which is a unique solution of the varia-
tional inequality

〈
(I –A)q, J(q – p)

〉 ≤ , ∀p ∈ F(T).

Remark . Lemma . holds if T : C → C is a nonexpansive mapping and A = f is a
contraction.

The following lemma gives us a nice property of real sequences.

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – cn)an + bn, ∀n≥ ,

where {cn} is a sequence in (, ) and {bn} is a sequence such that
(a)

∑∞
n= cn = ∞;

(b) lim supn→∞
bn
cn ≤  or

∑∞
n= |bn| <∞.

Then limn→∞ an = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/198
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3 Weak convergence theorem
In this section, we give some properties concerning the B-mapping and then prove a weak
convergence theorem for nonexpansive mappings.

Lemma . Let C be a nonempty, closed and convex subset of a strictly convex Banach
space E. Let {Ti}Ni= be a finite family of nonexpansive mappings of C into itself such
that

⋂N
i= F(Ti) 	= ∅, and let λ,λ, . . . ,λN be real numbers such that  < λi <  for all

i = , , . . . ,N –  and  < λN ≤ . Let B be the B-mapping generated by T,T, . . . ,TN and
λ,λ, . . . ,λN . Then the following hold:

(i) F(B) =
⋂N

i= F(Ti);
(ii) B is nonexpansive.

Proof (i) Since
⋂N

i= F(Ti) ⊂ F(B) is trivial, it suffices to show that F(B) ⊂ ⋂N
i= F(Ti). To

this end, let p ∈ F(B) and x∗ ∈ ⋂N
i= F(Ti). Then we have

∥∥p – x∗∥∥ =
∥∥Bp – x∗∥∥ =

∥∥λN
(
TNUN–p – x∗) + ( – λN )

(
TN–p – x∗)∥∥

≤ λN
∥∥UN–p – x∗∥∥ + ( – λN )

∥∥p – x∗∥∥
= λN

∥∥λN–
(
TN–UN–p – x∗) + ( – λN–)

(
TN–p – x∗)∥∥ + ( – λN )

∥∥p – x∗∥∥
≤ λNλN–

∥∥UN–p – x∗∥∥ + ( – λNλN–)
∥∥p – x∗∥∥

= λNλN–
∥∥λN–

(
TN–UN–p – x∗) + ( – λN–)

(
TN–p – x∗)∥∥

+ ( – λNλN–)
∥∥p – x∗∥∥

≤ λNλN–λN–
∥∥UN–p – x∗∥∥ + ( – λNλN–λN–)

∥∥p – x∗∥∥
...

= λNλN– · · ·λ
∥∥λ

(
TUp – x∗) + ( – λ)

(
Tp – x∗)∥∥

+ ( – λNλN– · · ·λ)
∥∥p – x∗∥∥

≤ λNλN– · · ·λ
∥∥TUp – x∗∥∥ + ( – λNλN– · · ·λ)

∥∥p – x∗∥∥
≤ λNλN– · · ·λ

∥∥Up – x∗∥∥ + ( – λNλN– · · ·λ)
∥∥p – x∗∥∥

= λNλN– · · ·λ
∥∥λ

(
Tp – x∗) + ( – λ)

(
p – x∗)∥∥

+ ( – λNλN– · · ·λ)
∥∥p – x∗∥∥

≤ λNλN– · · ·λλ
∥∥Tp – x∗∥∥ + ( – λNλN– · · ·λλ)

∥∥p – x∗∥∥
≤ λNλN– · · ·λλ

∥∥p – x∗∥∥ + ( – λNλN– · · ·λλ)
∥∥p – x∗∥∥

=
∥∥p – x∗∥∥. (.)

This shows that

∥∥p– x∗∥∥ = λNλN– · · ·λ
∥∥λ

(
Tp– x∗)+ (–λ)

(
p– x∗)∥∥+ (–λNλN– · · ·λ)

∥∥p– x∗∥∥,
which turns out to be

∥∥p – x∗∥∥ =
∥∥λ

(
Tp – x∗) + ( – λ)

(
p – x∗)∥∥.

http://www.fixedpointtheoryandapplications.com/content/2013/1/198
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Again by (.), we see that ‖p – x∗‖ = ‖Tp – x∗‖ and thus

∥∥p – x∗∥∥ =
∥∥Tp – x∗∥∥ =

∥∥λ
(
Tp – x∗) + ( – λ)

(
p – x∗)∥∥.

Using Lemma ., we get that Tp = p and hence Up = p. Again by (.), we have

∥∥p – x∗∥∥ = λNλN– · · ·λ
∥∥λ

(
TUp – x∗) + ( – λ)

(
Tp – x∗)∥∥

+ ( – λNλN– · · ·λ)
∥∥p – x∗∥∥,

which implies that

∥∥p – x∗∥∥ =
∥∥λ

(
TUp – x∗) + ( – λ)

(
Tp – x∗)∥∥.

From (.) we see that ‖Up – x∗‖ = ‖TUp – x∗‖. Since Up = p and Tp = p,

∥∥p – x∗∥∥ =
∥∥Tp – x∗∥∥ =

∥∥λ
(
Tp – x∗) + ( – λ)

(
p – x∗)∥∥.

Using Lemma ., we get that Tp = p and hence Up = p.
By continuing this process, we can show that Tip = p andUip = p for all i = , , . . . ,N –.

Finally, we obtain

‖p – TNp‖ ≤ ‖p – Bp‖ + ‖Bp – TNp‖
= ‖p – Bp‖ + ( – λN )‖p – TNp‖,

which yields that p = TNp since p ∈ F(B). Hence p = Tp = Tp = · · · = TNp and thus p ∈⋂N
i= F(Ti).
(ii) The proof follows directly from (i). �

Lemma . Let C be a nonempty closed convex subset of a real Banach space E. Let {Ti}Ni=
be a finite family of nonexpansive mappings of C into itself such that

⋂N
i= F(Ti) 	= ∅, and

let B be the B-mapping generated by T,T, . . . ,TN and λ,λ, . . . ,λN . Let {λn,i}Ni= be a real
sequence in (, ). For every n ∈N, let Bn be the B-mapping generated by T,T, . . . ,TN and
λn,,λn,, . . . ,λn,N as follows:

Un, = λn,T + ( – λn,)I,

Un, = λn,TU + ( – λn,)T,

Un, = λn,TU + ( – λn,)T,

...

Un,N– = λn,N–TN–UN– + ( – λn,N–)TN–,

Bn =Un,N = λn,NTNUN– + ( – λn,N )TN–.

If λn,i → λi ∈ (, ) for all i = , , . . . ,N , then limn→∞ Bnx = Bx for all x ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/198
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Proof Let x ∈ C and Uk and Un,k be generated by T,T, . . . ,Tk and λ,λ, . . . ,λk , and
T,T, . . . ,Tk and λn,,λn,, . . . ,λn,k , respectively. Then

‖Un,x –Ux‖ =
∥∥(λn, – λ)(Tx – x)

∥∥ ≤ |λn, – λ|‖Tx – x‖.

Let k ∈ {, , . . . ,N} andM =max{‖TkUk–x‖ + ‖Tk–x‖ : k = , , . . . ,N}. Then

‖Un,kx –Ukx‖ =
∥∥λn,kTkUn,k–x + ( – λn,k)Tk–x – λkTkUk– – ( – λk)Tk–x

∥∥
= ‖λn,kTkUn,k–x – λn,kTk–x – λkTkUk– + λkTk–x‖
≤ λn,k‖TkUn,k–x – TkUk–x‖ + |λn,k – λk|‖TkUk–x‖

+ |λn,k – λk|‖Tk–x‖
≤ ‖Un,k–x –Uk–x‖ + |λn,k – λk|M.

It follows that

‖Bnx – Bx‖ = ‖Un,Nx –UNx‖
≤ ‖Un,N–x –UN–x‖ + |λn,N – λN |M
≤ ‖Un,N–x –UN–x‖ + |λn,N– – λN–|M + |λn,N – λN |M
...

≤ ‖Un,x –Ux‖ + |λn, – λ|M + · · · + |λn,N– – λN–|M + |λn,N – λN |M
≤ |λn, – λ|‖Tx – x‖ + |λn, – λ|M + · · · + |λn,N– – λN–|M

+ |λn,N – λN |M.

Since λn,i → λi as n→ ∞ (i = , , . . . ,N ), we thus complete the proof. �

Remark . It is easily seen that for all n ∈N, Bn is nonexpansive.

Lemma . Let C be a nonempty closed convex subset of a real Banach space E. Let {Ti}Ni=
be a finite family of nonexpansive mappings of C into itself such that

⋂N
i= F(Ti) 	= ∅. Let

{λn,i}Ni= be a real sequence in (, ). For every n ∈ N, let Bn be the B-mapping generated by
T,T, . . . ,TN and λn,,λn,, . . . ,λn,N .
If limn→∞ |λn+,i – λn,i| =  for all i = , , . . . ,N , then

lim
n→∞‖Bn+zn – Bnzn‖ = 

for each bounded sequence {zn} in C.

Proof Let {zn} be a bounded sequence in C. For j ∈ {, , . . . ,N – } and for some M > ,
we have

‖Un+,N–jzn –Un,N–jzn‖
=

∥∥λn+,N–jTN–jUn+,N–j–zn + ( – λn+,N–j)TN–j–zn

http://www.fixedpointtheoryandapplications.com/content/2013/1/198


Cholamjiak Fixed Point Theory and Applications 2013, 2013:198 Page 8 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/198

– λn,N–jTN–jUn,N–j–zn – ( – λn,N–j)TN–j–zn
∥∥

≤ λn+,N–j‖TN–jUn+,N–j–zn – TN–jUn,N–j–zn‖
+ |λn+,N–j – λn,N–j|‖TN–jUn,N–j–zn‖
+ |λn+,N–j – λn,N–j|‖TN–j–zn‖

≤ ‖Un+,N–j–zn –Un,N–j–zn‖ + |λn+,N–j – λn,N–j|M.

Using the relation above, we can show that

‖Bn+zn – Bnzn‖ = ‖Un+,Nzn –Un,Nzn‖

≤ M
N∑
j=

|λn+,j – λn,j| + |λn+, – λn,|
(‖zn‖ + ‖Tzn‖

)
.

Since limn→∞ |λn+,i – λn,i| =  for all i = , , . . . ,N , we obtain the desired result. �

Using the concept of B-mapping, we study weak convergence of the sequence generated
by Mann-type iteration process (.).

Theorem . Let E be a uniformly convex Banach space having a Fréchet differentiable
norm or that satisfies Opial’s condition. Let C be a nonempty, closed and convex sub-
set of E. Let {Ti}Ni= be a finite family of nonexpansive mappings of C into itself such that⋂N

i= F(Ti) 	= ∅. Let {λn,i}Ni= be a real sequence in (, ) such that λn,i → λi (i = , , . . . ,N ).
For every n ∈N, let Bn be the B-mapping generated by T,T, . . . ,TN and λn,,λn,, . . . ,λn,N .
Let {αn} be a sequence in (, ) satisfying lim infn→∞ αn( –αn) > . Let {xn} be generated by
x ∈ C and

xn+ = ( – αn)xn + αnBnxn, ∀n≥ .

Then {xn} converges weakly to x∗ ∈ ⋂N
i= F(Ti).

Proof Let p ∈ ⋂N
i= F(Ti). Then p = Bnp for all n≥  and hence

‖xn+ – p‖ ≤ ( – αn)‖xn – p‖ + αn‖Bnxn – p‖ ≤ ‖xn – p‖.

It follows that {‖xn – p‖} is nonincreasing; consequently, limn→∞ ‖xn – p‖ exists. Assume
‖xn – p‖ > . Since E is uniformly convex, it follows (see, for example, []) that

‖xn+ – p‖ ≤ ‖xn – p‖
{
 – min{αn,  – αn}δE

(‖xn – Bnxn‖
‖xn – p‖

)}
,

which implies that

αn( – αn)‖xn – p‖δE
(‖xn – Bnxn‖

‖xn – p‖
)

≤ min{αn,  – αn}‖xn – p‖δE
(‖xn – Bnxn‖

‖xn – p‖
)

≤ 

{‖xn – p‖ – ‖xn+ – p‖}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/198
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Since limn→∞ ‖xn – p‖ exists and lim infn→∞ αn( – αn) > , by the continuity of δE , we
have limn→∞ ‖xn–Bnxn‖ = . Since λn,i → λi (i = , , . . . ,N ), let themapping B : C → C be
generated byT,T, . . . ,TN and λ,λ, . . . ,λN . Then, by Lemma ., we have limn→∞ ‖Bnx–
Bx‖ =  for all x ∈ C. So we have

‖xn – Bxn‖ ≤ ‖xn – Bnxn‖ + ‖Bnxn – Bxn‖
≤ ‖xn – Bnxn‖ + sup

z∈{xn}
‖Bnz – Bz‖

→ .

Since B is nonexpansive and E is uniformly convex, by the demiclosedness principle,
ωω(xn)⊂ F(B). Moreover, F(B) =

⋂N
i= F(Ti) by Lemma .(i).

We next show that ωω(xn) is a singleton. Indeed, suppose that x∗, y∗ ∈ ωω(xn) ⊂⋂N
i= F(Ti). Define Sn : C → C by

Snx = ( – αn)x + αnBnx, x ∈ C.

Then Sn is nonexpansive and x∗, y∗ ∈ ⋂∞
n= F(Sn). Using Lemma ., we have limn→∞〈xn,

J(x∗ –y∗)〉 exists. Suppose that {xnk } and {xmk } are subsequences of {xn} such that xnk ⇀ x∗

and xmk ⇀ y∗. Then

∥∥x∗ – y∗∥∥ =
〈
x∗ – y∗, J

(
x∗ – y∗)〉 = lim

k→∞
〈
xnk – xmk , J

(
x∗ – y∗)〉 = .

This shows that x∗ = y∗.
Assume that E satisfies Opial’s condition. Let x∗, y∗ ∈ ωω(xn) and {xnk } and {xmk } be sub-

sequences of {xn} such that xnk ⇀ x∗ and xmk ⇀ y∗. If x∗ 	= y∗, then

lim
n→∞

∥∥xn – x∗∥∥ = lim
k→∞

∥∥xnk – x∗∥∥ < lim
k→∞

∥∥xnk – y∗∥∥ = lim
k→∞

∥∥xmk – y∗∥∥
< lim

k→∞
∥∥xmk – x∗∥∥ = lim

n→∞
∥∥xn – x∗∥∥,

which is a contradiction. It follows that x∗ = y∗. Therefore xn ⇀ x∗ ∈ ⋂N
i= F(Ti) as n → ∞.

This completes the proof. �

4 Strong convergence theorem
In this section, we prove a strong convergence theorem for a finite family of nonexpansive
mappings in Banach spaces.

Theorem . Let E be a strictly convex and reflexive Banach space having a uniformly
Gâteaux differentiable norm. Let C be a nonempty, closed and convex subset of E. Let {Ti}Ni=
be a finite family of nonexpansive mappings of C into itself such that

⋂N
i= F(Ti) 	= ∅. Let

{λn,i}Ni= be a real sequence in (, ) such that λn,i → λi (i = , , . . . ,N ). For every n ∈ N, let
Bn be the B-mapping generated by T,T, . . . ,TN and λn,,λn,, . . . ,λn,N . Let {αn}, {βn} and
{γn} be sequences in (, ) which satisfy the conditions:
(C) αn + βn + γn = ;
(C) limn→∞ αn =  and

∑∞
n= αn = ∞;
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(C)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Let f ∈ �C and define the sequence {xn} by x ∈ C and

xn+ = αnf (xn) + βnxn + γnBnxn, ∀n≥ .

Then {xn} converges strongly to q ∈ ⋂N
i= F(Ti), where q is also the unique solution of the

variational inequality

〈
(I – f )(q), J(q – p)

〉 ≤ , ∀p ∈
N⋂
i=

F(Ti). (.)

Proof We divide the proof into the following steps.
Step . We show that {xn} is bounded. Let p ∈ ⋂N

i= F(Ti). Then p = Bnp for all n≥  and
hence, by the nonexpansiveness of {Bn}∞n=, we have

‖xn+ – p‖ =
∥∥αn

(
f (xn) – p

)
+ βn(xn – p) + γn(Bnxn – p)

∥∥
≤ αn

∥∥f (xn) – p
∥∥ + βn‖xn – p‖ + γn‖xn – p‖

≤ αn
∥∥f (xn) – f (p)

∥∥ + αn
∥∥f (p) – p

∥∥ + ( – αn)‖xn – p‖
≤ αnα‖xn – p‖ + αn

∥∥f (p) – p
∥∥ + ( – αn)‖xn – p‖

=
(
 – αn( – α)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥
≤ max

{
‖xn – p‖, 

 – α

∥∥f (p) – p
∥∥}

.

By induction, we can conclude that {xn} is bounded. So are {f (xn)} and {Bnxn}.
Step . We show that limn→∞ ‖xn+ – xn‖ = . To this end, we define zn = xn+–βnxn

–βn
. From

(.) we have

‖zn+ – zn‖ =
∥∥∥∥αn+f (xn+) + γn+Bn+xn+

 – βn+
–

αnf (xn) + γnBnxn
 – βn

∥∥∥∥
=

∥∥∥∥ αn+

 – βn+

(
f (xn+) – Bnxn

)
+

αn

 – βn

(
Bnxn – f (xn)

)

+
γn+

 – βn+
(Bn+xn+ – Bnxn)

∥∥∥∥
≤ αn+

 – βn+
M +

αn

 – βn
M + ‖Bn+xn+ – Bnxn‖

≤
(

αn+

 – βn+
+

αn

 – βn

)
M + ‖Bn+xn+ – Bn+xn‖

+ ‖Bn+xn – Bnxn‖

≤
(

αn+

 – βn+
+

αn

 – βn

)
M + ‖xn+ – xn‖ + ‖Bn+xn – Bnxn‖

for someM > . It turns out that

‖zn+ – zn‖ – ‖xn+ – xn‖ ≤
(

αn+

 – βn+
+

αn

 – βn

)
M + ‖Bn+xn – Bnxn‖.
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From conditions (C), (C) and Lemma ., we have

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Lemma . yields that ‖zn – xn‖ →  and hence

‖xn+ – xn‖ = ( – βn)‖zn – xn‖ → .

Step . We show that limn→∞ ‖Bxn – xn‖ = . Indeed, noting that

Bnxn – xn =

γn

{
(xn+ – xn) + αn

(
xn – f (xn)

)}
,

we have, by (C) and (C),

lim
n→∞‖Bnxn – xn‖ = .

Let B : C → C be the B-mapping generated by T,T, . . . ,TN and λ,λ, . . . ,λN . So, by
Lemma ., we have Bnx→ Bx for all x ∈ C. It also follows that

‖Bxn – xn‖ ≤ ‖Bxn – Bnxn‖ + ‖Bnxn – xn‖
≤ sup

z∈{xn}
‖Bz – Bnz‖ + ‖Bnxn – xn‖

→ .

For t ∈ (, ), we define a contraction as follows:

Stx = tf (x) + ( – t)Bx.

Then there exists a unique path xt ∈ C such that

xt = tf (xt) + ( – t)Bxt .

From Lemma ., we know that xt → q as t → , where q ∈ F(B). Lemma .(i) also
yields that q ∈ F(B) =

⋂N
i= F(Ti). Moreover, q is the unique solution of variational inequal-

ity (.).
Step . We show that lim supn→∞〈f (q) – q, J(xn – q)〉 ≤ . We see that

xt – xn = ( – t)(Bxt – xn) + t
(
f (xt) – xn

)
.

It follows, by Lemma .(ii) that

‖xt – xn‖ ≤ ( – t)‖Bxt – xn‖ + t
〈
f (xt) – xn, J(xt – xn)

〉
≤ (

 – t + t
)(‖xt – xn‖ + ‖Bxn – xn‖

)
+ t

〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖,
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which gives

〈
f (xt) – xt , J(xn – xt)

〉 ≤ ( + t)‖xn – Bxn‖
t

(
‖xt – xn‖ + ‖xn – Bxn‖

)
+
t

‖xt – xn‖.

So we have

lim sup
n→∞

〈
f (xt) – xt , J(xn – xt)

〉 ≤ t

M (.)

for someM > . Since E has a uniformly Gâteaux differentiable norm, J is norm-to-weak∗

uniformly continuous on bounded subsets of E. So we have

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉 →  (.)

and

〈
f (q) – f (xt) + xt – q, J(xn – xt)

〉 →  (.)

as t → . On the other hand, we have

〈
f (q) – q, J(xn – q)

〉
=

〈
f (xt) – xt , J(xn – xt)

〉
+

〈
f (q) – f (xt) + xt – q, J(xn – xt)

〉
+

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
. (.)

Since lim supn→∞ and lim supt→ are interchangeable, using (.)-(.), we obtain

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ .

Step . We show that xn → q as n→ ∞. In fact, we have

‖xn+ – q‖ = αn
〈
f (xn) – q, J(xn+ – q)

〉
+ βn

〈
xn – q, J(xn+ – q)

〉
+ γn

〈
Bnxn – q, J(xn+ – q)

〉
≤ αnα‖xn – q‖‖xn+ – q‖ + αn

〈
f (q) – q, J(xn+ – q)

〉
+ βn‖xn – q‖‖xn+ – q‖ + γn‖xn – q‖‖xn+ – q‖

=
(
 – αn( – α)

)‖xn – q‖‖xn+ – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉

≤ 

(
 – αn( – α)

)(‖xn – q‖ + ‖xn+ – q‖) + αn
〈
f (q) – q, J(xn+ – q)

〉
,

which implies that

‖xn+ – q‖ ≤  – αn( – α)
 + αn( – α)

‖xn – q‖ + αn

 + αn( – α)
〈
f (q) – q, J(xn+ – q)

〉

=
(
 –

αn( – α)
 + αn( – α)

)
‖xn – q‖

+
αn

 + αn( – α)
〈
f (q) – q, J(xn+ – q)

〉
.
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Put cn = αn(–α)
+αn(–α) and bn = αn

+αn(–α) 〈f (q) – q, J(xn+ – q)〉. So it is easy to check that {cn} is
a sequence in (, ) such that

∑∞
n= cn = ∞ and lim supn→∞

bn
cn ≤ . Hence, by Lemma .,

we conclude that xn → q as n → ∞. This completes the proof. �
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