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Abstract
The purpose of this paper is to present a new modified Halpern-Mann type iterative
scheme by using the generalized f -projection operator for finding a common
element in the set of zeroes of a system of maximal monotone operators, the set of
fixed points of a totally quasi-φ-asymptotically nonexpansive mapping and the set of
solutions of a system of generalized Ky Fan’s inequalities in a uniformly smooth and
strictly convex Banach space with the Kadec-Klee property. Furthermore, we show
that our proposed iterative scheme converges strongly to a common element of the
sets mentioned above.
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1 Introduction
In , Ky Fan’s inequalities were first introduced by Fan []. The study concerning Ky
Fan’s inequalities, fixed points of nonlinear mappings and their approximation algorithms
constitutes a topic of intensive research efforts. Many well-known problems arising in
various branches of science can be studied by using algorithms which are iterative in their
nature. As an example, in computer tomography with limited data, each piece of informa-
tion implies the existence of a convex set in which the required solution lies.
Many authors have considered a family of nonexpansivemappings to show the existence

of fixed points and related topics. Especially, the well-known convex feasibility problem
reduces to finding a point in the intersection of the fixed point sets of a family of nonex-
pansivemappings and the problem of finding an optimal point that minimizes a given cost
function over the set of common fixed points of a family of nonexpansive mappings.
Solving the convex feasibility problem for a system of generalized Ky Fan’s inequal-

ities is very general in the sense that it includes, as special cases, optimization prob-
lems, equilibrium problems, variational inequality problems, minimax problems. More-
over, the generalized Ky Fan’s inequality was shown in [] to cover monotone inclusion
problems, saddle point problems, variational inequality problems, minimization prob-
lems, optimization problems, vector equilibriumproblems, Nash equilibria in noncooper-
ative games. In other words, the generalized Ky Fan’s inequality and equilibrium problem
are a unifiedmodel for several problems arising in physics, engineering, science, optimiza-
tion, economics and related topics.
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One of the most interesting and important problems in the theory of maximal mono-
tone operators is to find a zero point of maximal monotone operators. This problem con-
tains the convex minimization problem and the variational inequality problem. A popular
method for approximating this problem is called the proximal point algorithm introduced
by Martinet [] in a Hilbert space. In , Rockafellar [] extended the knowledge of
Martinet [] and proved weak convergence of the proximal point algorithm. The proxi-
mal point algorithm of Rockafellar [] is a successful algorithm for finding a zero point
of maximal monotone operators. Thereafter, many papers have shown convergence the-
orems of the proximal point algorithm in various spaces (see [–]).
A point x ∈ C is afixed point of S provided Sx = x.Wedenote by F(S) the fixedpoint set of

S, that is, F(S) = {x ∈ C : Sx = x}. A point p in C is called an asymptotic fixed point of S []
ifC contains a sequence {xn}which convergesweakly to p such that limn→∞ ‖xn–Sxn‖ = .
The set of asymptotic fixed points of S is denoted by F̂(S). Recently, Halpern and Mann
iterative algorithms have been considered for approximations of common fixed points by
many authors. For example, in , Saewan andKumam [] introduced amodifiedMann
iterative scheme by using the generalized f -projection method for approximating a com-
mon fixed point of a countable family of relatively quasi-nonexpansive mappings. Chang
et al. [] considered a modified Halpern iterative scheme for approximating a common
fixed point for a totally quasi-φ-asymptotically nonexpansive mapping. Recently, Li et al.
[] introduced a hybrid iterative scheme for approximation of a fixed point of relatively
nonexpansive mappings by using the properties of generalized f -projection operators in
a uniformly smooth real Banach space, which is also uniformly convex, and proved some
strong convergence theorems for the hybrid iterative scheme.
On the other hand, Ofoedu and Shehu [] extended the algorithm of Li et al. [] to

prove strong convergence theorems for a common solution of the set of solutions of a
system of Ky Fan’s inequalities and the set of common fixed points of a pair of relatively
quasi-nonexpansive mappings in a Banach space by using the generalized f -projection
operator. Chang et al. [] extended and improved the results of Qin and Su [] to obtain
strong convergence theorems for finding a common element of the set of solutions for a
generalized Ky Fan’s inequality, the set of solutions for a variational inequality problem
and the set of common fixed points for a pair of relatively nonexpansive mappings in a
Banach space.
Motivated and inspired by the work mentioned above, in this paper, we introduce a new

hybrid iterative scheme of the generalized f -projection operator based on the Halpern-
Mann type iterative scheme for finding a common element of the set of zeroes of a system
ofmaximal monotone operators, the set of fixed points of a totally quasi-φ-asymptotically
nonexpansive mapping and the set of solutions of a system of generalized Ky Fan’s in-
equalities in a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property.

2 Preliminaries
A Banach space E with the norm ‖ · ‖ is called strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ U
with x �= y, where U = {x ∈ E : ‖x‖ = } is the unit sphere of E. A Banach space E is called
smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t
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exists for each x, y ∈ U . It is also called uniformly smooth if the limit exists uniformly for
all x, y ∈ U . In this paper, we denote the strong convergence and weak convergence of a
sequence {xn} by xn → x and xn ⇀ x, respectively.
Let E be a real Banach space with the dual space E* and let C be a nonempty closed and

convex subset of E. A mapping S : C → C is said to be:
() nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖

for all x, y ∈ C;
() quasi-nonexpansive if F(S) �= ∅ and

‖Sx – y‖ ≤ ‖x – y‖

for all x ∈ C and y ∈ F(S);
() asymptotically nonexpansive if there exists a sequence {kn} ⊂ [,∞) with kn →  as

n→ ∞ such that

∥∥Snx – Sny
∥∥ ≤ kn‖x – y‖

for all x, y ∈ C;
() asymptotically quasi-nonexpansive if F(S) �= ∅ and there exists a sequence

{kn} ⊂ [,∞) with kn →  as n→ ∞ such that

∥∥Snx – y
∥∥ ≤ kn‖x – y‖

for all x ∈ C and y ∈ F(S);
() totally asymptotically nonexpansive if there exist nonnegative real sequences {νn},

{μn} with νn → , μn →  as n→ ∞ and a strictly increasing continuous function
ψ : R+ → R+ with ψ() =  such that

∥∥Snx – Sny
∥∥ ≤ ‖x – y‖ +μnψ

(‖x – y‖) + νn

for all x, y ∈ C and n≥ .
A mapping S : C → C is said to be uniformly L-Lipschitz continuous if there exists a

constant L >  such that

∥∥Snx – Sny
∥∥ ≤ L‖x – y‖ ()

for all x, y ∈ C. A mapping S : C → C is said to be closed if, for any sequence {xn} ⊂ C such
that limn→∞ xn = x and limn→∞ Sxn = y, we have Sx = y.
The normalized duality mapping J : E → E* is defined by

J(x) =
{
x* ∈ E* :

〈
x,x*

〉
= ‖x‖,∥∥x*∥∥ = ‖x‖}

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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for all x ∈ E. If E is a Hilbert space, then J = I , where I is the identity mapping. Consider
the functional φ : E × E → R defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ()

where J is the normalized dualitymapping and 〈·, ·〉 denotes the duality pairing of E and E*.
If E is a Hilbert space, then φ(y,x) = ‖y – x‖. It is obvious from the definition of φ that

(‖y‖ – ‖x‖) ≤ φ(y,x)≤ (‖y‖ + ‖x‖) ()

for all x, y ∈ E.
A mapping S : C → C is said to be:
() relatively nonexpansive [, ] if F̂(S) = F(S) and

φ(p,Sx)≤ φ(p,x)

for all x ∈ C and p ∈ F(S);
() relatively asymptotically nonexpansive [] if F̂(S) = F(S) �= ∅ and there exists a

sequence {kn} ⊂ [,∞) with kn →  as n → ∞ such that

φ
(
p,Snx

) ≤ knφ(p,x)

for all x ∈ C, p ∈ F(S) and n≥ ;
() φ-nonexpansive [, ] if

φ(Sx,Sy)≤ φ(x, y)

for all x, y ∈ C;
() quasi-φ-nonexpansive [, ] if F(S) �= ∅ and

φ(p,Sx)≤ φ(p,x)

for all x ∈ C and p ∈ F(S);
() asymptotically φ-nonexpansive [] if there exists a sequence {kn} ⊂ [,∞) with

kn →  as n→ ∞ such that

φ
(
Snx,Sny

) ≤ knφ(x, y)

for all x, y ∈ C and n≥ ;
() quasi-φ-asymptotically nonexpansive [] if F(S) �= ∅ and there exists a sequence

{kn} ⊂ [,∞) with kn →  as n→ ∞ such that

φ
(
p,Snx

) ≤ knφ(p,x)

for all x ∈ C, p ∈ F(S) and n≥ ;

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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() totally quasi-φ-asymptotically nonexpansive if F(S) �= ∅ and there exist nonnegative
real sequences {νn}, {μn} with νn → , μn →  as n → ∞ and a strictly increasing
continuous function ψ : R+ → R+ with ψ() =  such that

φ
(
p,Snx

) ≤ φ(p,x) + νnψ
(
φ(p,x)

)
+μn

for all x ∈ C, p ∈ F(S) and n≥ .

Lemma  [] Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. Let S : C → C be a closed and
totally quasi-φ-asymptotically nonexpansive mapping with nonnegative real sequences
{νn} and {μn} with νn →  and μn →  as n → ∞, respectively, and a strictly increasing
continuous function ζ : R+ → R+ with ζ () = . If μ = , then the set F(S) of fixed points
of S is a closed convex subset of C.

Alber [] introduced that the generalized projection ΠC : E → C is a mapping that
assigns to an arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is,
ΠCx = x̄, where x̄ is the solution of the minimization problem

φ(x̄,x) = inf
y∈C φ(y,x). ()

The existence and uniqueness of the operator ΠC follows from the properties of the
functional φ(y,x) and strict monotonicity of the mapping J (see, for example, [–]).
If E is a Hilbert space, then φ(x, y) = ‖x – y‖ and ΠC becomes the metric projection

PC :H → C. If C is a nonempty closed and convex subset of a Hilbert space H , then PC is
nonexpansive.

Remark  The basic properties of a Banach space E related to the normalized duality
mapping J are as follows (see []):
() If E is an arbitrary Banach space, then J is monotone and bounded;
() If E is a strictly convex Banach space, then J is strictly monotone;
() If E is a smooth Banach space, then J is single-valued and semicontinuous;
() If E is a uniformly smooth Banach space, then J is uniformly norm-to-norm

continuous on each bounded subset of E;
() If E is a reflexive smooth and strictly convex Banach space, then the normalized

duality mapping J is single-valued, one-to-one and onto;
() If E is a reflexive strictly convex and smooth Banach space and J is the duality

mapping from E into E*, then J– is also single-valued, bijective and is also the
duality mapping from E* into E, and thus JJ– = IE* and J–J = IE ;

() If E is a uniformly smooth Banach space, then E is smooth and reflexive;
() E is a uniformly smooth Banach space if and only if E* is uniformly convex;
() If E is a reflexive and strictly convex Banach space, then J– is

norm-weak*-continuous.

Remark  If E is a reflexive, strictly convex and smooth Banach space, then φ(x, y) = 
if and only if x = y. It is sufficient to show that if φ(x, y) = , then x = y. From () we

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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have

 = ‖x‖ – 〈x, Jy〉 + ‖y‖

= ‖x‖ – ‖x‖‖Jy‖ + ‖y‖

= ‖x‖ – ‖x‖‖Jy‖ + ‖y‖

= ‖x – y‖.

That is, ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖ = ‖Jy‖. From the definition of J , one has
Jx = Jy. Therefore, we have x = y (see [, , ] for more details).

In , Wu and Huang [] introduced a new generalized f -projection operator in a
Banach space. They extended the definition of the generalized projection operators intro-
duced by Abler [] and proved some properties of the generalized f -projection operator.
Consider the functional G : C × E* → R∪ {+∞} defined by

G(y,� ) = ‖y‖ – 〈y,� 〉 + ‖�‖ + ρf (y) ()

for all (y,� ) ∈ C × E*, where ρ is a positive number and f : C → R ∪ {+∞} is proper,
convex and lower semicontinuous. From the definition of G, Wu and Huang [] proved
the following properties:
() G(y,� ) is convex and continuous with respect to � when y is fixed;
() G(y,� ) is convex and lower semicontinuous with respect to y when � is fixed.

Definition  Let E be a real Banach space with its dual space E* and let C be a nonempty
closed and convex subset of E. We say that π

f
C : E* → C is a generalized f -projection op-

erator if

π
f
C� =

{
u ∈ C :G(u,� ) = inf

y∈CG(y,� ),∀� ∈ E*
}
.

Recall that a Banach space E has the Kadec-Klee property [, , ] if for any sequence
{xn} ⊂ E and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, we have ‖xn–x‖ →  as n→ ∞. It is well
known that if E is a uniformly convex Banach space, then E has the Kadec-Klee property.

Lemma  [] Let E be a real reflexive Banach space with its dual space E* and let C be a
nonempty closed and convex subset of E. The following statements hold:
() π

f
C� is a nonempty, closed and convex subset of C for all � ∈ E*;

() If E is smooth, then for all � ∈ E*, x ∈ π
f
C� if and only if

〈x – y,� – Jx〉 + ρf (y) – ρf (x)≥ 

for all y ∈ C;
() If E is strictly convex and f : C → R∪ {+∞} is positive homogeneous (i.e., f (tx) = tf (x)

for all t >  such that tx ∈ C, where x ∈ C), then π
f
C� is a single-valued mapping.

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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Recently, Fan et al. [] showed that the condition, f is positive homogeneous, which
appears in [, Lemma .(iii)], can be removed.

Lemma  [] Let E be a real reflexive Banach space with its dual space E* and let C be a
nonempty closed and convex subset of E. If E is strictly convex, then π

f
C� is single-valued.

Recall that J is a single-valued mapping when E is a smooth Banach space. There exists
a unique element � ∈ E* such that � = Jx, where x ∈ E. This substitution in () gives the
following:

G(y, Jx) = ‖y‖ – 〈y, Jx〉 + ‖x‖ + ρf (y). ()

Now, we consider the second generalized f projection operator in a Banach space
(see []).

Definition  Let E be a real smooth Banach space and let C be a nonempty closed and
convex subset of E. We say that Π

f
C : E → C is a generalized f -projection operator if

Π
f
Cx =

{
u ∈ C :G(u, Jx) = inf

y∈CG(y, Jx),∀x ∈ E
}
.

Lemma  [] Let E be a Banach space and let f : E → R ∪ {+∞} be a lower semicontin-
uous and convex function. Then there exist x* ∈ E* and α ∈ R such that

f (x)≥ 〈
x,x*

〉
+ α

for all x ∈ E.

Lemma  [] Let E be a reflexive smooth Banach space and let C be a nonempty closed
and convex subset of E. The following statements hold:
() Π

f
Cx is a nonempty closed and convex subset of C for all x ∈ E;

() For all x ∈ E, x̂ ∈ Π
f
Cx if and only if

〈x̂ – y, Jx – Jx̂〉 + ρf (y) – ρf (x̂) ≥ 

for all y ∈ C;
() If E is strictly convex, then Π

f
C is a single-valued mapping.

Lemma  [] Let E be a real reflexive smooth Banach space and let C be a nonempty
closed and convex subset of E. Then, for any x ∈ E and x̂ ∈ Π

f
Cx,

φ(y, x̂) +G(x̂, Jx) ≤ G(y, Jx)

for all y ∈ C.

Lemma  [] Let E be a Banach space and let f : E → R∪ {+∞} be a proper, convex and
lower semicontinuous mapping with convex domain D(f ). If {xn} is a sequence in D(f ) such
that xn ⇀ x̂ ∈D(f ) and limn→∞ G(xn, Jy) =G(x̂, Jy), then limn→∞ ‖xn‖ = ‖x̂‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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Remark  Let E be a uniformly convex and uniformly smooth Banach space and f (y) = 
for all y ∈ E. Then Lemma  reduces to the property of the generalized projection operator
considered by Alber [].

If f (y) ≥  for all y ∈ C and f () = , then the definition of a totally quasi-φ-asymptot-
ically nonexpansive S is equivalent to the following:
For F(S) �= ∅ and there exist nonnegative real sequences {νn}, {μn} with νn → , μn → 

as n → ∞, respectively, and a strictly increasing continuous function ψ : R+ → R+ with
ψ() =  such that

G
(
p,Snx

) ≤ G(p,x) + νnψG(p,x) +μn

for all x ∈ C, p ∈ F(S) and n≥ .
Let θ be a bifunction from C × C to R, where R denotes the set of real numbers. The

equilibrium problem (for short, (EP)) is to find x̂ ∈ C such that

θ (x̂, y) ≥  ()

for all y ∈ C. The set of solutions of (EP) () is denoted by EP(θ ).
For solving the equilibrium problem for a bifunction θ : C × C → R, let us assume that

θ satisfies the following conditions:
(A) θ (x,x) =  for all x ∈ C;
(A) θ is monotone, i.e., θ (x, y) + θ (y,x)≤  for all x, y ∈ C;
(A) for all x, y, z ∈ C,

lim
t↓ θ

(
tz + ( – t)x, y

) ≤ θ (x, y);

(A) for all x ∈ C, y �→ θ (x, y) is convex and lower semicontinuous.
For example, let B be a continuous and monotone operator of C into E* and define

θ (x, y) = 〈Bx, y – x〉

for all x, y ∈ C. Then θ satisfies (A)-(A).

Lemma  [] Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E and let θ be a bifunction from C × C to R satisfying the conditions (A)-
(A). Then, for any r >  and x ∈ E, there exists z ∈ C such that

θ (z, y) +

r
〈y – z, Jz – Jx〉 ≥ 

for all y ∈ C.

Lemma  [] Let C be a closed convex subset of a uniformly smooth, strictly convex and
reflexive Banach space E and let θ be a bifunction from C×C to R satisfying the conditions
(A)-(A). For all r >  and x ∈ E, define a mapping Tθ

r : E → C as follows:

Tθ
r x =

{
z ∈ C : θ (z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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Then the following hold:
() Tθ

r is single-valued;
() Tθ

r is a firmly nonexpansive-type mapping [], that is, for all x, y ∈ E,

〈
Tθ
r x – Tθ

r y, JT
θ
r x – JTθ

r y
〉 ≤ 〈

Tθ
r x – Tθ

r y, Jx – Jy
〉
;

() F(Tθ
r ) = EP(θ );

() EP(θ ) is closed and convex.

Lemma  [] Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E and let θ be a bifunction from C × C to R satisfying the conditions (A)-
(A). Then, for any r > , x ∈ E and q ∈ F(Tθ

r ),

φ
(
q,Tθ

r x
)
+ φ

(
Tθ
r x,x

) ≤ φ(q,x).

An operator A ⊂ E × E* is said to bemonotone if

〈
x – y,x* – y*

〉 ≥ 

for all (x,x*), (y, y*) ∈ A. A point z ∈ E is called a zero point of A if

 ∈ Az. ()

We denote the set of zeroes of the operator A by A–, that is,

A– = {z ∈ E :  ∈ Az}.

A monotone A ⊂ E × E* is said to be maximal if its graph G(A) = {(x, y*) : y* ∈ Ax} is
not property contained in the graph of any other monotone operator. If A is maximal
monotone, then the solution set A– is closed and convex.
Let E be a smooth strictly convex and reflexive Banach space, letC be a nonempty closed

convex subset of E and let A ⊂ E × E* be a monotone operator satisfying D(A) ⊂ C ⊂
J–(

⋂
λ> R(J + λA)). Then the resolvent Jλ : C → D(A) of A is defined by

Jλx =
{
z ∈D(A) : Jx ∈ Jz + λAz,∀x ∈ C

}
.

Jλ is a single-valued mapping from E to D(A). On the other hand, Jλ = (J + λA)–J for all
λ > .
For any λ > , the Yosida approximation Aλ : C → E* of A is defined by Aλx = Jx–JJλx

λ

for all x ∈ C. We know that Aλx ∈ A(Jλx) for all λ >  and x ∈ E. Since relatively quasi-
nonexpansive mappings and quasi-φ-nonexpansive mappings are the same, we can see
that Jλ is a quasi-φ-nonexpansive mapping (see [, Theorem .]).

Lemma  [] Let E be a smooth strictly convex and reflexive Banach space, let C be a
nonempty closed convex subset of E and let A ⊂ E × E* be a monotone operator satisfying
D(A) ⊂ C ⊂ J–(

⋂
λ> R(J +λA)). For any λ > , let Jλ and Aλ be the resolvent and the Yosida

approximation of A, respectively. Then the following hold:

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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() φ(p, Jλx) + φ(Jλx,x)≤ φ(p,x) for all x ∈ C and p ∈ A–;
() (Jλx,Aλx) ∈ A for all x ∈ C;
() F(Jλ) = A–.

Lemma  [] Let E be a reflexive strictly convex and smooth Banach space. Then an
operator A ⊂ E × E* is maximal monotone if and only if R(J + λA) = E* for all λ > .

3 Main result
Now, we give the main results in this paper.

Theorem  Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. For each i = , , . . . ,m, let θi

be a bifunction from C × C to R satisfying the conditions (A)-(A). Let Aj ⊂ E × E* be a
maximal monotone operator satisfying D(Aj) ⊂ C and JAj

λj,n
= (J + λj,nAj)–J for all λj,n > 

and j = , , . . . , l. Let S : C → C be a closed and totally quasi-φ-asymptotically nonexpan-
sive mapping with nonnegative real sequences {νn}, {μn} with νn → , μn →  as n → ∞,
respectively, and a strictly increasing continuous function ψ : R+ → R+ with ψ() = .
Let f : E → R+ be a convex and lower semicontinuous function with C ⊂ int(D(f )) and
f () = . Assume that S is uniformly L-Lipschitz continuous andF = F(S)∩ (

⋂m
i= EP(θi))∩

(
⋂l

j=A–
j ) �= ∅. For any initial point x ∈ E, define C = C and the sequence {xn} in C by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zn = JAl
λl,n

◦ JAl–
λl–,n

◦ · · · ◦ JA
λ,n

xn,
un = Tθm

rm,n ◦ Tθm–
rm–,n ◦ · · · ◦ Tθ

r,nzn,
yn = J–(αnJx + βnJSnxn + γnJun),
Cn+ = {v ∈ Cn :G(v, Jyn) ≤ αnG(v, Jx) + ( – αn)G(v, Jxn) + ζn},
xn+ = Π

f
Cn+

x

()

for each n≥ ,where {αn}, {βn} and {γn} are the sequences in (, ) such that αn+βn+γn = ,
ζn = νn supq∈F ψ(G(q, Jxn)) + μn and for each i = , , . . . ,m, {ri,n} ⊂ [d,∞) for some d > .
If, for each j = , , . . . , l, lim infn→∞ λj,n > , limn→∞ αn =  and lim infn→∞ βn < , then the
sequence {xn} converges strongly to a point Π

f
Fx.

Proof We split the proof into five steps.
Step . We first show that Cn is closed and convex for all n ≥ . From the definitions

C = C is closed and convex. Suppose that Cn is closed and convex for all n ≥ . For any
b ∈ Cn, we know that G(b, Jyn) ≤ G(b, Jxn) + ζn is equivalent to the following:

αn〈b, Jx〉 + ( – αn)〈b, Jxn〉 – 〈b, Jyn〉
≤ αn‖x‖ + ( – αn)‖xn‖ – ‖yn‖ + ζn.

Therefore, Cn+ is closed and convex for all n≥ .
Step . We show that F ⊂ Cn for all n ≥ . Now, we show by induction that F ⊂ Cn for

all n ≥ . It is obvious that F ⊂ C = C. Suppose that F ⊂ Cn for some n ≥ . Define un =
Km
n zn, when Ki

n = Tθi
ri,nT

θi–
ri–,n · · ·Tθ

r,n for all j = , , . . . ,m with K
n = I and define zn = Δl

nxn

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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when Δ
j
n := JAj

λj,n
◦ JAj–

λj–,n
◦ · · · ◦ JA

λ,n
for all j = , , . . . , l with Δ

n = I . Let q ∈F . Then we have

G(q, Jun) =G
(
q, JKm

n zn
)

≤ G(q, Jzn)

=G
(
q, J

(
Δl

nxn
))

≤ G(q, Jxn). ()

Since S is a totally quasi-φ-asymptotically nonexpansive mapping, from () we have

G(q, Jyn)

=G
(
q,

(
αnJx + βnJSnxn + γnJun

))
= ‖q‖ – αn〈q, Jx〉 – βn

〈
q, JSnxn

〉
– γn〈q, Jun〉

+
∥∥αnJx + βnJSnxn + γnJun

∥∥ + ρf (q)

≤ ‖q‖ – αn〈q, Jx〉 – βn
〈
q, JSnxn

〉
– γn〈q, Jun〉

+ αn‖Jxn‖ + βn
∥∥JSnxn∥∥ + γn‖Jun‖ + ρf (q)

= αnG(q, Jx) + βnG
(
q, JSnxn

)
+ γnG(q, Jun)

≤ αnG(q, Jx) + βn
(
G(q, Jxn) + νnψ

(
G(q, Jxn)

)
+μn

)
+ γnG(q, Jun)

≤ αnG(q, Jx) + βnG(q, Jxn) + γnG(q, Jun) + βn
(
νnψ

(
G(q, Jxn)

)
+μn

)
≤ αnG(q, Jx) + βnG(q, Jxn) + γnG(q, Jun) + νn sup

q∈F
ψ

(
G(q, Jxn)

)
+μn

≤ αnG(q, Jx) + βnG(q, Jxn) + γnG(q, Jun) + ζn

≤ αnG(q, Jx) + βnG(q, Jxn) + γnG(q, Jzn) + ζn

≤ αnG(q, Jx) + βnG(q, Jxn) + γnG(q, Jxn) + ζn

≤ αnG(q, Jx) + (βn + γn)G(q, Jxn) + ζn

= αnG(q, Jx) + ( – αn)G(q, Jxn) + ζn. ()

This shows that q ∈ Cn+, which implies that F ⊂ Cn+ and so F ⊂ Cn for all n≥  and the
sequence {xn} is well defined.
Step . We show that xn → p, yn → p, zn → p and un → p as n → ∞. Since f : E → R is

a convex and lower semi-continuous function, from Lemma , we known that there exist
x* ∈ E* and α ∈ R such that

f (x)≥ 〈
x,x*

〉
+ α

for all x ∈ E. Since xn ∈ Cn ⊂ E, it follows that

G(xn, Jx) = ‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρf (xn)

≥ ‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρ
〈
xn,x*

〉
+ ρα

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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= ‖xn‖ – 
〈
xn, Jx – ρx*

〉
+ ‖x‖ + ρα

≥ ‖xn‖ – ‖xn‖
∥∥Jx – ρx*

∥∥ + ‖x‖ + ρα

=
(‖xn‖ – ∥∥Jx – ρx*

∥∥) + ‖x‖ –
∥∥Jx – ρx*

∥∥ + ρα. ()

For all q ∈F and xn = Π
f
Cnx, we have

G(q, Jx) ≥ G(xn, Jx) ≥
(‖xn‖ – ∥∥Jx – ρx*

∥∥) + ‖x‖ –
∥∥Jx – ρx*

∥∥ + ρα.

That is, {xn} is bounded and so are {G(xn, Jx)} and {yn}. By using the fact that xn+ =
Π

f
Cn+

x ∈ Cn+ ⊂ Cn and xn = Π
f
Cnx, it follows from Lemma  and () that

 ≤ (‖xn+ – ‖xn‖
) ≤ φ(xn+,xn)≤ G(xn+, Jx) –G(xn, Jx). ()

This implies that {G(xn, Jx)} is nondecreasing and so limn→∞ G(xn, Jx) exists. Taking n →
∞, we obtain

lim
n→∞φ(xn+,xn) = . ()

Since {xn} is bounded, E is reflexive and Cn is closed and convex for all n ≥ . We can
assume that xn ⇀ p ∈ Cn as n→ ∞. From the fact that xn = Π

f
Cnx, we get

G(xn, Jx) ≤ G(p, Jx) ()

for all n ≥ . Since f is convex and lower semi-continuous, we have

lim inf
n→∞ G(xn, Jx) = lim inf

n→∞
{‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρf (xn)

}
≥ ‖p‖ – 〈p, Jx〉 + ‖x‖ + ρf (p)

= G(xn, Jx). ()

By () and (), we get

G(p, Jx) ≤ lim inf
n→∞ G(xn, Jx) ≤ lim sup

n→∞
G(xn, Jx) ≤ G(p, Jx).

That is, limn→∞ G(xn, Jx) = G(p, Jx), which implies that ‖xn‖ → ‖p‖ as n → ∞. Since E
has the Kadec-Klee property, we obtain

lim
n→∞xn = p. ()

We also have

lim
n→∞xn+ = p. ()

From (), we get

lim
n→∞ ζn = lim

n→∞

(
νn sup

q∈F
ψ

(
G(q, Jxn)

)
+μn

)
= . ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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From () and (), we have limn→∞ ‖xn – xn+‖ = . Since J is uniformly norm-to-norm
continuous, it follows that

lim
n→∞‖Jxn – Jxn+‖ = . ()

Moreover, since xn+ = Π
f
Cn+

x ∈ Cn+ ⊂ Cn and (), we have

G(xn+, Jyn) ≤ αnG(xn+, Jx) + ( – αn)G(xn+, Jxn) + ζn

is equivalent to the following:

φ(xn+, yn) ≤ αnφ(xn+,x) + ( – αn)φ(xn+,xn) + ζn. ()

Since limn→∞ αn = , () and (), we have

lim
n→∞φ(xn+, yn) = . ()

By (), it follows that

‖yn‖ → ‖p‖ ()

as n→ ∞. Since J is uniformly norm-to-norm continuous, we obtain

‖Jyn‖ → ‖Jp‖ ()

as n→ ∞. This implies that {‖Jyn‖} is bounded in E*, Since E* is reflexive, we assume that
Jyn ⇀ y* ∈ E* as n → ∞. In view of J(E) = E*, there exists y ∈ E such that Jy = y*. It follows
that

φ(xn+, yn) = ‖xn+‖ – 〈xn+, Jyn〉 + ‖yn‖

= ‖xn+‖ – 〈xn+, Jyn〉 + ‖Jyn‖. ()

Taking lim infn→∞ on both sides of the equality above, since ‖ · ‖ is weak lower semi-
continuous, this yields that

 ≥ ‖p‖ – 
〈
p, y*

〉
+

∥∥y*∥∥

= ‖p‖ – 〈p, Jy〉 + ‖Jy‖

= ‖p‖ – 〈p, Jy〉 + ‖y‖

= φ(p, y). ()

From Remark , p = y, which implies that y* = Jp. It follows that Jyn ⇀ Jp ∈ E* as n → ∞.
From () and the Kadec-Klee property of E*, we have Jyn → Jp as n → ∞. Note that
J– : E* → E is norm-weak*-continuous, that is, yni ⇀ p as n → ∞. From () and the
Kadec-Klee property of E, we have

lim
n→∞ yn = p. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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From (), we have

G(q, Jyn) ≤ αnG(q, Jx) + βnG(q, Jxn) + γnG(q, Jzn) + ζn

≤ αnG(q, Jx) + ( – αn)G(q, Jxn) + ζn.

From (), (), () and the conditions limn→∞ αn = , lim infn→∞ βn < , it follows that
for any q ∈ F , limn→∞ φ(q, zn) = φ(q,p). Let zn = Δl

nxn for all n ≥ . From Lemma (), it
follows that for any q ∈ F ,

φ(zn,xn) = φ
(
Δl

nxn,xn
)

≤ φ(q,xn) – φ
(
q,Δl

nxn
)

= φ(q,xn) – φ(q, zn).

Taking n→ ∞ on both sides of the inequality above, we have

lim
n→∞φ(zn,xn) = .

From (), it follows that (‖xn‖ – ‖zn‖) →  as n → ∞. Since ‖xn‖ → ‖p‖ as n → ∞, we
have

‖zn‖ → ‖p‖ ()

as n → ∞. Since J is uniformly norm-to-norm continuous on bounded subsets of E, it
follows that

‖Jzn‖ → ‖Jp‖ ()

as n→ ∞. This implies that {‖Jzn‖} is bounded in E*. Since E* is reflexive, we can assume
that Jzn ⇀ z* ∈ E* as n → ∞. In view of J(E) = E*, there exists z ∈ E such that Jz = z*, and
so

φ(xn, zn) = ‖xn‖ – 〈xn, Jzn〉 + ‖zn‖

= ‖xn‖ – 〈xn, Jzn〉 + ‖Jzn‖. ()

Taking lim infn→∞ on both sides of the equality above, from the weak lower semi-
continuity of the norm ‖ · ‖, it follows that

 ≥ ‖p‖ – 
〈
p, z*

〉
+

∥∥z*∥∥

= ‖p‖ – 〈p, Jz〉 + ‖Jz‖

= ‖p‖ – 〈p, Jz〉 + ‖z‖

= φ(p, z). ()

From Remark , we have p = z, which implies that z* = Jp and so Jzn ⇀ Jp ∈ E* as n → ∞.
From () and the Kadec-Klee property of E*, we have Jzn → Jp as n → ∞. Since J– is

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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norm-weak*-continuous, that is, zn ⇀ p, from () and the Kadec-Klee property of E, it
follows that

lim
n→∞ zn = p. ()

From (), we have

G(q, Jyn) ≤ αnG(q, Jx) + βnG(q, Jxn) + γnG(q, Jun) + ζn

≤ αnG(q, Jx) + ( – αn)G(q, Jxn) + ζn.

From (), (), () and the conditions limn→∞ αn = , lim infn→∞ βn < , it follows that
limn→∞ φ(q,un) = φ(q,p). From Lemma , it follows that for any q ∈ F and un = Km

n zn,

φ(un,xn) = φ
(
Km
n zn,xn

)
≤ φ(q, zn) – φ

(
q,Km

n xn
)

= φ(q, zn) – φ(q,un).

Taking n→ ∞ on both sides of the inequality above, we have

lim
n→∞φ(xn,un) = . ()

From (), we have

(‖xn‖ – ‖un‖
) →  ()

as n→ ∞. Since ‖xn‖ → ‖p‖, we have

‖un‖ → ‖p‖ ()

as n→ ∞, and so

‖Jun‖ → ‖Jp‖ ()

as n → ∞. That is, {‖Jun‖} is bounded in E*. Since E* is reflexive, we can assume that
Jun ⇀ u* ∈ E* as n→ ∞. In view of J(E) = E*, there exists u ∈ E such that Ju = u*. It follows
that

φ(xn+,un) = ‖xn+‖ – 〈xn+, Jun〉 + ‖un‖

= ‖xn+‖ – 〈xn+, Jun〉 + ‖Jun‖. ()

Taking lim infn→∞ on both sides of the equality above, since ‖ · ‖ is weak lower semi-
continuous, it follows that

 ≥ ‖p‖ – 
〈
p,u*

〉
+

∥∥u*∥∥

= ‖p‖ – 〈p, Ju〉 + ‖Ju‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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= ‖p‖ – 〈p, Ju〉 + ‖u‖

= φ(p,u). ()

From Remark , p = u, that is, u* = Jp. It follows that Jun ⇀ Jp ∈ E*. From () and
the Kadec-Klee property of E*, we have Jun → Jp as n → ∞. Since J– is norm-weak*-
continuous, that is, un ⇀ p as n → ∞. From () and the Kadec-Klee property of E, we
have

lim
n→∞un = p. ()

Step . We show that p ∈ F = F(S) ∩ (
⋂m

i= EP(θi)) ∩ (
⋂l

j=A–
j ). First, we show that

p ∈ ⋂l
j=A–

j . Let zn = Δl
nxn for each n ≥ . Then, for any q ∈ F , it follows that for each

j = , , . . . , l,

φ(q, zn) = φ
(
q,Δl

nxn
)

≤ φ
(
q,Δl–

n xn
)

≤ φ
(
q,Δl–

n xn
)

· · ·
≤ φ

(
q,Δj

nxn
)
. ()

By Lemma , for each j = , , . . . ,m, we have

φ
(
Δj

nxn,xn
) ≤ φ(q,xn) – φ

(
q,Δj

nxn
)

≤ φ(q,xn) – φ(q, zn). ()

Since xn → p and zn → p as n→ ∞, we get φ(Δj
nxn,xn) →  as n→ ∞ for all j = , , . . . ,m.

From (), it follows that

(∥∥Δj
nxn

∥∥ – ‖xn‖
) → 

as n→ ∞ for all j = , , . . . ,m. Since ‖xn‖ → ‖p‖ as n→ ∞, we also have

∥∥Δj
nxn

∥∥ → ‖p‖ ()

as n→ ∞ for all j = , , . . . ,m. This implies that for each j = , , . . . ,m, {Δj
nxn} is bounded.

Since E is reflexive, without loss of generality, we can assume that Δ
j
nxn ⇀ k as n → ∞.

Since Cn is closed and convex for each n≥ , it is obvious that k ∈ Cn. Again, since

φ
(
Δj

nxn,xn
)
=

∥∥Δj
nxn

∥∥ – 
〈
Δj

nxn, Jxn
〉
+ ‖xn‖,

taking lim infn→∞ on both sides of the equality above, we have

 ≥ ‖k‖ – 〈k, Jp〉 + ‖p‖ = φ(k,p). ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
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That is, k = p and it follows that for all j = , , . . . , l,

Δj
nxn ⇀ p ()

as n→ ∞. Thus, from (), () and the Kadec-Klee property, it follows that

lim
n→∞Δj

nxn = p ()

for all j = , , . . . ,m. We also have

lim
n→∞Δj–

n xn = p ()

for all j = , , . . . ,m, and so

lim
n→∞

∥∥Δj
nxn –Δj–

n xn
∥∥ =  ()

for all j = , , . . . ,m. Since J is uniformly norm-to-norm continuous on bounded subsets
of E and lim infn→∞ λj,n >  for each j = , , . . . , l, we have

lim
n→∞


λj,n

∥∥JΔj
nxn – JΔj–

n xn
∥∥ = . ()

Let Δ
j
nxn = J jλj,nΔ

j–
n xn for each j = , , . . . , l. Then we have

lim
n→∞

∥∥Aλj,nΔ
j–
n xn

∥∥ = lim
n→∞


λj,n

∥∥JΔj
nxn – JΔj–

n xn
∥∥ = . ()

For any (w,w*) ∈G(Aj) and (Δ
j
nxn,Aλj,nΔ

j–
n xn) ∈G(Aj) for each j = , , . . . , l, it follows from

the monotonicity of Aj that for all n≥ ,

〈
w –Δj

nxn,w
* –Aλj,nΔ

j–
n xn

〉 ≥ 

for all j = , , . . . , l. Letting n → ∞ in the inequality above, we get 〈w – p,w*〉 ≥  for all
j = , , . . . , l. Since Aj is maximal monotone for all j = , , . . . , l, we obtain p ∈ ⋂l

j=A–
j .

Next, we show that p ∈ ⋂m
i= EP(θi). For any q ∈ F and un = Km

n zn, we observe that

φ(q,un) = φ
(
q,Km

n zn
)

≤ φ
(
q,Km–

n zn
)

≤ φ
(
q,Km–

n zn
)

· · ·
≤ φ

(
q,Ki

nzn
)
. ()

By Lemma , for i = , , . . . ,m, we have

φ
(
Ki
nzn,xn

) ≤ φ(q,xn) – φ
(
q,Ki

nzn
)

≤ φ(q,xn) – φ(q,un). ()
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Since xn → p and un → p as n→ ∞, we get φ(Ki
nzn,xn) →  as n→ ∞ for all i = , , . . . ,m.

From (), it follows that

(∥∥Ki
nzn

∥∥ – ‖xn‖
) → 

as n→ ∞. Since ‖xn‖ → ‖p‖ as n→ ∞, we also have

∥∥Ki
nzn

∥∥ → ‖p‖ ()

as n→ ∞. Since {Ki
nzn} is bounded and E is reflexive, without loss of generality, we assume

that Ki
nzn ⇀ h as n → ∞. Since Cn is closed and convex for each n ≥ , it is obvious that

h ∈ Cn. Again, since

φ
(
Ki
nzn,xn

)
=

∥∥Ki
nzn

∥∥ – 
〈
Ki
nzn, Jxn

〉
+ ‖xn‖,

taking lim infn→∞ on both sides of the equality above, we have

 ≥ ‖h‖ – 〈h, Jp〉 + ‖p‖ = φ(h,p). ()

That is, h = p and it follows that for all i = , , . . . ,m, it follows that

Ki
nzn ⇀ p ()

as n→ ∞. Thus, from (), () and the Kadec-Klee property, it follows that

lim
n→∞Ki

nzn = p ()

for all i = , , . . . ,m. We also have

lim
n→∞Ki–

n zn = p ()

for all i = , , . . . ,m, and so

∥∥Ki
nzn –Ki–

n zn
∥∥ = 

for all i = , , . . . ,m. Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

∥∥JKi
nzn – JKi–

n zn
∥∥ = 

for all i = , , . . . ,m. From ri,n >  for all i = , , . . . ,m, we have

‖JKi
nzn – JKi–

n zn‖
ri,n

→ 

as n→ ∞ and

θi
(
Ki
nzn, y

)
+


ri,n

〈
y –Ki

nzn, JK
i
nzn – JKi–

n zn
〉 ≥  ()
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for all y ∈ C. Thus, by (A), we have

∥∥y –Ki
nzn

∥∥‖JKi
nzn – JKi–

n zn‖
ri,n

≥ 
ri,n

〈
y –Ki

nzn, JK
i
nzn – JKi–

n zn
〉

≥ –θi
(
Ki
nzn, y

)
≥ θi

(
y,Ki

nzn
)

()

for all y ∈ C and Ki
nzn → p as n→ ∞, and so θi(y,p) ≤  for all y ∈ C. For any t with  < t <

, define yt = ty+ ( – t)p. Then yt ∈ C, which implies that θi(yt ,p) ≤  for all i = , , . . . ,m.
Thus, from (A), it follows that

 = θi(yt , yt) ≤ tθi(yt , y) + ( – t)θi(yt ,p) ≤ tθi(yt , y),

and so θi(yt , y) ≥  for all i = , , . . . ,m. From (A), we have θi(p, y) ≥  for all y ∈ C and
i = , , . . . ,m, that is, p ∈ EP(θi) for all i = , , . . . ,m. This implies that p ∈ ⋂m

i= EP(θi).
Finally, we show that p ∈ F(S). Since {xn} is bounded, the mapping S is also bounded.

From yn → p as n→ ∞ and (), we have

∥∥JSnxn∥∥ → ‖Jp‖ ()

as n→ ∞. Since J– : E* → E is norm-weak*-continuous,

Snxn ⇀ p ()

as n→ ∞.
On the other hand, in view of (), it follows that

∣∣∥∥Snxn∥∥ – ‖p‖∣∣ = ∣∣∥∥J(Snxn)∥∥ – ‖Jp‖∣∣ ≤ ∥∥J(Snxn) – Jp
∥∥ = 

and so ‖Snxn‖ → ‖p‖. Since E has the Kadee-Klee property, we get

Snxn → p ()

for all n≥ . By using the triangle inequality, since S is uniformly L-Lipschitz continuous,
we get

∥∥Sn+xn – Snxn
∥∥

≤ ∥∥Sn+xn – Sn+xn+
∥∥ +

∥∥Sn+xn+ – xn+
∥∥ + ‖xn+ – xn‖ +

∥∥xn – Snxn
∥∥

≤ (L + )‖xn+ – xn‖ +
∥∥Sn+xn+ – xn+

∥∥ +
∥∥xn – Snxn

∥∥. ()

Since Snxn → p as n → ∞, we get Sn+xn → p as n→ ∞, and so SSnxn → p as n→ ∞. In
view of the closedness of S, we have Sp = p, which implies that p ∈ F(S). Hence p ∈F .
Step . We show that p = Π

f
Fx. Since F is a closed and convex set, it follows from

Lemma  that Π
f
Fx is single-valued, which is denoted by p̂. By the definitions of xn =
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Π
f
Cnx and p̂ ∈F ⊂ Cn, we also have

G(xn, Jx) ≤ G(p̂, Jx)

for all n ≥ . By the definitions of G and f , we know that for any x ∈ E, G(ξ , Jx) is convex
and lower semicontinuous with respect to ξ , and so

G(p, Jx) ≤ lim inf
n→∞ G(xn, Jx) ≤ lim sup

n→∞
G(xn, Jx) ≤ G(p̂, Jx).

From the definition of Π
f
Fx, since p ∈ F , we conclude that p̂ = p = Π

f
Fx and xn → p as

n→ ∞. This completes the proof. �

Setting νn = (kn – ), μn =  and ψ : R+ →  in Theorem , we have the following result.

Corollary  Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. For each i = , , . . . ,m, let θi

be a bifunction from C × C to R satisfying the conditions (A)-(A). Let Aj ⊂ E × E* be a
maximalmonotone operator satisfying D(A) ⊂ C and JAj

λj,n
= (J+λj,nAj)–J for all λj,n >  and

j = , , . . . , l. Let S : C → C be a closed and quasi-φ-asymptotically nonexpansive mapping.
Let f : E → R+ be a convex and lower semicontinuous function with C ⊂ int(D(f )) and
f () = . Assume that S is uniformly L-Lipschitz continuous andF = F(S)∩ (

⋂m
i= EP(θi))∩

(
⋂l

j=A–
j ) �= ∅. For an initial point x ∈ E, define C = C and the sequence {xn} in C by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zn = JAl
λl,n

◦ JAl–
λl–,n

◦ · · · ◦ JA
λ,n

xn,
un = Tθm

rm,n ◦ Tθm–
rm–,n ◦ · · · ◦ Tθ

r,nzn,
yn = J–(αnJx + βnJSnxn + γnJun),
Cn+ = {v ∈ Cn :G(v, Jyn) ≤ αnG(q, Jx) + ( – αn)G(q, Jxn) + ζn},
xn+ = Π

f
Cn+

x

()

for all n ≥ , where {αn}, {βn} and {γn} are the sequences in (, ) with αn + βn + γn = ,
ζn = supq∈F (kn – )G(q, Jxn) and, for each i = , , , . . . ,m, {ri,n} ⊂ [d,∞) for some d > .
If limn→∞ αn = , lim infn→∞ βn <  and lim infn→∞ λj,n >  for all j = , , . . . , l, then the
sequence {xn} converges strongly to a point Π

f
Fx.

If f (x) =  for all x ∈ E in Theorem , thenG(x, Jy) = φ(x, y) andΠ
f
F = ΠF and so we have

the following corollary.

Corollary  Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convexBanach space E with theKadec-Klee property.For each i = , , . . . ,m, let θi be
a bifunction from C×C to R satisfying the conditions (A)-(A). Let Aj ⊂ E×E* be amax-
imal monotone operator satisfying D(Aj) ⊂ C and JAj

λj,n
= (J +λj,nAj)–J for all λj,n >  and j =

, , . . . , l. Let S : C → C be a closed and totally quasi-φ-asymptotically nonexpansive map-
ping with nonnegative real sequences {νn}, {μn} with νn → , μn →  as n → ∞, respec-
tively, and a strictly increasing continuous function ψ : R+ → R+ with ψ() = . Assume
that S is uniformly L-Lipschitz continuous and F = F(S)∩ (

⋂m
i= EP(θi))∩ (

⋂l
j=A–

j ) �= ∅.
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For an initial point x ∈ E, define C = C and the sequence {xn} in C by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zn = JAl
λl,n

◦ JAl–
λl–,n

◦ · · · ◦ JA
λ,n

xn,
un = Tθm

rm,n ◦ Tθm–
rm–,n ◦ · · · ◦ Tθ

r,nzn,
yn = J–(αnJx + βnJSnxn + γnJun),
Cn+ = {v ∈ Cn : φ(v, yn) ≤ αnφ(v,x) + ( – αn)φ(v,xn) + ζn},
xn+ = ΠCn+x

()

for all n ≥ , where {αn}, {βn} and {γn} are the sequences in (, ) with αn + βn + γn = ,
ζn = νn supq∈F ψ(φ(q,xn)) +μn and, for each i = , , , . . . ,m, {ri,n} ⊂ [d,∞) for some d > .
If limn→∞ αn = , lim infn→∞ βn <  and lim infn→∞ λj,n >  for each j = , , . . . , l, then the
sequence {xn} converges strongly to a point ΠFx.

Setting νn = (kn – ), μn =  and ψ(x) = x in Theorem , we have the following corollary.

Corollary  Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. For each i = , , . . . ,m, let θi

be a bifunction from C × C to R satisfying the conditions (A)-(A). Let Aj ⊂ E × E* be
a maximal monotone operator satisfying D(A) ⊂ C and JAj

λj,n
= (J + λj,nAj)–J for all λj,n >

 and j = , , . . . , l. Let S : C → C be a closed and quasi-φ-asymptotically nonexpansive
mapping. Assume that S uniformly L-Lipschitz continuous and F = F(S)∩ (

⋂m
i= EP(θi))∩

(
⋂l

j=A–
j ) �= ∅. For an initial point x ∈ E, define C = C and the sequence {xn} in C by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zn = JAl
λl,n

◦ JAl–
λl–,n

◦ · · · ◦ JA
λ,n

xn,
un = Tθm

rm,n ◦ Tθm–
rm–,n ◦ · · · ◦ Tθ

r,nzn,
yn = J–(αnJx + βnJSnxn + γnJun),
Cn+ = {v ∈ Cn : φ(v, yn) ≤ αnφ(q,x) + ( – αn)φ(q,xn) + ζn},
xn+ = ΠCn+x

()

for all n ≥ , where {αn}, {βn} and {γn} are the sequences in (, ) with αn + βn + γn = ,
ζn = supq∈F (kn – )φ(q,xn) and, for each i = , , , . . . ,m, {ri,n} ⊂ [d,∞) for some d > .
If limn→∞ αn = , lim infn→∞ βn <  and lim infn→∞ λj,n >  for each j = , , . . . , l, then the
sequence {xn} converges strongly to a point ΠFx.

Competing interests
The author declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details
1Department of Mathematics and Statistics, Faculty of Science, Thaksin University, Phatthalung, 93110, Thailand.
2Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod,
Thrungkru, Bangkok, 10140, Thailand. 3Department of Mathematics Education and RINS, Gyeongsang National
University, Chinju, 660-701, Korea.

Acknowledgements
This work was supported by Thaksin University Research Fund and YJ Cho was supported by the Basic Science Research
Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and
Technology (NRF-2012-0008170).

Received: 19 February 2013 Accepted: 5 July 2013 Published: 22 July 2013

http://www.fixedpointtheoryandapplications.com/content/2013/1/199


Saewan et al. Fixed Point Theory and Applications 2013, 2013:199 Page 22 of 23
http://www.fixedpointtheoryandapplications.com/content/2013/1/199

References
1. Fan, K: A minimax inequality and applications. In: Shisha, O (ed.) Inequality, vol. III, pp. 103-113. Academic Press, New

York (1972)
2. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145

(1994)
3. Martinet, B: Regularization d’ inéquations variationelles par approximations successives. Rev. Fr. Autom. Inform. Rech.

Opér. 4, 154-159 (1970)
4. Rockafellar, RT: Monotone operator and the proximal point algorithm. SIAM J. Control Optim. 14, 877-898 (1976)
5. Cho, YJ, Kang, SM, Zhou, H: Approximate proximal point algorithms for finding zeroes of maximal monotone

operators in Hilbert spaces. J. Inequal. Appl. 2008, Article ID 598191 (2008)
6. Ceng, LC, Liou, YC, Naraghirad, E: Iterative approaches to find zeros of maximal monotone operators by hybrid

approximate proximal point methods. Fixed Point Theory Appl. 2011, Article ID 282171 (2011)
7. Güler, O: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29,

403-419 (1991)
8. Kohsaka, F, Takahashi, W: Strong convergence of an iterative sequence for maximal monotone operators in a Banach

space. Abstr. Appl. Anal. 2004, 239-249 (2004)
9. Lewicki, G, Marino, G: On some algorithms in Banach spaces finding fixed points of nonlinear mappings. Nonlinear

Anal. 71, 3964-3972 (2010)
10. Marino, G, Xu, HK: Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 3, 791-808

(2004)
11. Qin, X, Kang, SM, Cho, YJ: Approximating zeros of monotone operators by proximal point algorithms. J. Glob. Optim.

46, 75-87 (2010)
12. Saewan, S, Kumam, P: A hybrid iterative scheme for a maximal monotone operator and two countable families of

relatively quasi-nonexpansive mappings for generalized mixed equilibrium and variational inequality problems.
Abstr. Appl. Anal. 2010, Article ID 123027 (2010)

13. Yao, Y, Noor, MA: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217,
46-55 (2008)

14. Yao, Y, Shahzad, N: Strong convergence of a proximal point algorithm with general errors. Optim. Lett. (2011).
doi:10.1007/s11590-011-0286-2

15. Reich, S: A weak convergence theorem for the alternating method with Bregman distances. In: Kartsatos, AG (ed.)
Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 313-318. Dekker, New York
(1996)

16. Saewan, S, Kumam, P: A modified Mann iterative scheme by generalized f -projection for a countable family of
relatively quasi-nonexpansive mappings and a system of generalized mixed equilibrium problems. Fixed Point
Theory Appl. 2011, 104 (2011)

17. Chang, SS, Joseph Lee, HW, Chan, CK, Zhang, WB: A modified Halpern-type iteration algorithm for totally
quasi-φ-asymptotically nonexpansive mappings with applications. Appl. Math. Comput. (2011).
doi:10.1016/j.amc.2011.12.019

18. Li, X, Huang, N, O’Regan, D: Strong convergence theorems for relatively nonexpansive mappings in Banach spaces
with applications. Comput. Math. Appl. 60, 1322-1331 (2010)

19. Ofoedu, EU, Shehu, Y: Convergence analysis for finite family of relatively quasi nonexpansive mapping and systems of
equilibrium problems. Appl. Math. Comput. (2011). doi:10.1016/j.amc.2011.03.147

20. Chang, SS, Joseph Lee, HW, Chan, CK: A new hybrid method for solving a generalized equilibrium problem, solving a
variational inequality problem and obtaining common fixed points in Banach spaces, with applications. Nonlinear
Anal. 73, 2260-2270 (2010)

21. Qin, X, Su, Y: Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal.
67, 1958-1965 (2007)

22. Butnariu, D, Reich, S, Zaslavski, AJ: Asymptotic behavior of relatively nonexpansive operators in Banach spaces.
J. Appl. Anal. 7, 151-174 (2001)

23. Censor, Y, Reich, S: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility
and optimization. Optimization 37, 323-339 (1996)

24. Agarwal, RP, Cho, YJ, Qin, X: Generalized projection algorithms for nonlinear operators. Numer. Funct. Anal. Optim. 28,
1197-1215 (2007)

25. Qin, X, Cho, YJ, Kang, SM: Convergence theorems of common elements for equilibrium problems and fixed point
problems in Banach spaces. J. Comput. Appl. Math. 225, 20-30 (2009)

26. Zhou, H, Gao, G, Tan, B: Convergence theorems of a modified hybrid algorithm for a family of quasi-φ-asymptotically
nonexpansive mappings. J. Appl. Math. Comput. 32, 453-464 (2010)

27. Chang, SS, Joseph Lee, HW, Chan, CK, Yang, L: Approximation theorems for total quasi-φ-asymptotically
nonexpansive mappings with applications. Appl. Math. Comput. (2011). doi:10.1016/j.amc.2011.08.036

28. Alber, YI: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A
(ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15-50. Dekker, New York
(1996)

29. Alber, YI, Reich, S: An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panam.
Math. J. 4, 39-54 (1994)

30. Cioranescu, I: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic, Dordrecht
(1990)

31. Kamimura, S, Takahashi, W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13,
938-945 (2002)

32. Takahashi, W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
33. Reich, S: Geometry of Banach spaces, duality mappings and nonlinear problems. Bull. Am. Math. Soc. 26(2), 367-370

(1992)
34. Wu, KQ, Huang, NJ: The generalized f -projection operator with an application. Bull. Aust. Math. Soc. 73, 307-317

(2006)

http://www.fixedpointtheoryandapplications.com/content/2013/1/199
http://dx.doi.org/10.1007/s11590-011-0286-2
http://dx.doi.org/10.1016/j.amc.2011.12.019
http://dx.doi.org/10.1016/j.amc.2011.03.147
http://dx.doi.org/10.1016/j.amc.2011.08.036


Saewan et al. Fixed Point Theory and Applications 2013, 2013:199 Page 23 of 23
http://www.fixedpointtheoryandapplications.com/content/2013/1/199

35. Alber, YI: Generalized projection operators in Banach spaces: properties and applications. In: Proceedings of the Israel
Seminar, Ariel, Israel. Functional and Differential Equations, vol. 1, pp. 1-21 (1994)

36. Hudzik, H, Kowalewski, W, Lewicki, G: Approximative compactness and full rotundity in Musielak-Orlicz spaces and
Lorentz-Orlicz spaces. Z. Anal. Anwend. 25, 163-192 (2006)

37. Fan, JH, Liu, X, Li, JL: Iterative schemes for approximating solutions of generalized variational inequalities in Banach
spaces. Nonlinear Anal. 70, 3997-4007 (2009)

38. Deimling, K: Nonlinear Functional Analysis. Springer, Berlin (1985)
39. Takahashi, W, Zembayashi, K: Strong and weak convergence theorems for equilibrium problems and relatively

nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45-57 (2009)
40. Kohsaka, F, Takahashi, W: Existence and approximation of fixed points of firmly nonexpansive-type mappings in

Banach spaces. SIAM J. Optim. 19, 824-835 (2008)
41. Saewan, S, Kumam, P: A strong convergence theorem concerning a hybrid projection method for finding common

fixed points of a countable family of relatively quasi-nonexpansive mappings. J. Nonlinear Convex Anal. 13(2),
313-330 (2012)

42. Kohsaka, F, Takahashi, W: Existence and approximation of fixed points of firmly nonexpansive type mappings in
Banach spaces. SIAM J. Optim. 19, 824-835 (2008)

43. Rockafellar, RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970)

doi:10.1186/1687-1812-2013-199
Cite this article as: Saewan et al.: Iterative schemes for approximating solution of nonlinear operators in Banach
spaces. Fixed Point Theory and Applications 2013 2013:199.

http://www.fixedpointtheoryandapplications.com/content/2013/1/199

	Iterative schemes for approximating solution of nonlinear operators in Banach spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main result
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


