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1 Preliminaries
A new approach in the theory of fixed points was recently given by Jachymski [] and
Gwóźdź-Lukawska and Jachymski [] by using the context of metric spaces endowed with
a graph. Other recent results for single-valued and multivalued operators in such metric
spaces are given by Nicolae, O’Regan and Petruşel in [] and by Beg, Butt and Radojevic
in [].
Let (X,d) be ametric space and let� be the diagonal of X×X. LetG be a directed graph

such that the set V (G) of its vertices coincides with X and � ⊆ E(G), where E(G) is the
set of the edges of the graph. Assume also that G has no parallel edges and, thus, one can
identify G with the pair (V (G),E(G)).
If x and y are vertices ofG, then a path inG from x to y of length k ∈N is a finite sequence

(xn)n∈{,,,...,k} of vertices such that x = x, xk = y and (xi–,xi) ∈ E(G) for i ∈ {, , . . . ,k}.
Notice that a graph G is connected if there is a path between any two vertices and it is
weakly connected if G̃ is connected, where G̃ denotes the undirected graph obtained from
G by ignoring the direction of edges.
Denote by G– the graph obtained from G by reversing the direction of edges. Thus,

E
(
G–) = {

(x, y) ∈ X ×X : (y,x) ∈ E(G)
}
. (∗)

Since it is more convenient to treat G̃ as a directed graph for which the set of its edges is
symmetric, under this convention, we have that

E(G̃) = E(G)∪ E
(
G–). (∗∗)
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If G is such that E(G) is symmetric, then for x ∈ V (G), the symbol [x]G denotes the
equivalence class of the relation � defined on V (G) by the rule:

y�z if there is a path in G from y to z.

Let us consider the following families of subsets of a metric space (X,d):

P(X) :=
{
Y ∈P(X) | Y �= ∅}

; Pb(X) :=
{
Y ∈ P(X) | Y is bounded

}
;

Pcl(X) :=
{
Y ∈ P(X) | Y is closed

}
; Pcp(X) :=

{
Y ∈ P(X) | Y is compact

}
.

The gap functional between the sets A and B in the metric space (X,d) is given by

D : P(X)× P(X) →R+ ∪ {+∞}, D(A,B) = inf
{
d(a,b) | a ∈ A,b ∈ B

}
.

In particular, if x ∈ X then D(x,B) :=D({x},B).
The Pompeiu-Hausdorff functional is defined by

H : P(X)× P(X) →R+ ∪ {+∞},
H(A,B) =max

{
sup
a∈A

D(a,B), sup
b∈B

D(A,b)
}
.

The diameter generalized functional generated by d is given by

δ : P(X)× P(X) →R+ ∪ {+∞},
δ(A,B) = sup

{
d(a,b) | a ∈ A,b ∈ B

}
.

In particular, we denote by δ(A) := δ(A,A) the diameter of the set A.
Let (X,d) be a metric space. If T : X → P(X) is a multivalued operator, then x ∈ X is

called a fixed point for T if and only if x ∈ T(x). The set Fix(T) := {x ∈ X | x ∈ T(x)} is
called the fixed point set of T , while SFix(T) = {x ∈ X | {x} = Tx} is called the strict fixed
point set of T . Graph(T) := {(x, y) | y ∈ T(x)} denotes the graph of T .

Definition . Let ϕ :R+ →R+ be amapping. Then ϕ is called a strong comparison func-
tion if the following assertions hold:

(i) ϕ is increasing;
(ii) ϕn(t) →  as n→ ∞ for all t ∈R+;
(iii)

∑∞
n= ϕ

n(t) < ∞ for all t ∈R+.

Definition . Let (X,d) be a complete metric space, let G be a directed graph, and let
T : X → Pb(X) be a multivalued operator. By definition, T is called a (δ,ϕ)-G-contraction
if there exists ϕ :R+ →R+, a strong comparison function, such that

δ
(
T(x),T(y)

) ≤ ϕ
(
d(x, y)

)
for all (x, y) ∈ E(G).

In this paper, we present somefixed point and strict fixed point theorems formultivalued
operators satisfying a contractive condition of Reich type involving the functional δ (see
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[, ]). The equality between Fix(T) and SFix(T) and the well-posedness of the fixed point
problem are also studied.
Our results also generalize and extend some fixed point theorems in partially ordered

complete metric spaces given in Harjani and Sadarangani [], Nicolae et al. [], Nieto and
Rodríguez-López [] and [], Nieto et al. [], O’Regan and Petruşel [], Petruşel and Rus
[], and Ran and Reurings [].

2 Fixed point and strict fixed point theorems
We begin this section by presenting a strict fixed point theorem for a Reich type contrac-
tion with respect to the functional δ.

Theorem . Let (X,d) be a complete metric space and let G be a directed graph such that
the triple (X,d,G) satisfies the following property:

(P)
for any sequence (xn)n∈N ⊂ X with xn → x as n→ ∞,
there exists a subsequence (xkn )n∈N of (xn)n∈N such that (xkn ,x) ∈ E(G).

Let T : X → Pb(X) be amultivalued operator. Suppose that the following assertions hold:
(i) There exists a,b, c ∈R+ with b �=  and a + b + c <  such that

δ
(
T(x),T(y)

) ≤ ad(x, y) + bδ
(
x,T(x)

)
+ cδ

(
y,T(y)

)

for all (x, y) ∈ E(G).
(ii) For each x ∈ X , the set

X̃T (x) :=
{
y ∈ T(x) : (x, y) ∈ E(G) and δ

(
x,T(x)

) ≤ qd(x, y)

for some q ∈
]
,
 – a – c

b

[}

is nonempty.
Then we have:
(a) Fix(T) = SFix(T) �= ∅;
(b) If we additionally suppose that

x∗, y∗ ∈ Fix(T) ⇒ (
x∗, y∗) ∈ E(G),

then Fix(T) = SFix(T) = {x∗}.

Proof (a) Let x ∈ X. Since X̃T (x) �= ∅, there exists x ∈ T(x) and  < q < –a–c
b such that

(x,x) ∈ E(G) and

δ
(
x,T(x)

) ≤ qd(x,x).

By (i) we have that

δ
(
x,T(x)

) ≤ δ
(
T(x),T(x)

) ≤ ad(x,x) + bδ
(
x,T(x)

)
+ cδ

(
x,T(x)

)
≤ ad(x,x) + bqd(x,x) + cδ

(
x,T(x)

)
.
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Hence,

δ
(
x,T(x)

) ≤ a + bq
 – c

d(x,x). (.)

For x ∈ X, since X̃T (x) �= ∅, we get again that there exists x ∈ T(x) such that
δ(x,T(x)) ≤ qd(x,x) and (x,x) ∈ E(G). Then

d(x,x)≤ δ
(
x,T(x)

) ≤ a + bq
 – c

d(x,x). (.)

On the other hand, by (i), we have that

δ
(
x,T(x)

) ≤ δ
(
T(x),T(x)

) ≤ ad(x,x) + bδ
(
x,T(x)

)
+ cδ

(
x,T(x)

)
≤ ad(x,x) + bqd(x,x) + cδ

(
x,T(x)

)
.

Using (.) we obtain

δ
(
x,T(x)

) ≤ a + bq
 – c

d(x,x) ≤
(
a + bq
 – c

)

d(x,x). (.)

For x ∈ X, we have X̃T (x) �= ∅, and so there exists x ∈ T(x) such that δ(x,T(x)) ≤
qd(x,x) and (x,x) ∈ E(G).
Then

d(x,x)≤ δ
(
x,T(x)

) ≤
(
a + bq
 – c

)

d(x,x). (.)

By these procedures, we obtain a sequence (xn)n∈N with the following properties:
() (xn,xn+) ∈ E(G) for each n ∈N;
() d(xn,xn+) ≤ ( a+bq–c )

nd(x,x) for each n ∈N;
() δ(xn,T(xn)) ≤ ( a+bq–c )

nd(x,x) for each n ∈N.
From () we obtain that the sequence (xn)n∈N is Cauchy. Since the metric space X is

complete, we get that the sequence is convergent, i.e., xn → x∗ as n→ ∞. By the property
(P), there exists a subsequence (xkn )n∈N of (xn)n∈N such that (xkn ,x∗) ∈ E(G) for each n ∈N.
We have

δ
(
x∗,T

(
x∗)) ≤ d

(
x∗,xkn+

)
+ δ

(
xkn+ ,T

(
x∗)) ≤ d

(
x∗,xkn+

)
+ δ

(
T(xkn ),T

(
x∗))

≤ d
(
x∗,xkn+

)
+ ad

(
xkn ,x

∗) + bδ
(
xkn ,T(xkn )

)
+ cδ

(
x∗,T

(
x∗))

≤ d
(
x∗,xkn+

)
+ ad

(
xkn ,x

∗) + b
(
a + bq
 – c

)kn
d(x,x) + cδ

(
x∗,T

(
x∗)),

δ
(
x∗,T

(
x∗)) ≤ 

 – c
d
(
x∗,xkn+

)
+

a
 – c

d
(
xkn ,x

∗) + b
 – c

(
a + bq
 – c

)kn
d(x,x). (.)

But d(x∗,xkn+ ) →  as n → ∞ and d(xkn ,x∗) →  as n → ∞. Hence, δ(x∗,T(x∗)) = ,
which implies that x∗ ∈ SFix(T). Thus SFix(T) �= ∅.
We shall prove now that Fix(T) = SFix(T).

http://www.fixedpointtheoryandapplications.com/content/2013/1/203
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Because SFix(T) ⊂ Fix(T), we need to show that Fix(T) ⊂ SFix(T).
Let x∗ ∈ Fix(T)⇒ x∗ ∈ T(x∗). Because � ⊂ E(G), we have that (x∗,x∗) ∈ E(G). Using (ii)

with x = y = x∗, we obtain

δ
(
T

(
x∗)) ≤ ad

(
x∗,x∗) + bδ

(
x∗,T

(
x∗)) + cδ

(
x∗,T

(
x∗)).

So, δ(T(x∗)) ≤ (b + c)δ(x∗,T(x∗)). Because x∗ ∈ T(x∗), we get that δ(x∗,T(x∗)) ≤ δ(T(x∗)).
Hence, we have

δ
(
T

(
x∗)) ≤ (b + c)δ

(
T

(
x∗)). (.)

Suppose that card(T(x∗)) > . This implies that δ(T(x∗)) > . Thus from (.) we obtain
that b + c > , which contradicts the hypothesis a + b + c < .
Thus δ(T(x∗)) = ⇒ T(x∗) = {x∗}, i.e., x∗ ∈ SFix(T) and Fix(T)⊂ SFix(T).
Hence, Fix(T) = SFix(T) �= ∅.
(b) Suppose that there exist x∗, y∗ ∈ Fix(T) = SFix(T) with x∗ �= y∗. We have that
• x∗ ∈ SFix(T)⇒ δ(x∗,T(x∗)) = ;
• y∗ ∈ SFix(T) ⇒ δ(y∗,T(y∗)) = ;
• (x∗, y∗) ∈ E(G).

Using (i) we obtain

d
(
x∗, y∗) = δ

(
T

(
x∗),T(

y∗)) ≤ ad
(
x∗, y∗) + bδ

(
x∗,T

(
x∗)) + cδ

(
y∗,T

(
y∗)).

Thus, d(x∗, y∗) ≤ ad(x∗, y∗), which implies that a≥ , which is a contradiction.
Hence, Fix(T) = SFix(T) = {x∗}. �

Next we present some examples and counterexamples of multivalued operators which
satisfy the hypothesis in Theorem ..

Example . Let X := {(, ), (, ), (, ), (, )} and T : X → Pcl(X) be given by

T(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{(, )}, x = (, ),

{(, )}, x = (, ),

{(, ), (, )}, x = (, ),

{(, ), (, )}, x = (, ).

(.)

Let E(G) := {((, ), (, )), ((, ), (, )), ((, ), (, ))} ∪ �.
Notice that all the hypotheses in Theorem . are satisfied (the condition (i) is verified

for a = c = ., b = . and so Fix(T) = SFix(T) = {(, )}.

The following remarks show that it is not possible to have elements in FT \ SFT .

Remark . If we suppose that there exists x ∈ FT \ SFT , then, since (x,x) ∈ �, we get
(using the condition (i) in the above theorem with y = x) that δ(T(x)) ≤ (b + c)δ(T(x)),
which is a contradiction with a + b + c < .

http://www.fixedpointtheoryandapplications.com/content/2013/1/203
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Remark . If, in the previous theorem, instead of the property (P), we suppose that T
has a closed graph, then we obtain again the conclusion Fix(T) = SFix(T) �= ∅.

Remark . If, in the above remark, we additionally suppose that

x∗, y∗ ∈ Fix(T) ⇒ (
x∗, y∗) ∈ E(G),

then Fix(T) = SFix(T) = {x∗}.

The next result presents a strict fixed point theorem where the operator T satisfies a
(δ,ϕ)-G-contractive condition on E(G).

Theorem. Let (X,d) be a complete metric space and let G be a directed graph such that
the triple (X,d,G) satisfies the following property:

(P)
for any sequence (xn)n∈N ⊂ X with xn → x as n→ ∞,
there exists a subsequence (xkn )n∈N of (xn)n∈N such that (xkn ,x) ∈ E(G).

Let T : X → Pb(X) be amultivalued operator. Suppose that the following assertions hold:
(i) T is a (δ,ϕ)-G-contraction.
(ii) For each x ∈ X , the set

X̃T :=
{
y ∈ T(x) : (x, y) ∈ E(G) and δ

(
x,T(x)

) ≤ qd(x, y) for some q ∈
]
,
 – a – c

b

[}

is nonempty.
Then we have:
(a) Fix(T) = SFix(T) �= ∅;
(b) If, in addition, the following implication holds:

x∗, y∗ ∈ Fix(T) ⇒ (
x∗, y∗) ∈ E(G),

then Fix(T) = SFix(T) = {x∗}.

Proof (a) Let x ∈ X. Then, since X̃T (x) is nonempty, there exist x ∈ T(x) and q ∈
], –a–cb [ such that (x,x) ∈ E(G) and

δ
(
x,T(x)

) ≤ qd(x,x).

By (i) we have that

δ
(
x,T(x)

) ≤ δ
(
T(x),T(x)

) ≤ ϕ
(
d(x,x)

)
.

For x ∈ X, by the same approach as before, there exists x ∈ T(x) such that δ(x,T(x)) ≤
qd(x,x) and (x,x) ∈ E(G).
We have

d(x,x)≤ δ
(
x,T(x)

) ≤ δ
(
T(x),T(x)

) ≤ ϕ
(
d(x,x)

)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/203
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On the other hand, by (i) we have that

δ
(
x,T(x)

) ≤ δ
(
T(x),T(x)

) ≤ ϕ
(
d(x,x)

) ≤ ϕ(d(x,x)).
By the same procedure, for x ∈ X there exists x ∈ T(x) such that δ(x,T(x)) ≤

qd(x,x) and (x,x) ∈ E(G). Thus

d(x,x)≤ δ
(
x,T(x)

) ≤ ϕ(d(x,x)). (.)

We have

δ
(
x,T(x)

) ≤ δ
(
T(x),T(x)

) ≤ ϕ
(
d(x,x)

) ≤ ϕ(d(x,x)).
By these procedures, we obtain a sequence (xn)n∈N with the following properties:
() (xn,xn+) ∈ E(G) for each n ∈N;
() d(xn,xn+) ≤ ϕn(d(x,x)) for each n ∈N;
() δ(xn,T(xn)) ≤ ϕn(d(x,x)) for each n ∈N.
By (), using the properties of ϕ, we obtain that the sequence (xn)n∈N is Cauchy. Since the

metric space is complete, we have that the sequence is convergent, i.e., xn → x∗ as n → ∞.
By the property (P), we get that there exists a subsequence (xkn )n∈N of (xn)n∈N such that
(xkn ,x∗) ∈ E(G) for each n ∈N.
We shall prove now that x∗ ∈ SFix(T). We have

δ
(
x∗,T

(
x∗)) ≤ d

(
x∗,xkn+

)
+ δ

(
xkn+ ,T

(
x∗)) ≤ d

(
x∗,xkn+

)
+ δ

(
T(xkn ),T

(
x∗))

≤ d
(
x∗,xkn+

)
+ ϕ

(
d
(
xkn ,x

∗)).
Since d(x∗,xkn+ ) →  as n → ∞ and ϕ is continuous in  with ϕ() = , we get that

δ(x∗,T(x∗)) = .
Hence, x∗ ∈ SFix(T) ⇒ SFix(T) �= ∅.
We shall prove now that Fix(T) = SFix(T).
Because SFix(T) ⊂ Fix(T), we need to show that Fix(T) ⊂ SFix(T).
Let x∗ ∈ Fix(T). Because� ⊂ E(G), we have that (x∗,x∗) ∈ E(G). Using (i) with x = y = x∗,

we obtain

δ
(
T

(
x∗)) ≤ ϕ

(
d
(
x∗,x∗)) = .

Hence, x∗ ∈ SFix(T) and the proof of this conclusion is complete.
(b) Suppose that there exist x∗, y∗ ∈ Fix(T) = SFix(T) with x∗ �= y∗. We have that
• x∗ ∈ SFix(T)⇒ δ(x∗,T(x∗)) = ;
• y∗ ∈ SFix(T) ⇒ δ(y∗,T(y∗)) = ;
• (x∗, y∗) ∈ E(G).

Using (i) we obtain

d
(
x∗, y∗) = δ

(
T

(
x∗),T(

y∗)) ≤ ϕ
(
d
(
x∗, y∗)) < d

(
x∗, y∗).

This is a contradiction. Hence, Fix(T) = SFix(T) = {x∗}. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/203
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In the next result, the operator T satisfies another contractive condition with respect to
δ on E(G)∩Graph(T).

Theorem . Let (X,d) be a complete metric space, let G be a directed graph, and let T :
X → Pb(X) be a multivalued operator. Suppose that f : X →R+ defined f (x) := δ(x,T(x)) is
a lower semicontinuous mapping. Suppose that the following assertions hold:

(i) There exist a,b ∈R+, with b �=  and a + b < , such that

δ
(
y,T(y)

) ≤ ad(x, y) + bδ
(
x,T(x)

)
for all (x, y) ∈ E(G)∩Graph(T).

(ii) For each x ∈ X , the set

X̃T (x) :=
{
y ∈ T(x) : (x, y) ∈ E(G) and δ

(
x,T(x)

) ≤ qd(x, y) for some q ∈
]
,
 – a
b

[}

is nonempty.
Then Fix(T) = SFix(T) �= ∅.

Proof Let x ∈ X. Then, since X̃T (x) is nonempty, there exist x ∈ T(x) and  < q < –a
b

such that

δ
(
x,T(x)

) ≤ qd(x,x)

and (x,x) ∈ E(G). Since x ∈ T(x), we get that (x,x) ∈ E(G)∩Graph(T).
By (i), taking y = x and x = x, we have that

δ
(
x,T(x)

) ≤ ad(x,x) + bδ
(
x,T(x)

)
≤ ad(x,x) + bqd(x,x).

Hence,

δ
(
x,T(x)

) ≤ (a + bq)d(x,x). (.)

For x ∈ X (since X̃T (x) �= ∅), there exists x ∈ T(x) such that δ(x,T(x)) ≤ qd(x,x)
and (x,x) ∈ E(G). But x ∈ T(x) and so (x,x) ∈ E(G)∩Graph(T).
Then

d(x,x)≤ δ
(
x,T(x)

) ≤ (a + bq)d(x,x). (.)

By (i), taking y = x and x = x, we have that

δ
(
x,T(x)

) ≤ ad(x,x) + bδ
(
x,T(x)

)
≤ ad(x,x) + bqd(x,x) = (a + bq)d(x,x) ≤ (a + bq)d(x,x).

By these procedures, we obtain a sequence (xn)n∈N with the following properties:
() (xn,xn+) ∈ E(G)∩Graph(T) for each n ∈ N;

http://www.fixedpointtheoryandapplications.com/content/2013/1/203
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() d(xn,xn+) ≤ (a + bq)nd(x,x) for each n ∈ N;
() δ(xn,T(xn)) ≤ (a + bq)nd(x,x) for each n ∈N.
From () we obtain that the sequence (xn)n∈N is Cauchy. Since the metric space X is

complete, we have that the sequence is convergent, i.e., xn → x∗ as n → ∞. Now, by the
lower semicontinuity of the function f , we have

 ≤ f
(
x∗) ≤ lim inf

n→∞ f (xn) = .

Thus f (x∗) = , which means that δ(x∗,T(x∗)) = . Thus x∗ ∈ SFix(T).
Let x∗ ∈ Fix(T). Then (x∗,x∗) ∈Graph(T) and hence (x∗,x∗) ∈ E(G)∩Graph(T).
Using (i) with x = y = x∗, we obtain

δ
(
T

(
x∗)) = δ

(
x∗,T

(
x∗)) ≤ ad

(
x∗,x∗) + bδ

(
x∗,T

(
x∗)).

So, δ(T(x∗))≤ bδ(T(x∗)). If we suppose that cardT(x∗) > , then δ(T(x∗)) > . Thus, b ≥ ,
which contradicts the hypothesis.
Thus δ(T(x∗)) =  and so T(x∗) = {x∗}. The proof is now complete. �

Remark . Example . satisfies the conditions from Theorem . for a = . and b =
..

3 Well-posedness of the fixed point problem
In this section we present some well-posedness results for the fixed point problem. We
consider both the well-posedness and the well-posedness in the generalized sense for a
multivalued operator T .
We begin by recalling the definition of these notions from [] and [].

Definition . Let (X,d) be a metric space and let T : X → P(X) be a multivalued opera-
tor. By definition, the fixed point problem is well posed for T with respect to H if:

(i) SFix(T) = {x∗};
(ii) If (xn)n∈N is a sequence in X such that H(xn,T(xn)) →  as n→ ∞, then xn

d→ x∗ as
n → ∞.

Definition . Let (X,d) be a metric space and let T : X → P(X) be a multivalued opera-
tor. By definition, the fixed point problem is well posed in the generalized sense for T with
respect to H if:

(i) SFixT �= ∅;
(ii) If (xn)n∈N is a sequence in X such that H(xn,T(xn)) →  as n→ ∞, then there exists

a subsequence (xkn )n∈N of (xn)n∈N such that xkn
d→ x∗ as n→ ∞.

In our first result we will establish the well-posedness of the fixed point problem for the
operator T , where T is a Reich-type δ-contraction.

Theorem . Let (X,d) be a complete metric space and let G be a directed graph such that
the triple (X,d,G) satisfies the property (P).
Let T : X → Pb(X) be a multivalued operator. Suppose that
(i) conditions (i) and (ii) in Theorem . hold;
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(ii) if x∗, y∗ ∈ Fix(T), then (x∗, y∗) ∈ E(G);
(iii) for any sequence (xn)n∈N, xn ∈ X with H(xn,T(xn))→  as n→ ∞, we have

(xn,x∗) ∈ E(G).
In these conditions the fixed point problem is well posed for T with respect to H .

Proof From (i) and (ii) we obtain that SFix(T) = {x∗}. Let (xn)n∈N ⊂ X be a sequence which
satisfies (iii). It is obvious that H(xn,T(xn)) = δ(xn,T(xn)),

d
(
xn,x∗) ≤ δ

(
xn,T

(
x∗)) ≤ δ

(
xn,T(xn)

)
+ δ

(
T(xn),T

(
x∗))

≤ δ
(
xn,T(xn)

)
+ ad

(
xn,x∗) + bδ

(
xn,T(xn)

)
+ cδ

(
x∗,T

(
x∗)).

Thus

d
(
xn,x∗) ≤  + b

 – a
δ
(
xn,T(xn)

) →  as n→ ∞.

Hence, xn → x∗ as n→ ∞. �

Remark . If we replace the property (P) with the condition that T has a closed graph,
we reach the same conclusion.

The next result deals with the well-posedness of the fixed point problem in the general-
ized sense.

Theorem . Let (X,d) be a complete metric space and let G be a directed graph such that
the triple (X,d,G) satisfies the property (P).
Let T : X → Pb(X) be a multivalued operator. Suppose that
(i) conditions (i) and (ii) in Theorem . hold;
(ii) for any sequence (xn)n∈N, xn ∈ X with H(xn,T(xn))→  as n→ ∞, there exists a

subsequence (xkn )n∈N such that (xkn ,x∗) ∈ E(G) and H(xkn ,T(xkn )) → .
In these conditions the fixed point problem is well posed in the generalized sense for T with
respect to H .

Proof From (i) we have that SFix(T) �= ∅. Let (xn)n∈N ⊂ X be a sequence which satisfies
(ii). Then there exists a subsequence (xkn )n∈N such that (xkn ,x∗) ∈ E(G).
We have H(xkn ,T(xkn )) = δ(xkn ,T(xkn )),

d
(
xkn ,x

∗) ≤ δ
(
xkn ,T

(
x∗)) ≤ δ

(
xkn ,T(xkn )

)
+ δ

(
T(xkn ),T

(
x∗))

≤ δ
(
xkn ,T(xkn )

)
+ ad

(
xkn ,x

∗) + bδ
(
xkn ,T(xkn )

)
+ cδ

(
x∗,T

(
x∗)).

Thus

d
(
xkn ,x

∗) ≤  + b
 – a

δ
(
xkn ,T(xkn )

) →  as n→ ∞.

Hence, xkn → x∗. �

Remark . If we replace the property (P) with the condition that T has a closed graph,
we reach the same conclusion.
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Next we consider the case where the operator T satisfies a ϕ-contraction condition.

Theorem . Let (X,d) be a complete metric space and let G be a directed graph such that
the triple (X,d,G) satisfies the property (P).
Let T : X → Pb(X) be a multivalued operator. Suppose that
(i) conditions (i) and (ii) in Theorem . hold;
(ii) the following implication holds: x∗, y∗ ∈ Fix(T) implies (x∗, y∗) ∈ E(G);
(iii) the function ψ :R+ → R+, given by ψ(t) = t – ϕ(t), has the following property: if

ψ(tn) →  as n→ ∞, then tn →  as n→ ∞;
(iv) for any sequence (xn)n∈N ⊂ X with H(xn,T(xn)) →  as n→ ∞, we have

(xn,x∗) ∈ E(G) for all n ∈N.
In these conditions the fixed point problem is well posed for T with respect to H .

Proof From (i) and (ii) we obtain that SFix(T) = {x∗}. Let (xn)n∈N, xn ∈ X be a sequence
which satisfies (iv). It is obvious that H(xn,T(xn)) = δ(xn,T(xn)),

d
(
xn,x∗) ≤ δ

(
xn,T

(
x∗)) ≤ δ

(
xn,T(xn)

)
+ δ

(
T(xn),T

(
x∗))

≤ δ
(
xn,T(xn)

)
+ ϕ

(
d
(
xn,x∗)).

Thus

d
(
xn,x∗) – ϕ

(
d
(
xn,x∗)) ≤ δ

(
xn,T(xn)

) →  as n→ ∞.

Using condition (iii), we get that d(xn,x∗) →  as n→ ∞. Hence, xn → x∗. �

Remark . If we replace the property (P) with the condition that T has a closed graph,
we reach the same conclusion.

The next result gives a well-posedness (in the generalized sense) criterion for the fixed
point problem.

Theorem. Let (X,d) be a complete metric space and let G be a directed graph such that
the triple (X,d,G) satisfies the property (P).
Let T : X → Pb(X) be a multivalued operator. Suppose that
(i) the conditions (i) and (ii) in Theorem . hold;
(ii) the function ψ :R+ → R+, given ψ(t) = t – ϕ(t), has the following property: for any

sequence (tn)n∈N, there exists a subsequence (xkn )n∈N such that if ψ(tkn ) →  as
n→ ∞, then tkn →  as n → ∞;

(iii) for any sequence (xn)n∈N, xn ∈ X with H(xn,T(xn))→  as n→ ∞, there exists a
subsequence (xkn )n∈N such that (xkn ,x∗) ∈ E(G) and H(xkn ,T(xkn )) → .

In these conditions the fixed point problem is well posed in the generalized sense for T with
respect to H .

Proof From (i) we have that SFix(T) �= ∅. Let (xn)n∈N, xn ∈ X be a sequence which satisfies
(iii). Then there exists a subsequence (xkn )n∈N such that (xkn ,x∗) ∈ E(G).
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We have H(xkn ,T(xkn )) = δ(xkn ,T(xkn )),

d
(
xkn ,x

∗) ≤ δ
(
xkn ,T

(
x∗)) ≤ δ

(
xkn ,T(xkn )

)
+ δ

(
T(xkn ),T

(
x∗))

≤ δ
(
xkn ,T(xkn )

)
+ ϕ

(
d
(
xkn ,x

∗)).
Thus

d
(
xkn ,x

∗) – ϕ
(
d
(
xkn ,x

∗)) ≤ δ
(
xkn ,T(xkn )

) →  as n→ ∞.

Using condition (ii), we get that d(xkn ,x∗) →  as n→ ∞. Hence, xn → x∗. �

Remark . If we replace the property (P) with the condition that T has a closed graph,
we reach the same conclusion.
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