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Abstract
We study strong convergence of an Ishikawa-type algorithm of two asymptotically
nonexpansive type maps to their common fixed point on a CAT(0) space. Our work
provides an affirmative answer to the question of Tan and Xu (Proc. Am. Math. Soc.
122:733-739, 1994); in particular, strong convergence of an Ishikawa-type algorithm of
two asymptotically nonexpansive maps without the rate of convergence condition is
obtained on a nonlinear domain.
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1 Introduction
A CAT() space is simply a geodesic metric space whose each geodesic triangle is at least
as thin as its comparison triangle in the Euclidean plane. In , Kirk [] proved a fixed
point theorem for a nonexpansive map defined on a subset of a CAT() space. Since then,
approximation of fixed points of nonlinear maps on a CAT() space has rapidly developed
(see, e.g., [–]).
We describe briefly the needed details for a CAT() space. A metric space (X,d) is said

to be a length space if any two points of X are joined by a rectifiable path (that is, a path of
finite length) and the distance between any two points of X is taken to be the infimum of
the lengths of all rectifiable paths joining them. In this case, d is said to be a length metric
(otherwise known as an inner metric or intrinsic metric). In case no rectifiable path joins
two points of the space, the distance between them is taken to be ∞.
A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x to y) is a map

c from a closed interval [, l]⊂R to X such that c() = x, c(l) = y, and d(c(t), c(t′)) = |t – t′|
for all t, t′ ∈ [, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is called
a geodesic (or metric) segment joining x and y. We say that X is: (i) a geodesic space if any
two points of X are joined by a geodesic, and (ii) uniquely geodesic if there is exactly one
geodesic joining x and y for each x, y ∈ X, which wewill denote by [x, y], called the segment
joining x to y.
A geodesic triangle �(x,x,x) in a geodesic metric space (X,d) consists of three points

in X (the vertices of �) and a geodesic segment between each pair of vertices (the edges
of �). A comparison triangle for geodesic triangle �(x,x,x) in (X,d) is a triangle
�(x,x,x) := �(x̄, x̄, x̄) in R

 such that dR (x̄i, x̄j) = d(xi,xj) for i, j ∈ {, , }. Such a
triangle always exists (see []).
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A geodesic metric space is said to be a CAT() space if all geodesic triangles of appro-
priate size satisfy the following CAT() comparison axiom.
Let� be a geodesic triangle in X and let� ⊂R

 be a comparison triangle for�. Then�

is said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points x̄, ȳ ∈ �,

d(x, y) ≤ d(x̄, ȳ).

If x, y, y are points of aCAT() space and y is themidpoint of the segment [y, y], which
we will denote by y⊕y

 , then the CAT() inequality implies

d
(
x,
y ⊕ y



)

≤ 

d(x, y) +



d(x, y)

–


d(y, y).

The above inequality is the (CN) inequality of Bruhat and Titz [] and it was extended in
[] as follows:

d
(
z,αx⊕ ( – α)y

) ≤ αd(z,x) + ( – α)d(z, y)

– α( – α)d(x, y)

for any α ∈ [, ] and x, y, z ∈ X.
Let us recall that a geodesic metric space is a CAT() space if and only if it satisfies the

(CN) inequality (see [], p.). Moreover, if X is a CAT() metric space and x, y ∈ X, then
for any α ∈ [, ], there exists a unique point αx⊕ ( – α)y ∈ [x, y] such that

d
(
z,αx⊕ ( – α)y

) ≤ αd(z,x) + ( – α)d(z, y)

for any z ∈ X and [x, y] = {αx⊕ ( – α)y : α ∈ [, ]}.
A subset C of a CAT() space X is convex if for any x, y ∈ C, we have [x, y] ⊂ C.
Complete CAT() spaces are known as Hadamard spaces (see []). The reader inter-

ested in a more general nonlinear domain, namely -uniformly convex hyperbolic space
containing a CAT() space as a special case, is referred to Dehaish [] and Dehaish et
al. [].
Let C be a nonempty subset of a metric space (X,d). Then a selfmap T on C is:
(i) uniformly L-Lipschitzian if for some L > , d(Tnx,Tny) ≤ Ld(x, y) for x, y ∈ C,

n≥ ;
(ii) uniformly Hölder continuous if for some positive constants L and α,

d(Tnx,Tny) ≤ Ld(x, y)α for x, y ∈ C, n ≥ ;
(iii) uniformly equicontinuous if for any ε > , there exists δ >  such that

d(Tnx,Tny) ≤ ε whenever d(x, y) ≤ δ for x, y ∈ C, n≥  or, equivalently, T is
uniformly equicontinuous if and only if d(Tnxn,Tnyn)→  whenever d(xn, yn) → 
as n→ ∞;

(iv) asymptotically nonexpansive if there is a sequence {kn} ⊂ [,∞) with
limn→∞ kn =  such that d(Tnx,Tny) ≤ knd(x, y) for x, y ∈ C, n≥ ;

(v) asymptotically nonexpansive in the intermediate sense provided T is uniformly
continuous and lim supn→∞ supx,y∈C{d(Tnx,Tny) – d(x, y)} ≤  for n≥ , and
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(vi) of asymptotically nonexpansive type in the sense of Xu [] if
lim supn→∞ supx∈C{d(Tnx,Tny) – d(x, y)} ≤  for each y ∈ C, n≥ ;

(vii) of asymptotically nonexpansive type in the sense of Chang et al. [] if
lim supn→∞ supx∈C{d(Tnx,Tny) – d(x, y)} ≤  for each y ∈ C, n≥ .

The map T is semi-compact if for any bounded sequence {xn} in C with d(xn,Txn) → 
as n→ ∞, there is a subsequence {xni} of {xn} such that xni → x∗ ∈ C as ni → ∞.
It is not difficult to see that nonexpansive map, asymptotically nonexpansive map,

asymptotically nonexpansive map in the intermediate sense and asymptotically nonex-
pansive type map in the sense of Xu [] all are special cases of asymptotically nonex-
pansive type map in the sense of Chang et al. []. Moreover, a uniformly L-Lipschitzian
map is uniformlyHölder continuous, and a uniformlyHölder continuousmap is uniformly
equicontinuous. However, the converse statements are not true as indicated below.

Example . Take X =R and C = [, ]. Define T : C → C by Tx = ( – x 
 )  for all x ∈ C.

Then T is uniformly equicontinuous, but it is neither uniformly L-Lipschitzian nor uni-
formly Hölder continuous.

In uniformly convex Banach spaces, the convergence of an Ishikawa-type algorithm and
a Mann-type algorithm of nonexpansive maps, asymptotically nonexpansive maps and
asymptotically nonexpansive maps in the intermediate sense to their fixed points have
been studied by a number of researchers [, –]. For the iterative construction of
fixed points of some other classes of nonlinear maps, see [–].
The sequence {kn} in definition (iv) satisfies the rate of convergence condition if∑∞
n=(kn – ) < ∞. This condition has been extensively used in iterative construction of

fixed points of asymptotically nonexpansive maps in uniformly convex Banach spaces and
CAT() spaces (see, e.g., [, , , , ]).
Chang et al. [] established strong convergence of an Ishikawa-type algorithm as well

as a Mann-type algorithm to a fixed point of an asymptotically nonexpansive type map.
We shall follow the idea of a geodesic path, namely, there exists a unique point αx ⊕

( – α)y for any x, y ∈ C and α ∈ [, ], to construct an Ishikawa-type algorithm of two
asymptotically nonexpansive type maps on a nonempty subset C of a CAT() space.

x ∈ C,

xn+ = ( – αn)xn ⊕ αnSnyn,

yn = ( – βn)xn ⊕ βnTnxn, n ≥ ,

(.)

where  ≤ αn,βn ≤ .
When T = I (the identity map) in (.), it reduces to the followingMann-type algorithm:

x ∈ C,

xn+ = ( – αn)xn ⊕ αnTnyn, n≥ ,
(.)

where  ≤ αn ≤ .
The purpose of this paper is to approximate a common fixed point of asymptotically

nonexpansive type maps in a special kind of a metric space, namely a CAT() space. Our
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work is a significant generalization of the corresponding results in [], and it provides
analogues of the related results of Chang et al. [] in uniformly convex Banach spaces.
One of our results (Theorem .) gives an affirmative answer to a famous question of Tan
and Xu [] on a nonlinear domain for common fixed points.

2 Fixed point approximation
We begin with the following asymptotic regularity result.

Lemma . Let C be a nonempty bounded closed convex subset of a CAT() space X. Let
S,T : C → C be uniformly equicontinuous. Then for the sequence {xn} in (.) satisfying

lim
n→∞d

(
xn,Snxn

)
=  = lim

n→∞d
(
xn,Tnxn

)
,

we have that

lim
n→∞d(xn,Sxn) =  = lim

n→∞d(xn,Txn).

Proof Since S is uniformly equicontinuous and

d(xn, yn) = d
(
xn, ( – βn)xn ⊕ βnTnxn

)
≤ ( – βn)d(xn,xn) + βnd

(
xn,Tnxn

)
= βnd

(
xn,Tnxn

) → ,

therefore,

d
(
Snxn,Snyn

) → .

Now

d(xn,xn+) = d
(
xn, ( – αn)xn ⊕ αnSnyn

)
≤ αnd

(
xn,Snyn

)
≤ d

(
xn,Snxn

)
+ d

(
Snxn,Snyn

)

gives that

lim
n→∞d(xn,xn+) = . (.)

Clearly,

d(xn,Sxn) ≤ d(xn,xn+) + d
(
xn+,Sn+xn+

)
+ d

(
Sn+xn+,Sn+xn

)
+ d

(
Sn+xn,Sxn

)
, (.)

applying lim sup to both sides of (.), using the uniformly equicontinuous property of S
and (.), we get that

lim sup
n→∞

d(xn,Sxn) ≤ 
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and hence

lim
n→∞d(xn,Sxn) = .

Similarly,

lim
n→∞d(xn,Txn) = .

That is,

lim
n→∞d(xn,Sxn) =  = lim

n→∞d(xn,Txn). �

Our main result is as follows.

Theorem . Let C be a nonempty, bounded, closed and convex subset of a CAT()
space X. Let S,T : C → C be uniformly equicontinuous and asymptotically nonexpansive
type maps such that F(S)∩ F(T) �= ∅. Suppose that  < δ ≤ αn,βn ≤  – δ for some δ ∈ (, ),
where {αn} and {βn} are the control parameters of the iteration scheme {xn} in (.). If S or
T is semi-compact, then {xn} converges strongly to a common fixed point of S and T .

Proof For any p ∈ F(S)∩ F(T), by the (CN)-inequality, we have

d(xn+,p) = d
(
αnxn ⊕ αnSnyn,p

)
≤ ( – αn)d(xn,p) + αnd

(
Snyn,p

)
– αn( – αn)d

(
xn,Snyn

)
= d(xn,p) + αn

{
d
(
Snyn,p

) – d(yn,p)
}

+ αn
{
d(yn,p) – d(xn,p)

}
– αn( – αn)d

(
xn,Snyn

).
That is,

d(xn+,p) ≤ d(xn,p) + αn
{
d
(
Snyn,p

) – d(yn,p)
}

+ αn
{
d(yn,p) – d(xn,p)

}
– αn( – αn)d

(
xn,Snyn

). (.)

Next we consider the third term on the right side of (.):

d(yn,p) – d(xn,p) = d
(
( – βn)xn ⊕ βnTnxn,p

) – d(xn,p)

≤ ( – βn)d(xn,p) + βnd
(
Tnxn,p

) – d(xn,p)

– βn( – βn)d
(
xn,Tnxn

)
= βn

{
d
(
Tnxn,p

) – d(xn,p)
}

– βn( – βn)d
(
xn,Tnxn

).
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That is,

αn
{
d(yn,p) – d(xn,p)

} ≤ αnβn
{
d
(
Tnxn,p

) – d(xn,p)
}

– αnβn( – βn)d
(
xn,Tnxn

). (.)

Substituting (.) into (.) and using  < δ ≤ αn,βn ≤  – δ, we have

d(xn+,p)

≤ d(xn,p) –
αn( – αn)


d
(
Snyn,p

)

–
αnβn( – βn)


d
(
xn,Tnxn

)

+ αn

{
d
(
Snyn,p

) – d(yn,p) –
( – αn)


d
(
Snyn,p

)}

+ αnβn

{
d
(
Tnxn,p

) – d(xn,p) –
( – βn)


d
(
xn,Tnxn

)}

≤ d(xn,p) –
δ


d
(
Snyn,p

) – δ


d
(
xn,Tnxn

)

+ ( – δ)
{
d
(
Snyn,p

) – d(yn,p) –
δ


d
(
Snyn,p

)}

+ ( – δ)
{
d
(
Tnxn,p

) – d(xn,p) –
δ


d
(
xn,Tnxn

)}. (.)

Next we prove that

lim
n→∞d

(
xn,Snyn

)
=  = lim

n→∞d
(
xn,Tnxn

)
.

Assume that lim supn→∞ d(xn,Snyn) >  and lim supn→∞ d(xn,Tnxn) > .
Then there exist subsequences (we use the same notation for a subsequence as well) of

{xn}, {yn} and μ > , μ >  such that d(xn,Snyn)≥ μ >  and d(xn,Tnxn) ≥ μ > .
Now from (.) it follows that

d(xn+,p) ≤ d(xn,p) –
δμ




–
δμ




+ ( – δ)
{
d
(
Snyn,p

) – d(yn,p) –
δμ




}

+ ( – δ)
{
d
(
Tnxn,p

) – d(xn,p) –
δμ




}
. (.)

For an asymptotically nonexpansive type map T , we have that

lim sup
n→∞

sup
x∈C

{
d
(
Tnx,p

) – d(x,p)
} ≤ .

That is,

lim
n→∞ sup

m≥n

{
sup
x∈C

(
d
(
Tmx,p

) – d(x,p)
)} ≤ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/207
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Hence, for given δμ
i

 >  (i = , ), there exists a positive integer n such that

sup
n≥n

{
sup
x∈C

(
d
(
Tnx,p

) – d(x,p)
)}

<
δμ

i


.

Since {xn} and {yn} are sequences in C, therefore, for n≥ n, it follows that

d
(
Snyn,p

) – d(yn,p) <
δμ




and

d
(
Tnxn,p

) – d(xn,p) <
δμ




.

In the light of the two inequalities above, (.) reduces to

δμ



+

δμ



≤ d(xn,p) – d(xn+,p) for all n≥ n. (.)

Letm ≥ n be any positive integer. Obtainm–n inequalities from (.) and then, sum-
ming up these inequalities, we get

(
δμ




+
δμ




)
(m – n) ≤ d(xn ,p)

 – d(xm+,p)

≤ d(xn ,p)
 <∞.

Ifm → ∞, then

∞ = d(xn ,p)
 < ∞,

a contradiction.
This proves that lim supn→∞ d(xn,Snyn) =  = lim supn→∞ d(xn,Tnxn).
That is,

lim
n→∞d

(
xn,Snyn

)
=  = lim

n→∞d
(
xn,Tnxn

)
.

As

d
(
xn,Snxn

) ≤ d
(
xn,Snyn

)
+ d

(
Snxn,Snyn

)
,

d(xn, yn) →  and S is uniformly equicontinuous. So, by taking lim sup on both sides, we
get

lim
n→∞d

(
xn,Snxn

)
= .

Now, Lemma . implies that

lim
n→∞d(xn,Sxn) =  = lim

n→∞d(xn,Txn). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/207
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Since T is semi-compact, therefore there exists a subsequence {xni} of {xn} and q ∈ C
such that

xni → q. (.)

Now, by the uniform equicontinuity of S and T and hence continuity, it follows from (.)
that

d(q,Sq) =  = d(q,Tq).

This gives that q is a common fixed point of S and T .
We now proceed to establish strong convergence of {xn} to q.
Since

d
(
Tnixni ,q

) ≤ d
(
Tnixni ,xni

)
+ d(xni ,q),

therefore

Tnixni → q as ni → ∞. (.)

Clearly,

d(yni ,q) = d
(
( – βni )xni ⊕ βniT

nixni ,q
)

≤ ( – βni )d(xni ,q) + βnid
(
Tnixni ,q

)
.

Therefore, from (.) and (.), it follows that

yni → q as ni → ∞.

Next we prove that Sniyni → q as ni → ∞.
Since S : C → C is of asymptotically nonexpansive type and {yni} is a sequence in C,

therefore we have

lim sup
ni→∞

{
d
(
Sniyni ,q

) – d(yni ,q)
}

≤ lim sup
ni→∞

sup
x∈C

{
d
(
Snix,q

) – d(x,q)
}

≤ lim sup
n→∞

sup
x∈C

{
d
(
Snx,q

) – d(x,q)
}

≤ . (.)

As yni → q as ni → ∞, it follows from (.) that

lim sup
ni→∞

d
(
Sniyni ,q

) ≤ .

That is,

Sniyni → q as ni → ∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/207
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Replace p by q in (.) to get

d(xni+,q)
 ≤ d(xni ,q)

 –
δ


d
(
Sniyni ,q

) – δ


d
(
xni ,T

nixni
)

+ ( – δ)
{
d
(
Sniyni ,q

) – d(yni ,q)
 –

δ


d
(
Sniyni ,q

)}

+ ( – δ)
{
d
(
Tnixni ,q

) – d(xni ,q)
 –

δ


d
(
xni ,T

nixni
)},

which gives that xni+ → q as ni → ∞.
Continuing in this way, by induction, we can prove that for anym ≥ ,

xni+m → q as ni → ∞.

By induction, one can prove that
⋃∞

m={xni+m} converges to q as i → ∞; in fact {xn}∞n=n =⋃∞
m={xni+m}∞i= gives that xn → q as n→ ∞. �

We need the following lemma to approximate a common fixed point of two asymptoti-
cally nonexpansive maps.

Lemma . Every asymptotically nonexpansive selfmap T on a nonempty bounded subset
C of a metric space X is uniformly equicontinuous and of asymptotically nonexpansive
type.

Proof Let T : C → C be an asymptotically nonexpansive map with a sequence {kn} ⊆
[,∞) such that limn→∞ kn = . Let ε > . Then, for each γ > , there exists a positive
integer n such that kn –  < γ for all n ≥ n. Put s = max{ + γ ,k,k, . . . ,kn}. Then
d(Tnx,Tny) ≤ knd(x, y) ≤ sd(x, y) for x, y ∈ C, n ≥ . Choose δ = ε

s . Then d(Tnx,Tny) ≤ ε

whenever d(x, y) ≤ δ for x, y ∈ C, n≥ , proving that T is uniformly equicontinuous.
The second part of the lemma follows from

lim sup
n→∞

sup
x∈C

{
d(Tnx,Tny

)
– d(x, y)

}

≤ lim
n→∞(kn – ) sup

x∈C
d(x, y)

= . sup
x∈C

d(x, y)

= . �

By Theorem . and Lemma ., we have the following result which is new in the litera-
ture and sets an analogue of Theorem  in [] without the rate of convergence condition.

Theorem . Let C be a nonempty, bounded, closed and convex subset of a CAT()
space X. Let S,T : C → C be asymptotically nonexpansive maps with sequences {sn}, {tn} ⊆
[,∞), respectively and F(S) ∩ F(T) �= ∅. Suppose that  < δ ≤ αn,βn ≤  – δ for some
δ ∈ (, ), where {αn} and {βn} are the control parameters of the sequence {xn} in (.). If
S or T is semi-compact, then {xn} converges strongly to a common fixed point of S and T .

http://www.fixedpointtheoryandapplications.com/content/2013/1/207
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As every uniformly equicontinuous map is uniformly L-Lipschitzian, so the following
result is immediate and it unifies Theorem . and Theorem . of Chang et al. [] in
Hadamard spaces.

Theorem . Let C be a nonempty, bounded, closed and convex subset of a CAT()
space X. Let S,T : C → C be uniformly L-Lipschitzian and asymptotically nonexpansive
type maps such that F(S)∩ F(T) �= ∅. Suppose that  < δ ≤ αn,βn ≤  – δ for some δ ∈ (, ),
where {αn} and {βn} are the control parameters of the sequence {xn} in (.). If S or T is
semi-compact, then {xn} converges strongly to a common fixed point of S and T .

For S = T , Theorem . sets an analogue of Theorem . in [].

Theorem . Let C be a nonempty, bounded, closed and convex subset of a CAT()
space X. Let T : C → C be a uniformly L-Lipschitzian and asymptotically nonexpansive
type map such that F(T) �= ∅. Suppose that  < δ ≤ αn,βn ≤  – δ for some δ ∈ (, ), where
{αn} and {βn} are the control parameters of the sequence {xn} in (.) with S = T . If T is
semi-compact, then {xn} converges strongly to a fixed point of T .

On taking S = I (the identitymap) inTheorem., we obtain an analogue of Theorem.
in [].

Theorem . Let C be a nonempty, bounded, closed and convex subset of a CAT()
space X. Let T : C → C be a uniformly L-Lipschitzian and asymptotically nonexpansive
type map such that F(T) �= ∅. Suppose that  < δ ≤ αn,βn ≤  – δ for some δ ∈ (, ), where
{αn} and {βn} are the control parameters of the sequence {xn} in (.). If T is semi-compact,
then {xn} converges strongly to a fixed point of T .

Remark . () Tan and Xu [] obtained only weak convergence theorems for asymp-
totically nonexpansive maps satisfying the rate of convergence condition and remarked,
‘We do not know whether our weak convergence Theorem . remains valid if kn is al-
lowed to approach  slowly enough so that

∑∞
n=(kn – ) diverges’. Our Theorem . gives

an affirmative answer to their question in CAT() spaces.
() Our results are generalizations in CAT() spaces of the corresponding basic results

in [, , , ].
() Theorem . improves and generalizes Theorems .-. in [].
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