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Abstract
Samet et al. (Nonlinear Anal. 75:2154-2165, 2012) introduced α-ψ -contractive
mappings and proved some fixed point results for these mappings. More recently
Salimi et al. (Fixed Point Theory Appl. 2013:151, 2013) modified the notion of
α-ψ -contractive mappings and established certain fixed point theorems. Here, we
continue to utilize these modified notions for single-valued Geraghty and
Meir-Keeler-type contractions, as well as multi-valued contractive mappings.
Presented theorems provide main results of Hussain et al. (J. Inequal. Appl. 2013:114,
2013), Karapinar et al. (Fixed Point Theory Appl. 2013:34, 2013) and Asl et al. (Fixed
Point Theory Appl. 2012:212, 2012) as corollaries. Moreover, some examples are given
here to illustrate the usability of the obtained results.
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1 Introduction and preliminaries
In metric fixed point theory, the contractive conditions on underlying functions play an
important role for finding solution of fixed point problems. Banach contraction principle
is a remarkable result in metric fixed point theory. Over the years, it has been general-
ized in different directions by several mathematicians (see [–]). In , Samet et al.
[] introduced the concepts of α-ψ-contractive and α-admissible mappings and estab-
lished various fixed point theorems for such mappings in complete metric spaces. After-
wards, Karapinar and Samet [] generalized these notions to obtain fixed point results.
More recently, Salimi et al. []modified the notions of α-ψ-contractive and α-admissible
mappings and established fixed point theorems, which are proper generalizations of the
recent results in [, ]. Here, we continue to utilize these modified notions for single-
valued Geraghty and Meir-Keeler-type contractions, as well as multivalued contractive
mappings. Presented theorems provide main results of Hussain et al. [], Karapinar et al.
[] and Asl et al. [] as corollaries. Moreover, some examples are given here to illustrate
the usability of the obtained results.
Denote with � the family of nondecreasing functions ψ : [, +∞) → [, +∞) such that∑∞
n= ψ

n(t) < +∞ for all t > , where ψn is the nth iterate of ψ .
The following lemma is obvious.
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Lemma . If ψ ∈ � , then ψ(t) < t for all t > .

Samet et al. [] defined the notion of α-admissible mappings as follows.

Definition . Let T be a self-mapping on X, and let α : X ×X → [, +∞) be a function.
We say that T is an α-admissible mapping if

x, y ∈ X, α(x, y)≥  �⇒ α(Tx,Ty)≥ .

Theorem . [] Let (X,d) be a complete metric space, and let T be an α-admissible
mapping. Assume that

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)
(.)

for all x, y ∈ X, where ψ ∈ � . Also, suppose that
(i) there exists x ∈ X such that α(x,Tx) ≥ ;
(ii) either T is continuous or for any sequence {xn} in X with α(xn,xn+) ≥  for all

n ∈N∪ {} and xn → x as n→ +∞, we have α(xn,x) ≥  for all n ∈N∪ {}.
Then T has a fixed point.

Very recently Salimi et al. []modified the notions ofα-admissible andα-ψ-contractive
mappings as follows.

Definition . [] Let T be a self-mapping on X, and let α,η : X × X → [, +∞) be two
functions. We say that T is an α-admissible mapping with respect to η if

x, y ∈ X, α(x, y)≥ η(x, y) �⇒ α(Tx,Ty) ≥ η(Tx,Ty).

Note that if we take η(x, y) = , then this definition reduces to Definition .. Also, if we
take α(x, y) = , then we say that T is η-subadmissible mapping.

The following result properly contains Theorem . and Theorems . and . of [].

Theorem . [] Let (X,d) be a complete metric space, and let T be an α-admissible
mapping with respect to η. Assume that

x, y ∈ X, α(x, y)≥ η(x, y) �⇒ d(Tx,Ty) ≤ ψ
(
M(x, y)

)
, (.)

where ψ ∈ � and

M(x, y) =max

{
d(x, y),

d(x,Tx) + d(y,Ty)


,
d(x,Ty) + d(y,Tx)



}
.

Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x,Tx) ≥ η(x,Tx);
(ii) either T is continuous or for any sequence {xn} in X with α(xn,xn+) ≥ η(xn,xn+) for
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all n ∈N∪ {} and xn → x as n→ +∞, we have α(xn,x) ≥ η(xn,x) for all
n ∈N∪ {}.

Then T has a fixed point.

2 Modified α-η-Geraghty type contractions
Our first main result of this section is concerning α-η-Geraghty-type [] contractions.

Theorem . Let (X,d) be a complete metric space, and let f : X → X be an α-admissible
mapping with respect to η. Assume that there exists a function β : [,∞) → [, ) such that
for any bounded sequence {tn} of positive reals, β(tn) →  implies that tn →  and

x, y ∈ X, α(x, fx)α(y, fy)≥ η(x, fx)η(y, fy)

�⇒ d(fx, fy) ≤ β
(
d(x, y)

)
max

{
d(x, y),min

{
d(x, fx),d(y, fy)

}}
.

(.)

Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn,xn+)≥ η(xn,xn+) for all n, then

α(x, fx)≥ η(x, fx).
If there exists x ∈ X such that α(x, fx) ≥ η(x, fx), then f has a fixed point.

Proof Let x ∈ X such that α(x, fx) ≥ η(x, fx). Define a sequence {xn} in X by xn =
f nx = fxn– for all n ∈ N. If xn+ = xn for some n ∈ N, then x = xn is a fixed point
for f , and the result is proved. Hence, we suppose that xn+ 
= xn for all n ∈ N. Since
f is an α-admissible mapping with respect to η and α(x, fx) ≥ η(x, fx), we deduce
that α(x,x) = α(fx, f x) ≥ η(fx, f x) = η(x,x). By continuing this process, we get
α(xn, fxn) ≥ η(xn, fxn) for all n ∈N∪ {}. Then,

α(xn–, fxn–)α(xn, fxn) ≥ η(xn–, fxn–)η(xn, fxn).

Now from (.), we have

d(xn,xn+) ≤ β
(
d(xn–,xn)

)
max

{
d(xn–,xn),min

{
d(xn–, fxn–),d(xn, fxn)

}}
= β

(
d(xn–,xn)

)
max

{
d(xn–,xn),min

{
d(xn–,xn),d(xn,xn+)

}}
.

Now, if d(xn–,xn) < d(xn,xn+) for some n ∈N, then

max
{
d(xn–,xn),min

{
d(xn–,xn),d(xn,xn+)

}}
= d(xn–,xn).

Also, if d(xn,xn+) ≤ d(xn–,xn) for some n ∈N, then

max
{
d(xn–,xn),min

{
d(xn–,xn),d(xn,xn+)

}}
= d(xn–,xn).

That is, for all n ∈ N, we have

max
{
d(xn–,xn),min

{
d(xn–,xn),d(xn,xn+)

}}
= d(xn–,xn).
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Hence,

d(xn,xn+) ≤ β
(
d(xn–,xn)

)
d(xn–,xn) (.)

for all n ∈ N, which implies that d(xn,xn+) ≤ d(xn–,xn). It follows that the sequence
{d(xn,xn+)} is decreasing. Thus, there exists d ∈ R+ such that limn→∞ d(xn,xn+) = d. We
shall prove that d = . From (.), we have

d(xn,xn+)
d(xn–,xn)

≤ β
(
d(xn–,xn)

) ≤ ,

which implies that limn→∞ β(d(xn–,xn)) = . Regarding the property of the function β , we
conclude that

lim
n→∞d(xn,xn+) = . (.)

Next, we shall prove that {xn} is a Cauchy sequence. Suppose, to the contrary, that {xn}
is not a Cauchy sequence. Then there is ε >  and sequences {m(k)} and {n(k)} such that
for all positive integers k, we have

n(k) >m(k) > k, d(xn(k),xm(k)) ≥ ε and d(xn(k),xm(k)–) < ε.

By the triangle inequality, we derive that

ε ≤ d(xn(k),xm(k))≤ d(xn(k),xm(k)–) + d(xm(k)–,xm(k))

< ε + d(xm(k)–,xm(k))

k ∈N. Taking the limit as k → +∞ in the inequality above, and regarding the limit in (.),
we get

lim
k→+∞

d(xn(k),xm(k)) = ε. (.)

Again, by the triangle inequality, we find that

d(xn(k),xm(k))≤ d(xm(k),xm(k)+) + d(xm(k)+,xn(k)+) + d(xn(k)+,xn(k))

and

d(xn(k)+,xm(k)+)≤ d(xm(k),xm(k)+) + d(xm(k),xn(k)) + d(xn(k)+,xn(k)).

Taking the limit in inequality above as k → +∞, together with (.) and (.), we deduce
that

lim
k→+∞

d(xn(k)+,xm(k)+) = ε. (.)

Now, since

α(xn(k), fxn(k))α(xm(k), fxm(k)) ≥ η(xn(k), fxn(k))η(xm(k), fxm(k)),

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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then from (.), (.) and (.), we have

d(xn(k)+,xm(k)+)

≤ β
(
d(xn(k),xm(k))

)
max

{
d(xn(k),xm(k)),min

{
d(xn(k), fxn(k)),d(xm(k), fxm(k))

}}
= β

(
d(xn(k),xm(k))

)
max

{
d(xn(k),xm(k)),min

{
d(xn(k),xn(k)+),d(xm(k),xm(k)+)

}}
.

Hence,

d(xn(k)+,xm(k)+)
max{d(xn(k),xm(k)),min{d(xn(k),xn(k)+),d(xm(k),xm(k)+)}} ≤ β

(
d(xn(k),xm(k))

) ≤ .

Letting k → ∞ in the inequality above, we get

lim
n→∞β

(
d(xn(k),xm(k))

)
= .

That is, limk→∞ d(xn(k),xm(k)) = , which is a contradiction. Hence {xn} is a Cauchy se-
quence. Since X is complete, then there is z ∈ X such that xn → z. First, we suppose that f
is continuous. Since f is continuous, then we have

fz = lim
n→∞ fxn = lim

n→∞xn+ = z.

So z is a fixed point of f . Next, we suppose that (b) holds. Then, α(z, fz) ≥ η(z, fz), and so,
α(z, fz)α(xn, fxn) ≥ η(z, fz)η(xn, fxn). Now by (.), we have

d(fz,xn+) ≤ β
(
d(z,xn)

)
max

{
d(z,xn),min

{
d(z, fz),d(xn,xn+)

}}
,

and hence

d(fz, z) ≤ d(fz,xn+) + d(z,xn+)

≤ β
(
d(z,xn)

)
max

{
d(z,xn),min

{
d(z, fz),d(xn,xn+)

}}
+ d(z,xn+).

Letting n → ∞ in the inequality above, we get d(fz, z) = , that is, z = fz. �

If in Theorem . we take, η(x, y) = , then we have the following corollary.

Corollary . Let (X,d) be a complete metric space, and let f : X → X be an α-admissible
mapping. Assume that there exists a function β : [,∞)→ [, ] such that for any bounded
sequence {tn} of positive reals, β(tn) →  implies that tn →  and

x, y ∈ X, α(x, fx)α(y, fy)≥ 

�⇒ d(fx, fy) ≤ β
(
d(x, y)

)
max

{
d(x, y),min

{
d(x, fx),d(y, fy)

}}
.

Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn,xn+)≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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Corollary . Let (X,d) be a complete metric space, and let f : X → X be an α-admissible
mapping. Assume that there exists a function β : [,∞)→ [, ] such that for any bounded
sequence {tn} of positive reals, β(tn) →  implies that tn →  and

(
d(fx, fy) + �

)α(x,fx)α(y,fy) ≤ β
(
d(x, y)

)
max

{
d(x, y),min

{
d(x, fx),d(y, fy)

}}
+ �

for all x, y ∈ X, where � > . Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn,xn+)≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Corollary . Let (X,d) be a complete metric space, and let f : X → X be an α-admissible
mapping. Assume that there exists a function β : [,∞)→ [, ] such that for any bounded
sequence {tn} of positive reals, β(tn) →  implies that tn →  and

(
α(x, fx)α(y, fy) + 

)d(fx,fy) ≤ β(d(x,y))max{d(x,y),min{d(x,fx),d(y,fy)}}

for all x, y ∈ X. Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn,xn+)≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Corollary . Let (X,d) be a metric space such that (X,d) is complete and f : X → X be
an α-admissible mapping. Assume that there exists a function β : [,∞)→ [, ] such that
for any bounded sequence {tn} of positive reals, β(tn) →  implies that tn →  and

α(x, fx)α(y, fy)d(fx, fy)≤ β
(
d(x, y)

)
max

{
d(x, y),min

{
d(x, fx),d(y, fy)

}}
for all x, y ∈ X. Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn, fxn) ≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Further, if in Theorem . we take α(x, y) = , then we have the following corollary.

Corollary . Let (X,d) be a completemetric space,and let f : X → X be a η-subadmissible
mapping. Assume that there exists a function β : [,∞)→ [, ] such that for any bounded
sequence {tn} of positive reals, β(tn) →  implies that tn →  and

x, y ∈ X, η(x, fx)η(y, fy) ≤ 

�⇒ d(fx, fy) ≤ β
(
d(x, y)

)
max

{
d(x, y),min

{
d(x, fx),d(y, fy)

}}
.

Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, η(xn,xn+) ≤  for all n, then η(x, fx)≤ .

If there exists x ∈ X such that η(x, fx) ≤ , then f has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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Corollary . Let (X,d) be a complete metric space, and let f : X → X be a η-subadmis-
sible mapping. Assume that there exists a function β : [,∞) → [, ] such that for any
bounded sequence {tn} of positive reals, β(tn) →  implies that tn →  and

d(fx, fy) + � ≤ [
β
(
d(x, y)

)
max

{
d(x, y),min

{
d(x, fx),d(y, fy)

}}
+ �

]η(x,fx)η(y,fy)

for all x, y ∈ X, where � > . Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, η(xn,xn+) ≤  for all n, then η(x, fx)≤ .

If there exists x ∈ X such that η(x, fx) ≤ , then f has a fixed point.

Corollary . Let (X,d) be a completemetric space,and let f : X → X be a η-subadmissible
mapping. Assume that there exists a function β : [,∞)→ [, ] such that for any bounded
sequence {tn} of positive reals, β(tn) →  implies that tn →  and

d(fx,fy) ≤ (
η(x, fx)η(y, fy) + 

)β(d(x,y))max{d(x,y),min{d(x,fx),d(y,fy)}}

for all x, y ∈ X. Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, η(xn,xn+) ≤  for all n, then η(x, fx)≤ .

If there exists x ∈ X such that η(x, fx) ≤ , then f has a fixed point.

Corollary . Let (X,d) be a metric space such that (X,d) is complete, and let f : X → X
be η-subadmissible mapping. Assume that there exists a function β : [,∞) → [, ] such
that for any bounded sequence {tn} of positive reals, β(tn) →  implies that tn →  and

d(fx, fy) ≤ η(x, fx)η(y, fy)β
(
d(x, y)

)
max

{
d(x, y),min

{
d(x, fx),d(y, fy)

}}
for all x, y ∈ X. Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, η(xn, fxn) ≤  for all n, then η(x, fx)≤ .

If there exists x ∈ X such that η(x, fx) ≤ , then f has a fixed point.

From Corollary ., we can deduce the following corollary.

Corollary . Let (X,d) be a complete metric space, and let f : X → X be an α-admissible
mapping. Assume that there exists a function β : [,∞)→ [, ] such that for any bounded
sequence {tn} of positive reals, β(tn) →  implies that tn →  and

x, y ∈ X, α(x, fx)α(y, fy)≥  �⇒ d(fx, fy) ≤ β
(
d(x, y)

)
d(x, y).

Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn,xn+)≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Also, from the corollary above, we can deduce the following corollaries.
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Corollary . (Theorem  of []) Let (X,d) be a completemetric space, and let f : X → X
be an α-admissible mapping. Assume that there exists a function β : [,∞) → [, ] such
that for any bounded sequence {tn} of positive reals, β(tn) →  implies that tn →  and

(
d(fx, fy) + �

)α(x,fx)α(y,fy) ≤ β
(
d(x, y)

)
d(x, y) + �

for all x, y ∈ X, where � ≥ . Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn,xn+)≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Corollary . (Theorem  of []) Let (X,d) be a complete metric space, and let f : X → X
be an α-admissible mapping. Assume that there exists a function β : [,∞) → [, ] such
that for any bounded sequence {tn} of positive reals, β(tn) →  implies that tn →  and

(
α(x, fx)α(y, fy) + 

)d(fx,fy) ≤ β(d(x,y))d(x,y)

for all x, y ∈ X. Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn,xn+)≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Corollary . (Theorem  of []) Let (X,d) be ametric space such that (X,d) is complete,
and let f : X → X be an α-admissible mapping. Assume that there exists a function β :
[,∞)→ [, ] such that for any bounded sequence {tn} of positive reals, β(tn) →  implies
that tn →  and

α(x, fx)α(y, fy)d(fx, fy)≤ β
(
d(x, y)

)
d(x, y)

for all x, y ∈ X. Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn, fxn) ≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Example . Let X = [,∞) be endowed with the usual metric d(x, y) = |x– y| for all x, y ∈
X, and let f : X → X be defined by

fx =

⎧⎨
⎩


x if x ∈ [, ],

ln(x + x + ) if x ∈ (,∞).

Define also α : X ×X → [, +∞) and ψ : [,∞)→ [,∞) by

α(x, y) =

⎧⎨
⎩ if x, y ∈ [, ],

 otherwise
and β(t) =



.

We prove that Corollary . can be applied to f , but Corollaries ., . and . (The-
orem ,  and  of []) cannot be applied to f .

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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Clearly, (X,d) is a complete metric space. We show that f is an α-admissible mapping.
Let x, y ∈ X with α(x, y) ≥ , then x, y ∈ [, ]. On the other hand, for all x ∈ [, ], we have
fx ≤ . It follows that α(fx, fy) ≥ . Hence, the assertion holds. Also, α(, f ) ≥ . Now, if
{xn} is a sequence in X such that α(xn,xn+) ≥  for all n ∈N∪ {} and xn → x as n → +∞,
then {xn} ⊂ [, ], and hence x ∈ [, ]. This implies that α(xn,x)≥  for all n ∈N.
Let α(x, y)≥ . Then x, y ∈ [, ]. We get,

d(fx, fy) = |fy – fx| =
∣∣∣∣ x – 


y
∣∣∣∣ = 


|x – y| ≤ 


|x – y| = β

(
d(x, y)

)
d(x, y).

That is,

α(x, y)≥  �⇒ d(fx, fy) ≤ β
(
d(x, y)

)
d(x, y),

then the conditions of Corollary . hold, and f has a fixed point.
Let x = , y = , and let � = , then

(
d(f , f ) + 

)α(,f )α(,f ) = (/ + ) > / +  = β
(
d(, )

)
d(, ) + .

That is, Corollary . (Theorem  of []) cannot be applied for this example.
Let, x = , and let y = , then

(
α(, f )α(, f ) + 

)d(f ,f ) = √ >
√
 = β(d(,))d(,).

That is, Corollary . (Theorem  of []) cannot be applied for this example.
Let, x = , and let y = , then

α(, f )α(, f )d(f , f ) =  > / = β
(
d(, )

)
d(, ).

That is, Corollary . (Theorem  of []) cannot be applied for this example.

3 Modified α-ψ -Meir-Keeler contractive mappings
Recently, Karapinar et al. [] introduced the notion of a triangular α-admissible mapping
as follows.

Definition . [] Let f : X → X, and let α : X × X → (–∞, +∞). We say that f is a
triangular α-admissible mapping if
(T) α(x, y)≥  implies that α(fx, fy)≥ , x, y ∈ X ;

(T)

{
α(x, z)≥ ,
α(z, y) ≥ 

implies that α(x, y)≥ .

Lemma . [] Let f be a triangular α-admissible mapping. Assume that there exists
x ∈ X such that α(x, fx) ≥ . Define sequence {xn} by xn = f nx. Then

α(xm,xn) ≥  for all m,n ∈ N with m < n.

Denotewith� the family of nondecreasing functionsψ : [, +∞) → [, +∞) continuous
at t =  such that

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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• ψ(t) =  if and only if t = ,
• ψ(t + s) ≤ ψ(t) +ψ(s).

Definition . [] Let (X,d) be a metric space, and let ψ ∈ � . Suppose that f : X → X is
a triangular α-admissible mapping satisfying the following condition:

for each ε >  there exists δ >  such that

ε ≤ ψ
(
d(x, y)

)
< ε + δ implies that α(x, y)ψ

(
d(fx, fy)

)
< ε (.)

for all x, y ∈ X . Then f is called an α-ψ-Meir-Keeler contractive mapping.

Now, we modify Definition . as follows.

Definition . Let (X,d) be a metric space, and let ψ ∈ � . Suppose that f : X → X is a
triangular α-admissible mapping satisfying the following condition:

for each ε >  there exists δ >  such that

ε ≤ ψ
(
d(x, y)

)
< ε + δ implies that ψ

(
d(fx, fy)

)
< ε (.)

for all x, y ∈ X with α(x, y)≥ . Then f is called a modified α-ψ-Meir-Keeler
contractive mapping.

Remark . Let f be a modified α-ψ-Meir-Keeler contractive mapping. Then

ψ
(
d(fx, fy)

)
< ψ

(
d(x, y)

)

for all x, y ∈ X when x 
= y and α(x, y) ≥ . Also, if x = y and α(x, y) ≥ , then d(fx, fy) = ,
i.e.,

ψ
(
d(fx, fy)

) ≤ ψ
(
d(x, y)

)
.

Theorem . Let (X,d) be a complete metric space. Suppose that f is a continuous
modified α-ψ-Meir-Keeler contractive mapping, and that there exists x ∈ X such that
α(x, fx) ≥ , then f has a fixed point.

Proof Let x ∈ X and define a sequence {xn} by xn = f nx for all n ∈ N. If xn = xn+ for
some n ∈ N∪ {}, then, obviously, f has a fixed point. Hence, we suppose that

xn 
= xn+ (.)

for all n ∈N∪{}.Wehave d(xn,xn+) >  for all n ∈ N∪{}. Now, define sn = ψ(d(xn,xn+)).
By Remark ., we deduce that for all n ∈ N ∪ {} ψ(d(xn+,xn+)) = ψ(d(fxn, fxn+)) <
ψ(d(xn,xn+)). By applying Lemma . for

α(xm,xn) ≥  for allm,n ∈N withm < n,

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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we have

ψ
(
d(xn+,xn+)

)
< ψ

(
d(xn,xn+)

)
.

Hence, the sequence {sn} is decreasing in R+, and so, it is convergent to s ∈ R+. We will
show that s = . Suppose, to the contrary, that s > . Note that

 < s < ψ
(
d(xn,xn+)

)
for all n ∈N∪ {}. (.)

Let ε = s > . Then by hypothesis, there exists a δ(ε) >  such that (.) holds. On the other
hand, by the definition of ε, there exists n ∈N such that

ε < sn = ψ
(
d(xn ,xn+)

)
< ε + δ.

Now by (.), we have

sn+ = ψ
(
d(xn+,xn+)

) ≤ ψ
(
d(fxn , fxn+)

)
< ε = s,

which is a contradiction. Hence s = , that is, limn→+∞ sn = . Now, by the continuity of ψ
at t = , we have limn→+∞ d(xn,xn+) = . For given ε > , by the hypothesis, there exists a
δ = δ(ε) >  such that (.) holds. Without loss of generality, we assume that δ < ε. Since
s = , then there exists N ∈N such that

sn– = ψ
(
d(xn–,xn)

)
< δ for all n ≥ N . (.)

We will prove that for any fixed k ≥ N,

ψ
(
d(xk ,xk+l)

) ≤ ε for all l ∈N, (.)

holds. Note that (.) holds for l =  by (.). Suppose that condition (.) is satisfied for
somem ∈N. For l =m + , by (.), we get

ψ
(
d(xk–,xk+m)

) ≤ ψ
(
d(xk–,xk) + d(xk ,xk+m)

)
≤ ψ

(
d(xk–,xk)

)
+ψ

(
d(xk ,xk+m)

)
< ε + δ. (.)

If ψ(d(xk–,xk+m)) ≥ ε, then by (.), we get

ψ
(
d(xk ,xk+m+)

)
= ψ

(
d(fxk–, fxk+m)

)
< ε,

and hence (.) holds.
If ψ(d(xk–,xk+m)) < ε, by Remark ., we get

ψ
(
d(xk ,xk+m+)

) ≤ ψ
(
d(xk–,xk+m)

)
< ε.

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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Consequently, (.) holds for l =m+. Hence, ψ(d(xk ,xk+l)) ≤ ε for all k ≥ N and l ≥ ,
which means

d(xn,xm) < ε for allm ≥ n≥ N. (.)

Hence {xn} is a Cauchy sequence. Since (X,d) is complete, there exists z ∈ X such that
xn → z as n→ ∞. Now, since f is continuous, then

fz = f
(
lim
n→∞xn

)
= lim

n→∞xn+ = z,

that is, f has a fixed point. �

Corollary . (Theorem  of []) Let (X,d) be a complete metric space. Suppose that f
is a continuous α-ψ-Meir-Keeler contractive mapping, and that there exists x ∈ X such
that α(x, fx) ≥ , then f has a fixed point.

Proof Let ε ≤ ψ(d(x, y)) < ε + δ, where α(x, y)≥ . Then by ε ≤ ψ(d(x, y)) < ε + δ and Defi-
nition ., we deduce that α(x, y)ψ(d(fx, fy)) < ε. On the other hand, since α(x, y)≥ , then
we have

ψ
(
d(fx, fy)

) ≤ α(x, y)ψ
(
d(fx, fy)

)
< ε.

That is, conditions of Theorem . hold, and f has a fixed point. �

Theorem . Let (X,d) be a complete metric space, and let f be a modified α-ψ-Meir-
Keeler contractive mapping. If the following conditions hold:

(i) there exists x ∈ X such that α(x, fx) ≥ ,
(ii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n, and xn → x as n→ +∞,

then α(xn,x)≥  for all n.
Then f has a fixed point.

Proof Following the proof of Theorem ., we say that α(xn,xn+) ≥  for all n ∈ N ∪ {},
and that there exist z ∈ X such that xn → z as n → +∞. Hence, from (ii) α(xn, z) ≥ . By
Remark ., we have

ψ
(
d(fz, z)

) ≤ ψ
(
d(fz, fxn) + d(fxn, z)

) ≤ ψ
(
d(fz, fxn)

)
+ψ

(
d(fxn, z)

)
≤ ψ

(
d(z,xn)

)
+ψ

(
d(xn+, z)

)
.

By taking limit as n → +∞, in the inequality above, we get ψ(d(fz, z)) ≤ , that is,
d(fz, z) = . Hence fz = z. �

Corollary . (Theorem  of []) Let (X,d) be a complete metric space, and let f be a
α-ψ-Meir-Keeler contractive mapping. If the following conditions hold:

(i) there exists x ∈ X such that α(x, fx) ≥ ,
(ii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n, and xn → x as n→ +∞,

then α(xn,x)≥  for all n.
Then f has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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Example . Let X = [,∞), and let d(x, y) = |x– y| be a metric on X. Define f : X → X by

fx =

⎧⎨
⎩

x
 if x ∈ [, ],

xx+ x ∈ (,∞),
and α(x, y) =

⎧⎨
⎩ if x, y ∈ [, ],

– otherwise,

and ψ(t) = 
 t. Clearly, (X,d) is a complete metric space. We show that f is a triangular

α-admissible mapping. Let x, y ∈ X, if α(x, y) ≥ , then x, y ∈ [, ]. On the other hand, for
all x, y ∈ [, ], we have fx ≤  and fy≤ . It follows that α(fx, fy) ≥ . Also, if α(x, z)≥  and
α(z, y) ≥ , then x, y, z ∈ [, ], and hence, α(x, y)≥ . Thus the assertion holds by the same
arguments. Notice that α(, f ) ≥ .
Now, if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n ∈ N ∪ {}, and xn → x

as n → +∞, then {xn} ⊂ [, ], and hence x ∈ [, ]. This implies that α(xn,x) ≥  for all
n ∈N∪ {}. Let α(x, y)≥ , then x, y ∈ [, ]. Without loss of generality, take x≤ y. Then

ψ
(
d(fx, fy)

)
=

y


–
x


,

ψ
(
d(x, y)

)
=
y

–
x

.

Clearly, by taking δ = ε, the condition (.) holds. Hence, conditions of Theorem. hold,
and f has a fixed point. But if x, y ∈ [, ] and

ε ≤ d(x, y) < ε + δ,

where ε >  and δ > . Then

α(x, y)d(fx, fy) = |x – y| = d(x, y) ≥ ε.

That is, Corollary . (Theorem  of []) cannot be applied for this example.

Denote with �st the family of strictly nondecreasing functions ψst : [, +∞) → [, +∞)
continuous at t =  such that
• ψst(t) =  if and only if t = ,
• ψst(t + s)≤ ψst(t) +ψst(s).

Definition . [] Let (X,d) be a metric space, and let ψst ∈ �st. Suppose that f : X → X
is a triangular α-admissible mapping satisfying the following condition:

for each ε > , there exists δ >  such that

ε ≤ ψst
(
M(x, y)

)
< ε + δ implies that α(x, y)ψst

(
d(fx, fy)

)
< ε (.)

for all x, y ∈ X , where

M(x, y) =max

{
d(x, y),d(fx,x),d(fy, y),



[
d(fx, y) + d(x, fy)

]}
.

Then f is called a generalized α-ψst-Meir-Keeler contractive mapping.

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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Definition . Let (X,d) be a metric space, and let ψst ∈ �st. Suppose that f : X → X is a
triangular α-admissible mapping satisfying the following condition:

for each ε >  there exists δ >  such that

ε ≤ ψst
(
M(x, y)

)
< ε + δ implies that ψst

(
d(fx, fy)

)
< ε (.)

for all x, y ∈ X , where α(x, y)≥  and

M(x, y) =max

{
d(x, y),d(fx,x),d(fy, y),



[
d(fx, y) + d(x, fy)

]}
.

Then f is called a modified generalized α-ψst-Meir-Keeler contractive mapping.

Remark . Let f be a modified generalized α-ψst-Meir-Keeler contractive mapping.
Then

ψst
(
d(fx, fy)

)
<ψst

(
M(x, y)

)

for all x, y ∈ X, where α(x, y)≥  whenM(x, y) > . Also, ifM(x, y) =  and α(x, y)≥ , then
x = y, which implies that ψ(d(fx, fy)) = , i.e.,

ψst
(
d(fx, fy)

) ≤ ψst
(
M(x, y)

)
.

Proposition . Let (X,d) be a metric space, and let f : X → X be a modified generalized
α-ψst-Meir-Keeler contractive mapping. If there exists x ∈ X such that α(x, fx) ≥ , then
limn→∞ d(f n+x, f nx) = .

Proof Define a sequence {xn} by xn = f nx for all n ∈N. If xn = xn+ for some n ∈N∪{},
then, obviously, the conclusion holds. Hence, we suppose that

xn 
= xn+ (.)

for all n ∈ N∪ {}. Then we haveM(xn+,xn) >  for every n ≥ . Then by Lemma . and
Remark ., we have

ψst
(
d(xn+,xn+)

)
= ψst

(
d(fxn, fxn+)

)
< ψst

(
M(xn,xn+)

)
= ψst

(
max

{
d(xn,xn+),d(fxn,xn),d(fxn+,xn+),



[
d(fxn,xn+) + d(xn, fxn+)

]})

≤ ψst
(
max

{
d(xn,xn+),d(xn+,xn+)

})
.

Now, since ψst is strictly nondecreasing, then we get

d(xn+,xn+) <max
{
d(xn+,xn),d(xn+,xn+)

}
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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Hence the case, where

max
{
d(xn+,xn),d(xn+,xn+)

}
= d(xn+,xn+),

is not possible. Therefore, we deduce that

d(xn+,xn+) < d(xn+,xn) (.)

for all n. That is, {d(xn+,xn)}∞n= is a decreasing sequence inR+, and it converges to ε ∈R+,
that is,

lim
n→∞ψst

(
d(xn+,xn)

)
= lim

n→∞ψst
(
M(xn+,xn)

)
= ψst(ε). (.)

Notice that ε = inf{d(xn,xn+) : n ∈ N}. Let us prove that ε = . Suppose, to the contrary,
that ε > . Then ψ(ε) > . Considering (.) together with the assumption that f is a
generalized α-ψst-Meir-Keeler contractive mapping, for ψst(ε), there exists δ >  and a
natural numberm such that

ψst(ε) ≤ ψst
(
M(xm,xm+)

)
< ψst(ε) + δ

implies that

ψst
(
d(xm+,xm+)

)
= ψst

(
d(fxm, fxm+)

)
< ψst(ε).

Now, since ψst is strictly nondecreasing, then we get

d(xm+,xm+) < ε,

which is a contradiction, since ε = inf{d(xn,xn+) : n ∈ N}. Then ε = , and so,

lim
n→∞d(xn+,xn) = . �

Theorem . Let (X,d) be a complete metric space, and let f : X → X be an orbitally
continuousmodified generalized α-ψst-Meir-Keeler contractive mapping. If there exist x ∈
X such that α(x, fx)≥ , then f has a fixed point.

Proof Define xn+ = f n+x for all n ≥ . We want to prove that limm,n→∞ d(xn,xm) = . If
this is not so, then there exist ε >  and a subsequence {xn(i)} of {xn} such that

d(xn(i),xn(i+)) > ε. (.)

For this ε > , there exists δ >  such that ε ≤ ψst(M(x, y)) < ε + δ implies that
α(x, y)ψst(d(fx, fy)) < ε. Put r = min{ε, δ} and sn = d(xn,xn+) for all n ≥ . From Proposi-
tion ., there exists n such that

sn = d(xn,xn+) <
r


(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/212
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for all n ≥ n. Let n(i) > n. We get n(i) ≤ n(i + ) – . If d(xn(i),xn(i+)–) ≤ ε + r
 , then

d(xn(i),xn(i+)) ≤ d(xn(i),xn(i+)–) + d(xn(i+)–,xn(i+))

≤ d(xn(i),xn(i+)–) + d(xn(i+)–,xn(i+))

< ε +
r

+ sn(i+)– < ε +

r


< ε,

which contradicts the assumption (.). Therefore, there are values of k such that n(i) ≤
k ≤ n(i + ) and d(xn(i),xk) > ε + r

 . Now if d(xn(i),xn(i)+)≥ ε + r
 , then

sn(i) = d(xn(i),xn(i)+)≥ ε +
r

> r +

r

>
r

,

which is a contradiction to (.). Hence, there are values of k with n(i) ≤ k ≤ n(i+ ) such
that d(xn(i),xk) < ε + r

 . Choose the smallest integer k with k ≥ n(i) such that d(xn(i),xk) ≥
ε + r

 . Thus, d(xn(i),xk–) < ε + r
 , and so,

d(xn(i),xk)≤ d(xn(i),xk–) + d(xk–,xk)

≤ d(xn(i),xk–) + d(xk–,xk) < ε +
r

+
r

= ε +

r

.

Now, we can choose a natural number k satisfying n(i) ≤ k ≤ n(i + ) such that

ε +
r


≤ d(xn(i),xk) < ε +
r

. (.)

Therefore, we obtain

d(xn(i),xk) < ε +
r


< ε + r, (.)

d(xn(i),xn(i)+) = dn(i) <
r

< ε + r, (.)

and

d(xk ,xk+) = dk <
r

< ε + r. (.)

Thus, we have



[
d(xn(i),xk+) + d(xn(i)+,xk)

] ≤ 

[
d(xn(i),xk) + d(xk ,xk+)

+ d(xn(i)+,xn(i)) + d(xn(i),xk)
]

≤ 

[
d(xn(i),xk) + d(xk ,xk+)

+ d(xn(i)+,xn(i)) + d(xn(i),xk)
]

= d(xn(i),xk) +


[sk + sn(i)]

< ε +
r


+



[
r

+
r


]
= ε + r. (.)
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Now, inequalities (.)-(.) imply that M(xn(i),xk) < ε + r ≤ ε + δ, and so, ψst(M(xn(i),
xk)) < ψst(ε + δ) ≤ ψst(ε) + ψst(δ); the fact that f is a modified generalized α-ψst-Meir-
Keeler contractive mapping yields that

ψst
(
d(xn(i)+,xk+)

)
<ψst(ε).

Then d(xn(i)+,xk+) < ε. We deduce

d
(
f n(i)x, f kx

) ≤ d
(
f n(i)x, f n(i)+x

)
+ d

(
f n(i)+x, f kx

)
≤ d

(
f n(i)x, f n(i)+x

)
+ d

(
f n(i)+x, f kx

)
≤ d

(
f n(i)x, f n(i)+x

)
+ d

(
f n(i)+x, f k+x

)
+ d

(
f k+x, f kx

)
.

From (.), (.) and (.), we obtain

d(xn(i)+,xk+) ≥ d(xn(i),xk) – d(xn(i),xn(i)+) – d(xk ,xk+)

> ε +
r

–
r

–
r

= ε,

which is a contradiction. We obtained that limm,n→∞ d(xn,xm) = , and so, {xn = f nx} is
a Cauchy sequence. Since X is complete, then there exists z ∈ X such that f nx → z as
n→ ∞. As f is orbitally continuous, so z = fz. �

Corollary . (Theorem  of []) Let (X,d) be a complete metric space, and let f : X →
X be an orbitally continuous generalized α-ψst-Meir-Keeler contractive mapping. If there
exist x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Example . Let X = [,∞), and let d(x, y) = |x – y| be a metric on X. Define f : X → X
by

fx =

⎧⎨
⎩

x
 if x ∈ [, ],

x
√x+ x ∈ (,∞)

and ψst(t) = 
 t,

α(x, y) =

⎧⎨
⎩ if x, y ∈ [, ],

– otherwise.

Clearly, f is a triangular α-admissible mapping, and it is orbitally continuous. Let
α(x, y)≥ , then x, y ∈ [, ]. Without loss of generality, take x≤ y. Then

ψst
(
d(fx, fy)

)
=

y


–
x


,

ψst
(
M(x, y)

)
= ψst

(
max

{
y – x,



y,x –

y

, y –

x


})

=max

{
y

–
x

,



y,
x

–

y


,
y

–

x


}
.
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Clearly, by taking δ = ε, the condition (.) holds. Hence, all conditions of Theorem .
are satisfied, and f has a fixed point. But if x =  and y = 

ε ≤ M(, ) < δ + ε

for δ >  and ε > , then

ε ≤  < δ + ε,

and so,

α(, )ψst
(
d(f , f )

)
=  ≥  ≥ ε.

That is, Corollary . (Theorem  of []) cannot be applied for this example.

4 Modified α-η-contractivemultifunction
Recently, Asl et al. [] introduced the following notion.

Definition . Let T : X → X , and let α : X×X →R+.We say that T is an α∗-admissible
mapping if

α(x, y)≥  implies that α∗(Tx,Ty) ≥ , x, y ∈ X,

where

α∗(A,B) = inf
x∈A,y∈B

α(x, y).

We generalize this concept as follows.

Definition . Let T : X → X be a multifunction, and let α,η : X × X → R+ be two
functions, where η is bounded. We say that T is an α∗-admissible mapping with respect
to η if

α(x, y)≥ η(x, y) implies that α∗(Tx,Ty) ≥ η∗(Tx,Ty), x, y ∈ X,

where

α∗(A,B) = inf
x∈A,y∈B

α(x, y) and η∗(A,B) = sup
x∈A,y∈B

η(x, y).

If we take η(x, y) =  for all x, y ∈ X, then this definition reduces to Definition .. In case
α(x, y) =  for all x, y ∈ X, then T is called an η∗-subadmissible mapping.

Notice that � is the family of nondecreasing functions ψ : [, +∞)→ [, +∞) such that∑∞
n= ψ

n(t) < +∞ for all t > , where ψn is the nth iterate of ψ .
As an application of our new concept, we develop now a fixed point result for a multi-

function, which generalizes Theorem ..
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Theorem . Let (X,d) be a complete metric space, and let T : X → X be an α∗-
admissible, with respect to η, and closed-valued multifunction on X. Assume that for
ψ ∈ � ,

x, y ∈ X, α∗(Tx,Ty) ≥ η∗(Tx,Ty) �⇒ H(Tx,Ty) ≤ ψ
(
d(x, y)

)
. (.)

Also, suppose that the following assertions hold:
(i) there exist x ∈ X and x ∈ Tx such that α(x,x)≥ η(x,x);
(ii) for a sequence {xn} ⊂ X converging to x ∈ X and α(xn,xn+) ≥ η(xn,xn+) for all

n ∈N, we have α(xn,x)≥ η(xn,x) for all n ∈N.
Then T has a fixed point.

Proof Let x ∈ Tx be such that α(x,x) ≥ η(x,x). Since T is an α∗-admissible mapping,
then α∗(Tx,Tx) ≥ η∗(Tx,Tx). Therefore, from (.), we have

H(Tx,Tx) ≤ ψ
(
d(x,x)

)
. (.)

If x = x, then x is a fixed point of T . Hence, we assume that x 
= x. Also, if x ∈ Tx,
then x is a fixed point of T . Assume that x /∈ Tx and q > . Then we have

 < d(x,Tx) ≤ H(Tx,Tx) < qH(Tx,Tx),

and so, by (.), we get

 < d(x,Tx) < qH(Tx,Tx) ≤ qψ
(
d(x,x)

)
.

This implies that there exists x ∈ Tx such that

 < d(x,x) < qH(Tx,Tx) ≤ qψ
(
d(x,x)

)
. (.)

Note that x 
= x (since x /∈ Tx). Also, since α∗(Tx,Tx) ≥ η∗(Tx,Tx), x ∈ Tx and
x ∈ Tx, then α(x,x) ≥ η(x,x). So α∗(Tx,Tx) ≥ η∗(Tx,Tx). Therefore, from (.),
we have

H(Tx,Tx) ≤ ψ
(
d(x,x)

)
. (.)

Put t = d(x,x). Then from (.), we have d(x,x) < qψ(t), where t > . Now, since ψ

is strictly increasing, then ψ(d(x,x)) <ψ(qψ(t)). Put

q =
ψ(qψ(t))
ψ(d(x,x))

,

and so q > . If x ∈ Tx, then x is a fixed point of T . Hence, we suppose that x /∈ Tx.
Then

 < d(x,Tx) ≤ H(Tx,Tx) < qH(Tx,Tx).
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So there exists x ∈ Tx such that

 < d(x,x) < qH(Tx,Tx),

and then from (.), we get

 < d(x,x) < qH(Tx,Tx) ≤ qψ
(
d(x,x)

)
= ψ

(
qψ(t)

)
.

Again, since ψ is strictly increasing, then ψ(d(x,x)) < ψ(ψ(qψ(t))). Put

q =
ψ(ψ(qψ(t)))
ψ(d(x,x))

.

So, q > . If x ∈ Tx, then x is a fixed point of T . Hence, we assume that x /∈ Tx. Then

 < d(x,Tx) ≤ H(Tx,Tx) < qH(Tx,Tx),

and so, there exists x ∈ Tx such that

 < d(x,x) ≤ H(Tx,Tx) < qH(Tx,Tx). (.)

Clearly, x 
= x. Also again, since α∗(Tx,Tx) ≥ η∗(Tx,Tx), x ∈ Tx and x ∈ Tx, then
α(x,x) ≥ η(x,x), and so, α∗(Tx,Tx) ≥ η∗(Tx,Tx). Then from (.), we have

H(Tx,Tx) ≤ ψ
(
d(x,x)

)
,

and so, from (.), we deduce that

d(x,x) < qH(Tx,Tx) ≤ qψ
(
d(x,x)

)
= ψ

(
ψ

(
qψ(t)

))
.

By continuing this process, we obtain a sequence {xn} in X such that xn ∈ Txn–, xn 
= xn–,
α∗(xn,xn+) ≥ η∗(xn,xn+) and d(xn,xn+) ≤ ψn–(qψ(t)) for all n ∈ N. Now, for all m > n,
we can write

d(xn,xm)≤
m–∑
k=n

d(xk ,xk+) ≤
m–∑
k=n

ψk–(qψ(t)
)
.

Therefore, {xn} is a Cauchy sequence. Since (X,d) is a complete metric space, then there
exists z ∈ X such that xn → z as n → ∞. Now, since α(xn, z) ≥ η(xn, z) for all n ∈ N, then
α∗(Txn,Tz) ≥ η∗(Txn,Tz), and so, from (.), we have

d(z,Tz) ≤ H(Txn,Tz) + d(xn, z) ≤ ψ
(
d(xn, z)

)
+ d(xn, z)

for all n ∈ N. Taking limit as n → ∞ in the inequality above, we get d(z,Tz) = , i.e.,
z ∈ Tz. �

If in Theorem . we take η(x, y) = , we have the following corollary.
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Corollary . Let (X,d) be a complete metric space, and let T : X → X be an α∗-
admissible and closed-valued multifunction on X. Assume that

x, y ∈ X, α∗(Tx,Ty) ≥  �⇒ H(Tx,Ty) ≤ ψ
(
d(x, y)

)
.

Also, suppose that the following assertions hold:
(i) there exists x ∈ X and x ∈ Tx such that α(x,x) ≥ ;
(ii) for a sequence {xn} ⊂ X converging to x ∈ X and α(xn,xn+) ≥  for all n ∈N, we have

α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

If in Theorem . we take α(x, y) = , then we have the following result.

Corollary . Let (X,d) be a complete metric space, and let T : X → X be an η∗-
subadmissible and closed-valued multifunction on X. Assume that

x, y ∈ X, η∗(Tx,Ty) ≤  �⇒ H(Tx,Ty) ≤ ψ
(
d(x, y)

)
.

Also, suppose that the following assertions hold:
(i) there exists x ∈ X and x ∈ Tx such that η(x,x) ≤ ;
(ii) for a sequence {xn} ⊂ X converging to x ∈ X and η(xn,xn+) ≤  for all n ∈ N, we have

η(xn,x) ≤  for all n ∈N.
Then T has a fixed point.

Corollary . (Theorem . and . of []) Let (X,d) be a complete metric space, and let
T : X → X be an α∗-admissible and closed-valued multifunction on X. Assume that

α∗(Tx,Ty)H(Tx,Ty) ≤ ψ
(
d(x, y)

)
(.)

for all x, y ∈ X. Also, suppose that the following assertions hold:
(i) there exists x ∈ X and x ∈ Tx such that α(x,x) ≥ ;
(ii) for a sequence {xn} ⊂ X converging to x ∈ X and α(xn,xn+) ≥  for all n ∈N, we have

α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

Proof Suppose that α∗(Tx,Ty)≥  for x, y ∈ X. Then by (.), we have

H(Tx,Ty) ≤ ψ
(
d(x, y)

)
.

That is, conditions of Corollary . hold, and T has a fixed point. �

Similarly, we can deduce the following corollaries.

Corollary . Let (X,d) be a complete metric space, and let T : X → X be an α∗-
admissible and closed-valued multifunction on X. Assume that

(
α∗(Tx,Ty) + 

)H(Tx,Ty) ≤ ψ(d(x,y))
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for all x, y ∈ X. Also, suppose that the following assertions hold:
(i) there exists x ∈ X and x ∈ Tx such that α(x,x) ≥ ;
(ii) for a sequence {xn} ⊂ X converging to x ∈ X and α(xn,xn+) ≥  for all n ∈N, we have

α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

Corollary . Let (X,d) be a complete metric space, and let T : X → X be an α∗-
admissible and closed-valued multifunction on X. Assume that

(
H(Tx,Ty) + �

)α∗(Tx,Ty) ≤ ψ
(
d(x, y)

)
+ �

for all x, y ∈ X, where � > . Also, suppose that the following assertions hold:
(i) there exists x ∈ X and x ∈ Tx such that α(x,x) ≥ ;
(ii) for a sequence {xn} ⊂ X converging to x ∈ X and α(xn,xn+) ≥  for all n ∈N, we have

α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

Corollary . Let (X,d) be a complete metric space, and let T : X → X be an η∗-
subadmissible and closed-valued multifunction on X. Assume that

H(Tx,Ty) ≤ η∗(Tx,Ty)ψ
(
d(x, y)

)

for all x, y ∈ X. Also, suppose that the following assertions hold:
(i) there exists x ∈ X and x ∈ Tx such that η(x,x) ≤ ;
(ii) for a sequence {xn} ⊂ X converging to x ∈ X and η(xn,xn+) ≤  for all n ∈ N, we have

η(xn,x) ≤  for all n ∈N.
Then T has a fixed point.

Corollary . Let (X,d) be a complete metric space, and let T : X → X be an η∗-
subadmissible and closed-valued multifunction on X. Assume that

H(Tx,Ty) ≤ (
η∗(Tx,Ty) + 

)ψ(d(x,y))

for all x, y ∈ X. Also, suppose that the following assertions hold:
(i) there exists x ∈ X and x ∈ Tx such that η(x,x) ≤ ;
(ii) for a sequence {xn} ⊂ X converging to x ∈ X and η(xn,xn+) ≤  for all n ∈ N, we have

η(xn,x) ≤  for all n ∈N.
Then T has a fixed point.

Corollary . Let (X,d) be a complete metric space, and let T : X → X be an α∗-
admissible and closed-valued multifunction on X. Assume that

H(Tx,Ty) + � ≤ (
ψ

(
d(x, y)

)
+ �

)η∗(Tx,Ty)

for all x, y ∈ X, where � > . Also, suppose that the following assertions hold:
(i) there exists x ∈ X and x ∈ Tx such that η(x,x) ≤ ;
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(ii) for a sequence {xn} ⊂ X converging to x ∈ X and η(xn,xn+) ≤  for all n ∈ N, we have
η(xn,x) ≤  for all n ∈N.

Then T has a fixed point.
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3. Ćirić, L, Abbas, M, Saadati, R, Hussain, N: Common fixed points of almost generalized contractive mappings in

ordered metric spaces. Appl. Math. Comput. 217, 5784-5789 (2011)
4. Geraghty, MA: On contractive mappings. Proc. Am. Math. Soc. 40, 604-608 (1973)
5. Hussain, N, Berinde, V, Shafqat, N: Common fixed point and approximation results for generalized φ-contractions.

Fixed Point Theory 10, 111-124 (2009)
6. Hussain, N, Khamsi, MA, Latif, A: Common fixed points for JH-operators and occasionally weakly biased pairs under

relaxed conditions. Nonlinear Anal. 74, 2133-2140 (2011)
7. Hussain, N, Kadelburg, Z, Radenovic, S, Al-Solamy, FR: Comparison functions and fixed point results in partial metric

spaces. Abstr. Appl. Anal. 2012, Article ID 605781 (2012)
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