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Abstract
In this paper, we introduce an iterative scheme for finding a common element of the
sets of fixed points for multivalued nonexpansive mappings, strict
pseudo-contractive mappings and the set of solutions of an equilibrium problem for
a pseudomonotone, Lipschitz-type continuous bifunctions. We prove the strong
convergence of the sequence, generated by the proposed scheme, to the solution of
the variational inequality. Our results generalize and improve some known results.
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1 Introduction
In , Browder and Petryshyn [] introduced a concept of strict pseudo-contractive in a
real Hilbert space. LetC be a nonempty subset of a real Hilbert spaceH , and let T : C → C
be a single-valued mapping. A mapping T is called a β-strict pseudo-contractive on C []
if there exists a constant β ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + β
∥∥(x – Tx) – (y – Ty)

∥∥, ∀x, y ∈ C.

We use F(T) to denote the set of all fixed points of T ; F(T) = {x ∈ C : x = T(x)}. Note that
the class of strictly pseudo-contractive mappings strictly includes the class of nonexpan-
sive mappings, which are the mappings T on C such that

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C (see []). Strictly pseudocontractive mappings have more powerful appli-
cations than nonexpansive mappings in solving inverse problems, see Scherzer []. In the
literature, many interesting and important results have been appeared to approximate the
fixed points of pseudo-contractive mappings. For example, see [–] and the references
therein.
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A subset C ⊂ H is called proximal if for each x ∈ H , there exists an element y ∈ C such
that

‖x – y‖ = dist(x,C) = inf
{‖x – z‖ : z ∈ C

}
.

We denote by CB(C), K(C) and P(C) the collection of all nonempty closed bounded sub-
sets, nonempty compact subsets, and nonempty proximal bounded subsets of C, respec-
tively. The Hausdorff metric H on CB(H) is defined by

H(A,B) :=max
{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)
}

for all A,B ∈ CB(H).
Let T :H → H be a multivalued mapping. An element x ∈ H is said to be a fixed point

of T if x ∈ Tx. A multivalued mapping T :H → CB(H) is called nonexpansive if

H(Tx,Ty) ≤ ‖x – y‖, x, y ∈ H .

Much work has been done on the existence of common fixed points for a pair consisting
of a single-valued and a multivalued mapping, see, for instance [–]. Let f be a bifunc-
tion from C × C into R, such that f (x,x) =  for all x ∈ C. Consider the classical Ky Fan
inequality. Find a point x∗ ∈ C such that

f
(
x∗, y

) ≥ , ∀y ∈ C,

where f (x, ·) is convex and subdifferentiable on C for every x ∈ C. The set of solutions for
this problem is denoted by Sol(f ,C). In fact, the Ky Fan inequality can be formulated as an
equilibrium problem. Further, if f (x, y) = 〈Fx, y–x〉 for every x, y ∈ C, where F is a mapping
from C into H , then the Ky Fan inequality problem (equilibrium problem) becomes the
classical variational inequality problem, which is formulated as finding a point x∗ ∈ C such
that

〈
Fx∗, y – x∗〉 ≥ , ∀y ∈ C.

Such problems arise frequently in mathematics, physics, engineering, game theory, trans-
portation, economics and network. Due to importance of the solutions of such problems,
many researchers are working in this area and studying on the existence of the solutions
of such problems, see, e.g., [–]. Further, in the recent years, iterative algorithms for
finding a common element of the set of solutions of equilibrium problem and the set of
fixed points of nonexpansive mappings in a real Hilbert space have been studied by many
authors (see, e.g., [–]).

Definition . Let C be a nonempty closed convex subset of a Hilbert space H . The bi-
function f : C ×C → R is said to be

(i) strongly monotone on C with α >  if

f (x, y) + f (y,x)≤ –α‖x – y‖, ∀x, y ∈ C;
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(ii) monotone on C if

f (x, y) + f (y,x)≤ , ∀x, y ∈ C;

(iii) pseudomonotone on C if

f (x, y)≥  ⇒ f (y,x) ≤ , ∀x, y ∈ C;

(iv) Lipschitz-type continuous on C with constants c >  and c >  (in the sense of
Mastroeni []) if

f (x, y) + f (y, z) ≥ f (x, z) – c‖x – y‖ – c‖y – z‖, ∀x, y, z ∈ C.

Recently, Anh [, ] introduced some methods for finding a common element of the
set of solutions of monotone Lipschitz-type continuous equilibrium problem and the set
of fixed points of a nonexpansive mapping T in a Hilbert space H . In [], he proved the
following theorem.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
f : C × C → R be a monotone, continuous, and Lipschitz-type continuous bifunction, and
let f (x, ·) be convex and subdifferentiable on C for every x ∈ C. Let h be a contraction of C
into itself with constant k ∈ (, ), let S be a nonexpansive mapping of C into itself, and let
F(S)∩ Sol(f ,C) �= ∅. Let {xn}, {wn} and {zn} be sequences generated by x ∈ C and by

⎧⎪⎪⎨
⎪⎪⎩
wn = argmin{λnf (xn,w) + 

‖w – xn‖ : w ∈ C},
zn = argmin{λnf (wn, z) + 

‖z – xn‖ : z ∈ C},
xn+ = αnh(xn) + βnxn + γn(μS(xn) + ( –μ)zn), ∀n≥ ,

where μ ∈ (, ), and {αn}, {βn}, {γn}, and {λn} satisfy the following conditions:
(i) limn→∞ αn = ,

∑∞
n= αn = ∞,

(ii) limn→∞ |λn+ – λn| = , {λn} ⊂ [a,b]⊂ (, L ), where L =max{c, c},
(iii) αn + βn + γn =  and αn( – αn – βnk – γn) ∈ (, ),
(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Then, the sequences {xn}, {wn} and {zn} converge strongly to q ∈ F(S)∩Sol(f ,C)which solves
the variational inequality

〈
(I – h)q,x – q

〉 ≥ , ∀x ∈ F(S)∩ Sol(f ,C).

In this paper, we introduce an iterative algorithm for finding a common element of the
sets of fixed points for multivalued nonexpansive mappings, strict pseudo-contractive
mappings and the set of solutions of an equilibrium problem for a pseudomonotone,
Lipschitz-type continuous bifunctions. We prove the strong convergence of the sequence
generated by the proposed algorithm to the solution of the variational inequality. Our re-
sults generalize and improve a number of known results including the results of Anh [].
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2 Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and the norm ‖ · ‖. Let {xn} be
a sequence in H , and let x ∈ H . Weak convergence of {xn} to x is denoted by xn ⇀ x,
and strong convergence by xn → x. Let C be a nonempty closed convex subset of H . The
nearest point projection from H to C, denoted by ProjC , assigns to each x ∈H the unique
point ProjC x ∈ C with the property

‖x – ProjC x‖ := inf
{‖x – y‖,∀y ∈ C

}
.

It is known that ProjC is a nonexpansive mapping, and for each x ∈H ,

〈x – ProjC x, y – ProjC x〉 ≤ , ∀y ∈ C.

Definition . Let C be a nonempty, closed and convex subset of a Hilbert space H . De-
note by NC(v) the normal cone of C at v ∈ C, i.e.,

NC(v) :=
{
z ∈H : 〈z, y – v〉 ≤ ,∀y ∈ C

}
.

Definition . Let C be a nonempty, closed and convex subset of a Hilbert space H , and
let f : C × C → R be a bifunction. For each z ∈ C, by ∂f (z,u) we denote the subgradient
of the function f (z, ·) at u, i.e.,

∂f (z,u) =
{
ξ ∈H : f (z, t) – f (z,u) ≥ 〈ξ , t – u〉,∀t ∈ C

}
.

The following lemmas are crucial for the proofs of our results.

Lemma . In a Hilbert space H , the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

Lemma . [] Let {an} be a sequence of nonnegative real numbers, let {αn} be a se-
quence in (, ) with

∑∞
n= αn = ∞, let {γn} be a sequence of nonnegative real numbers with∑∞

n= γn < ∞, and let {βn} be a sequence of real numbers with lim supn→∞ βn ≤ . Suppose
that the following inequality holds:

an+ ≤ ( – αn)an + αnβn + γn, n≥ .

Then limn→∞ an = .

Lemma . [] Let H be a real Hilbert space. Then for all x, y, z ∈ H and α,β ,γ ∈ [, ]
with α + β + γ = , we have

‖αx + βy + γ z‖ = α‖x‖ + β‖y‖ + γ ‖z‖ – αβ‖x – y‖ – αγ ‖x – z‖ – βγ ‖z – y‖.

Lemma. [] Let {tn} be a sequence of real numbers such that there exists a subsequence
{ni} of {n} such that tni < tni+ for all i ∈ N. Then there exists a nondecreasing sequence
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{τ (n)} ⊂N such that τ (n)→ ∞, and the following properties are satisfied by all (sufficiently
large) numbers n ∈N:

tτ (n) ≤ tτ (n)+, tn ≤ tτ (n)+.

In fact,

τ (n) =max{k ≤ n : tk < tk+}.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , and
let f : C × C → R be a pseudomonotone and Lipschitz-type continuous bifunction. For
each x ∈ C, let f (x, ·) be convex and subdifferentiable on C. Let {xn}, {zn} and {wn} be the
sequences, generated by x ∈ C and by

⎧⎨
⎩
wn = argmin{λnf (xn,w) + 

‖w – xn‖ : w ∈ C},
zn = argmin{λnf (wn, z) + 

‖z – xn‖ : z ∈ C}.

Then for each x∗ ∈ Sol(f ,C),

∥∥zn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – ( – λnc)‖xn –wn‖ – ( – λnc)‖wn – zn‖, ∀n≥ .

Lemma . [] Let C be nonempty closed convex subset of a real Hilbert space H , and let
T : C → C be β-pseudo-contraction mapping. Then I –T is demiclosed at . That is, if {xn}
is a sequence in C such that xn ⇀ x and limn→∞ ‖xn – Txn‖ = , then x = Tx.

Lemma . [] Let C be a closed convex subset of a Hilbert space H , and let T : C → C
be a β-strict pseudo-contraction on C and the fixed-point set F(T) of T is nonempty, then
F(T) is closed and convex.

Lemma . [] Let C be a closed convex subset of a real Hilbert space H . Let T : C →
CB(C) be a nonexpansive multivalued mapping. Assume that T(p) = {p} for all p ∈ F(T).
Then F(T) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H .
Let T : C → K(C) be a nonexpansive multivalued mapping. If xn ⇀ v and limn→∞ dist(xn,
Txn) = , then v ∈ Tv.

3 Main results
Now, we are in a position to give our main results.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , and
let f : C × C → R be a monotone, continuous, and Lipschitz-type continuous bifunction.
Suppose that f (x, ·) is convex and subdifferentiable on C for all x ∈ C.Let,T : C → CB(C) be
a multivalued nonexpansive mapping, and let S : C → C be a β-strict pseudo-contraction
mapping. Assume thatF = F(T)∩F(S)∩Sol(f ,C) �= ∅ and T(p) = {p} for each p ∈F . Let h

http://www.fixedpointtheoryandapplications.com/content/2013/1/213
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be a k-contraction of C into itself. Let {xn}, {wn} and {zn} be sequences generated by x ∈ C
and by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wn = argmin{λnf (xn,w) + 
‖w – xn‖ : w ∈ C},

zn = argmin{λnf (wn, z) + 
‖z – xn‖ : z ∈ C},

yn = αnzn + βnun + γnSzn,

xn+ = ϑnh(xn) + ( – ϑn)yn, ∀n≥ ,

()

where un ∈ Tzn. Let {αn}, {βn}, {γn}, {λn} and {ϑn} satisfy the following conditions:
(i) {ϑn} ⊂ (, ), limn→∞ ϑn = ,

∑∞
n= ϑn = ∞,

(ii) {λn} ⊂ [a,b]⊂ (, L ), where L =max{c, c},
(iii) {αn}, {γn} ⊂ [a, ) ⊂ (, ), αn > β and αn + βn + γn = .

Then, the sequence {xn} converges strongly to q ∈F ,which solves the variational inequality

〈q – hq,x – q〉 ≥ , ∀x ∈F . ()

Proof Let Q = ProjF . It easy to see that Qh is a contraction. By the Banach contraction
principle, there exists a q ∈F such that q = (Qh)(q). Applying Lemma ., we have

‖zn – q‖ ≤ ‖xn – q‖ – ( – λnc)‖xn –wn‖ – ( – λnc)‖wn – zn‖. ()

This implies that

‖zn – q‖ ≤ ‖xn – q‖. ()

Since T is nonexpansive and Tq = {q}, by () we have

‖un – q‖ = dist(un,Tq) ≤ H(Tzn,Tq) ≤ ‖zn – q‖ ≤ ‖xn – q‖. ()

We show that {xn} is bounded. Indeed, using inequality (), () and Lemma ., we have

‖yn – q‖ = ‖αnzn + βnun + γnSzn – q‖

≤ αn‖zn – q‖ + βn‖un – q‖ + γn‖Szn – q‖

– αnβn‖un – zn‖ – αnγn‖zn – Szn‖

≤ αn‖xn – q‖ + βn‖xn – q‖ + γn
(‖zn – q‖ + β‖zn – Szn‖

)
– αnβn‖un – zn‖ – αnγn‖zn – Szn‖

– αn( – λnc)‖xn –wn‖ – αn( – λnc)‖wn – zn‖

≤ ‖xn – q‖ – αnβn‖un – zn‖ – γn(αn – β)‖zn – Szn‖

– αn( – λnc)‖xn –wn‖ – αn( – λnc)‖wn – zn‖. ()

It follows that

‖yn – q‖ ≤ ‖xn – q‖ – γn(αn – β)‖zn – Szn‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/213
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Since αn > β , we get that ‖yn – q‖ ≤ ‖xn – q‖. This implies that

‖xn+ – q‖ =
∥∥ϑnhxn + ( – ϑn)yn – q

∥∥
≤ ϑn‖hxn – q‖ + ( – ϑn)‖yn – q‖
≤ ϑn

(‖hxn – hq‖ + ‖hq – q‖) + ( – ϑn)‖xn – q‖
≤ ϑnk‖xn – q‖ + ϑn‖hq – q‖ + ( – ϑn)‖xn – q‖
=

(
 – ϑn( – k)

)‖xn – q‖ + ϑn‖hq – q‖

≤ max

{
‖xn – q‖, ‖hq – q‖

 – k

}
.

By induction, we get

‖xn – q‖ ≤ max

{
‖x – q‖, ‖hq – q‖

 – k

}

for all n ∈ N. This implies that {xn} is bounded, and we also obtain that {un}, {zn}, {hxn}
and {Szn} are bounded. Next, we show that

lim
n→∞‖zn – Szn‖ = lim

n→∞‖zn – un‖ = lim
n→∞‖zn – xn‖ = .

Indeed, using inequality (), we have

‖xn+ – q‖ =
∥∥ϑnhxn + ( – ϑn)yn – q

∥∥

≤ ϑn‖hxn – q‖ + ( – ϑn)‖yn – q‖

≤ ϑn‖hxn – q‖ + ( – ϑn)‖xn – p‖

– ( – ϑn)αnβn‖un – zn‖ – ( – ϑn)γn(αn – β)‖zn – Szn‖

– ( – ϑn)αn( – λnc)‖xn –wn‖ – ( – ϑn)αn( – λnc)‖wn – zn‖.

Therefore, we have

( – ϑn)γn(αn – β)‖zn – Szn‖ ≤ ‖xn – q‖ – ‖xn+ – q‖ + ϑn‖hxn – q‖. ()

In order to prove that xn → q as n→ ∞, we consider the following two cases.
Case . Suppose that there exists n such that {‖xn – q‖} is nonincreasing, for all n≥ n.

Boundedness of {‖xn –q‖} implies that ‖xn –q‖ is convergent. Since {hxn} is bounded and
limn→∞ ϑn = , from () and our assumption that αn > β , we obtain that

lim
n→∞‖zn – Szn‖ = .

By similar argument we can obtain that

lim
n→∞‖un – zn‖ = lim

n→∞‖xn –wn‖ = lim
n→∞‖wn – zn‖ = . ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/213
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From this with inequality ‖xn – zn‖ ≤ ‖xn –wn‖ + ‖wn – zn‖, it follows that

lim
n→∞‖xn – zn‖ = . ()

Next, we show that

lim sup
n→∞

〈q – hq,q – xn〉 ≤ ,

where q = (Qh)(q). To show this inequality, we choose a subsequence {xni} of {xn} such
that

lim
i→∞〈q – hq,q – xni〉 = lim sup

n→∞
〈q – hq,q – xn〉.

Since {xni} is bounded, there exists a subsequence {xnij } of {xni}, which converges weakly
to x∗.Without loss of generality, we can assume that xni ⇀ x∗. From inequality (), we have
zni ⇀ x∗. Now, since limn→∞ ‖zn–Szn‖ = , fromLemma ., we have x∗ ∈ F(S). Also from
(), we have

dist(zn,Tzn) ≤ ‖un – zn‖ →  as n→ ∞.

It follows from Lemma . that x∗ ∈ F(T). Now, we show that x∗ ∈ Sol(f ,C). Since f (x, ·)
is convex on C for each x ∈ C, we see that

wn = argmin

{
λnf (xn, y) +



‖y – xn‖ : y ∈ C

}

if and only if

o ∈ ∂

(
f (xn, y) +



‖y – xn‖

)
(wn) +NC(wn),

where NC(x) is the (outward) normal cone of C at x ∈ C. This follows that

 = λnv +wn – xn + un,

where v ∈ ∂f (xn,wn) and un ∈NC(wn). By the definition of the normal cone NC , we have

〈wn – xn, y –wn〉 ≥ λn〈v,wn – y〉, ∀y ∈ C. ()

Since f (xn, ·) is subdifferentiable on C, there exists v ∈ ∂f (xn,wn) such that

f (xn, y) – f (xn,wn) ≥ 〈v, y –wn〉, ∀y ∈ C

(see, [, ]). Combining this with (), we have

λn
(
f (xn, y) – f (xn,wn)

) ≥ 〈wn – xn,wn – y〉, ∀y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/213
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Hence

f (xni , y) – f (xni ,wni ) ≥


λni
〈wni – xni ,wni – y〉, ∀y ∈ C.

From (), we have that wni ⇀ x∗. Now by continuity of f and assumption that {λn} ⊂
[a,b]⊂ ], L [, we have

f
(
x∗, y

) ≥ , ∀y ∈ C.

This implies that x∗ ∈ Sol(f ,C), and hence x∗ ∈F . Since q = (Qh)(q) and x∗ ∈F , it follows
that

lim sup
n→∞

〈q – hq,q – xn〉 = lim
i→∞〈q – hq,q – xni〉 =

〈
q – hq,q – x∗〉 ≤ .

By using Lemma . and inequality (), we have

‖xn+ – q‖ ≤ ∥∥( – ϑn)(yn – q)
∥∥ + ϑn〈hxn – q,xn+ – q〉

≤ ( – ϑn)‖yn – q‖ + ϑn〈hxn – hq,xn+ – q〉 + ϑn〈hq – q,xn+ – q〉
≤ ( – ϑn)‖xn – q‖ + ϑnk‖xn – q‖‖xn+ – q‖ + ϑn〈hq – q,xn+ – q〉
≤ ( – ϑn)‖xn – q‖ + ϑnk

(‖xn – q‖ + ‖xn+ – q‖)
+ ϑn〈hq – q,xn+ – q〉

≤ (
( – ϑn) + ϑnk

)‖xn – q‖ + ϑnk‖xn+ – q‖ + ϑn〈hq – q,xn+ – q〉.

This implies that

‖xn+ – q‖ ≤
(
 –

( – k)ϑn

 – ϑnk

)
‖xn – q‖ + ϑ

n
 – ϑnk

‖xn – q‖

+
ϑn

 – ϑnk
〈hq – q,xn+ – q〉.

From Lemma ., we conclude that the sequence {xn} converges strongly to q.
Case . Assume that there exists a subsequence {xnj} of {xn} such that

‖xnj – q‖ < ‖xnj+ – q‖,

for all j ∈ N. In this case from Lemma ., there exists a nondecreasing sequence {τ (n)}
of N for all n ≥ n (for some n large enough) such that τ (n) → ∞ as n → ∞, and the
following inequalities hold for all n≥ n,

‖xτ (n) – q‖ < ‖xτ (n)+ – q‖, ‖xn – q‖ < ‖xτ (n)+ – q‖.

From (), we obtain limn→∞ ‖zτ (n) – Szτ (n)‖ = , and similarly we obtain

lim
n→∞‖xτ (n) – zτ (n)‖ = lim

n→∞‖uτ (n) – zτ (n)‖ = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/213
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Following an argument similar to that in Case , we have

lim
n→∞‖xτ (n) – q‖ = , lim

n→∞‖xτ (n)+ – q‖ = .

Thus, by Lemma ., we have

 ≤ ‖xn – q‖ ≤ max
{‖xτ (n) – q‖,‖xn – q‖} ≤ ‖xτ (n)+ – q‖.

Therefore, {xn} converges strongly to q ∈F . This completes the proof. �

Now, let T : C → P(C) be a multivalued mapping, and let

PT (x) =
{
y ∈ Tx : ‖x – y‖ = dist(x,Tx)

}
, x ∈ C.

Then, we have F(T) = F(PT ). Indeed, if p ∈ F(T), then PT (p) = {p}, hence p ∈ F(PT ). On
the other hand, if p ∈ F(PT ), since PT (p) ⊂ Tp, we have p ∈ F(T). Now, using the similar
arguments as in the proof of Theorem ., we obtain the following result by replacing T
by PT , and removing the strict condition T(p) = {p} for all p ∈ F(T).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , and
let f : C × C → R be a monotone, continuous, and Lipschitz-type continuous bifunction.
Suppose that f (x, ·) is convex and subdifferentiable on C for all x ∈ C. Let T : C → P(C)
be a multivalued mapping such that PT is nonexpansive, and let S : C → C be a β-strict
pseudo-contraction mapping. Assume that F = F(T) ∩ F(S) ∩ Sol(f ,C) �= ∅. Let h be a k-
contraction of C into itself. Let {xn}, {wn} and {zn} be sequences generated by x ∈ C and
by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wn = argmin{λnf (xn,w) + 
‖w – xn‖ : w ∈ C},

zn = argmin{λnf (wn, z) + 
‖z – xn‖ : z ∈ C},

yn = αnzn + βnun + γnSzn,

xn+ = ϑnh(xn) + ( – ϑn)yn, ∀n≥ ,

()

where un ∈ PT (zn). Let {αn}, {βn}, {γn}, {λn} and {ϑn} satisfy the following conditions:
(i) {ϑn} ⊂ (, ), limn→∞ ϑn = ,

∑∞
n= ϑn = ∞,

(ii) {λn} ⊂ [a,b]⊂ (, L ), where L =max{c, c},
(iii) {αn}, {γn} ⊂ [a, ) ⊂ (, ), αn > β and αn + βn + γn = .

Then, the sequence {xn} converges strongly to q ∈F ,which solves the variational inequality

〈q – hq,x – q〉 ≥ , ∀x ∈F . ()

As a consequence, we obtain the following result for single-valued mappings.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H , and
let f : C × C → R be a monotone, continuous, and Lipschitz-type continuous bifunction.
Suppose that f (x, ·) is convex and subdifferentiable on C for all x ∈ C. Let T : C → C be
a nonexpansive mapping, and let S : C → C be a β-strict pseudo-contraction mapping.

http://www.fixedpointtheoryandapplications.com/content/2013/1/213
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Assume that F = F(T) ∩ F(S) ∩ Sol(f ,C) �= ∅. Let h be a k-contraction of C into itself. Let
{xn}, {wn} and {zn} be sequences generated by x ∈ C and by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wn = argmin{λnf (xn,w) + 
‖w – xn‖ : w ∈ C},

zn = argmin{λnf (wn, z) + 
‖z – xn‖ : z ∈ C},

yn = αnzn + βnTzn + γnSzn,

xn+ = ϑnh(xn) + ( – ϑn)yn, ∀n≥ .

()

Let {αn}, {βn}, {γn}, {λn} and {ϑn} satisfy the following conditions:
(i) {ϑn} ⊂ (, ), limn→∞ ϑn = ,

∑∞
n= ϑn = ∞,

(ii) {λn} ⊂ [a,b]⊂ (, L ), where L =max{c, c},
(iii) {αn}, {γn} ⊂ [a, ) ⊂ (, ), αn > β and αn + βn + γn = .

Then, the sequence {xn} converges strongly to q ∈F ,which solves the variational inequality

〈q – hq,x – q〉 ≥ , ∀x ∈F . ()

4 Application to variational inequalities
In this section, we consider the particular Ky Fan inequality, corresponding to the function
f , defined by f (x, y) = 〈F(x), y – x〉 for every x, y ∈ C with F : C → H . Then, we obtain the
classical variational inequality

find z ∈ C such that
〈
F(z), y – z

〉 ≥ ,∀y ∈ C.

The set of solutions of this problem is denoted by VI(F ,C). In that particular case, the
solution yn of the minimization problem

argmin

{
λnf (xn, y) +



‖y – xn‖ : y ∈ C

}

can be expressed as

yn = ProjC
(
xn – λnF(xn)

)
.

Let F be L-Lipschitz continuous on C. Then

f (x, y) + f (y, z) – f (x, z) =
〈
F(x) – F(y), y – z

〉
, x, y, z ∈ C.

Therefore,

∣∣〈F(x) – F(y), y – z
〉∣∣ ≤ L‖x – y‖‖y – z‖ ≤ L


(‖x – y‖ + ‖y – z‖),

and, hence, f satisfies Lipschitz-type continuous condition with c = c = L
 . Now, using

Theorem ., we obtain the following convergence theorem for finding a common element
of the set of common fixed points of a strict pseudo-contractive mapping and a multival-
ued nonexpansive mapping and the solution set of the variational inequality problem.

http://www.fixedpointtheoryandapplications.com/content/2013/1/213
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Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , and let
F be a function from C to H such that F is monotone and L-Lipschitz continuous on C. Let,
T : C → CB(C) be a multivalued nonexpansive mapping, and let S : C → C be a β-strict
pseudo-contraction mapping. Assume that F = F(T) ∩ F(S)∩ VI(F ,C) �= ∅ and T(p) = {p}
for each p ∈ F . Let h be a k-contraction of C into itself. Let {xn}, {wn}, and let {zn} be
sequences generated by x ∈ C and by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wn = ProjC(xn – λnF(xn)),

zn = ProjC(xn – λnF(wn)),

yn = αnzn + βnun + γnSzn,

xn+ = ϑnh(xn) + ( – ϑn)yn, ∀n≥ ,

()

where un ∈ Tzn. Let {αn}, {βn}, {γn}, {λn} and {ϑn} satisfy the following conditions:
(i) {ϑn} ⊂ (, ), limn→∞ ϑn = ,

∑∞
n= ϑn = ∞,

(ii) {λn} ⊂ [a,b]⊂ (, L ),
(iii) {αn}, {γn} ⊂ [a, ) ⊂ (, ), αn > β and αn + βn + γn = .

Then, the sequence {xn} converges strongly to q ∈F ,which solves the variational inequality

〈q – hq,x – q〉 ≥ , ∀x ∈F . ()
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