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1 Introduction
Let (X,d) be a metric space, and let CB(X) be a collection of all non-empty closed and
bounded subsets ofX. For everyA,B ∈ CB(X), aHausdorffmetricH induced by themetric
d of X is given by

H(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
,

where d(a,B) = inf{d(a,x),x ∈ B}.
For a multi-valued mapping T : X → X , a point x ∈ X is called a fixed point of T if

x ∈ Tx. We denote the set of fixed points of T by Fix(T).
Banach’s fixed point theorem is extended to the following result of Nadler [] from the

single-valued mappings to the multi-valued contractive mappings.

Theorem . [] Let (X,d) be a complete metric space, and let T : X → CB(X) be a set-
valued α-contraction, that is, a mapping, for which there exists a constant α ∈ (, ) such
that H(Tx,Ty)≤ αd(x, y), ∀x, y ∈ X. Then T has at least one fixed point.

The following remarkable generalization of the classical Banach contraction theorem
due to Suzuki [], states the following.

Theorem . [] For a metric space (X,d), define a nonincreasing function θ from [, )
onto (/, ] by

θ (r) =

⎧⎪⎪⎨
⎪⎪⎩
 if  ≤ r ≤ (

√
 – )/,

( – r)r– if (
√
 – )/ ≤ r ≤ –/,

( + r)– if –/ ≤ r < .
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The following are equivalent:
(i) X is complete.
(ii) Every mapping T on X such that there exists r ∈ [, ), θ (r)d(x,Tx)≤ d(x, y) implies

that d(Tx,Ty) ≤ rd(x, y) for all x, y ∈ X has a fixed point.

Theorem . has been generalized to multi-valued mappings by Kikkawa and Suzuki
[], Mot and Petrusel [], Dhompongsa and Yingtaweesittikul [], Singh and Mishra [],
Shahzad and Bassindowa [], and Aleomraninejad et al. [].
The concept of a b-metric space was introduced by Czerwik (see [] and []). We recall

from [] the following definition.

Definition . [] Let X be a set, and let s ≥  be a given real number. A function d :
X×X → R+ is said to be a b-metric if and only if for all x, y, z ∈ X, the following conditions
are satisfied:
. d(x, y) =  if and only if x = y.
. d(x, y) = d(y,x).
. d(x, z) ≤ s[d(x, y) + d(y, z)].

A pair (X,d) is called a b-metric space.

We remark that a metric space is evidently a b-metric space. However, Czerwik (see [,
]) has shown that a b-metric on X need not be a metric on X.
We cite the following lemmas from Czerwik [–] and Singh et al. []

Lemma . Let (X,d) be a b-metric space. For any A,B,C ∈ CB(X) and any x, y ∈ X,
. d(x,B)≤ d(x,b) for any b ∈ B,
. d(x,B)≤ H(A,B) for any x ∈ A,
. d(x,A) ≤ s[d(x, y) + d(y,A)].

Lemma . Let (X,d) be a b-metric space, and let A,B ∈ C(X). Then for each α >  and
for all b ∈ B, there exists a ∈ A such that

d(a,b)≤ H(A,B) + α.

Some examples of b-metric spaces and some fixed point theorems for single-valued and
multi-valued mappings in b-metric spaces can also be found in Czerwik [], Boriceanu et
al. [], Boriceanu et al. [], Aydi and Bota [], Bota et al. [], and Bota [].

Theorem . [] Let (X,d) be a b-complete metric space, and let T : X → CB(X) be a
multi-valued mapping such that T satisfies the inequality

H(Tx,Ty) ≤ rd(x, y) for all x, y ∈ X,

where  < r < 
s . Then T has a fixed point.

Theorem . [] Let (X,d) be a b-complete metric space, and let T : X → CB(X) be a
multi-valued mapping. Suppose that there exist a,b, c >  with c <  and a+b

–c <

s such that
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T satisfies the inequality

H(Tx,Ty) ≤ ad(x, y) + bd(x,Tx) + cd(y,Ty)

for all x, y ∈ X. Then T has a fixed point.

Theorem . [] Let (X,d) be a b-complete metric space, and let T : X → CB(X) be a
multi-valued mapping such that for all x, y ∈ X,

H(Tx,Ty) ≤ rmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
,

where r < 
s+s . Then T has a fixed point.

In , Aleomraninejad et al. [] gave a new condition for multi-valued mappings in
a metric space, which guarantees the existence of its fixed point.
Consider a continuous function g : [,∞)  → [,∞) satisfying the following condi-

tions:
(i) g(, , , , ) = g(, , , , ) = h ∈ (, ).
(ii) g is subhomogeneous, that is, for all (x,x,x,x,x) ∈ [,∞) , α > 

g(αx,αx,αx,αx,αx) ≤ αg(x,x,x,x,x).

(iii) If xi, yi ∈ [,∞), xi < yi for i = , . . . , , then

g(x,x,x,x, ) < g(y, y, y, y, ) and g(x,x,x, ,x) < g(y, y, y, , y).

Theorem . [] Let (X,d) be a complete metric space, and let F ,G : X → CB(X) be two
multi-valued mappings. Suppose that there exist α ∈ (, ) and g ∈ R such that α(h+ ) ≤ 
and αd(x,Fx)≤ d(x, y) or αd(y,Gy) ≤ d(x, y) implies that

H(Fx,Gy) ≤ g
(
d(x, y),d(x,Fx),d(y,Gy),d(x,Gy),d(y,Fx)

)

for all x, y ∈ X. Then Fix(F) = Fix(G) and Fix(F) is non-empty.

The aim of this paper is to apply the concept of this function g to b-metric spaces.
Let s ≥  be fixed, and let Rs be the set of all continuous functions g : [,∞)  → [,∞)

satisfying the conditions (ii), (iii) and
(iv) g(, , , s, ) = g(, , , , s) = hs ∈ (, /s).
Following the proofs in [] and [] with minor modification, we get the following re-

sults, respectively.

Lemma . If g ∈ Rs and u, v ∈ [,∞) are such that

u≤ max
{
g
(
v, v,u, s(v + u), 

)
, g

(
v, v,u, , s(v + u)

)
,

g
(
v,u, v, s(v + u), 

)
, g

(
v,u, v, , s(v + u)

)}
,

then u ≤ hsv.
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Proof Without loss of generality, we can suppose that u≤ g(v, v,u, s(v + u), ).
If v < u, then

u≤ g
(
v, v,u, s(v + u), 

) ≤ g(u,u,u, us, ) ≤ ug(, , , s, ) = hsu < u

which is a contradiction. Thus u≤ v. So,

u≤ g
(
v, v,u, s(u + v), 

) ≤ g(v, v, v, vs, )≤ vg(, , , s, ) = hsv. �

Lemma . Let (X,d) be a b-complete metric space, and let F ,G : X → CB(X) be
two multi-valued mappings. Suppose that there exist α ∈ (,∞) and g ∈ Rs such that
αd(x,Fx)≤ d(x, y) or αd(y,Gy) ≤ d(x, y) implies that

H(Fx,Gy) ≤ g
(
d(x, y),d(x,Fx),d(y,Gy),d(x,Gy),d(y,Fx)

)

for all x, y ∈ X. Then Fix(F) = Fix(G).

Proof Let x ∈ Fix(F), then αd(x,Fx) =  = d(x,x). Thus,

d(x,Gx)≤ H(Fx,Gx)

≤ g
(
d(x,x),d(x,Fx),d(x,Gx),d(x,Gx),d(x,Fx)

)
≤ g

(
,,d(x,Gx),d(x,Gx), 

)
≤ g

(
,,d(x,Gx), sd(x,Gx), 

)
.

Using Lemma ., we have d(x,Gx)≤ hs = . So, x ∈ Fix(G).
Hence Fix(F) ⊆ Fix(G). Similarly, we can obtain Fix(G) ⊆ Fix(F). �

2 Main results
Theorem . Let (X,d) be a b-complete metric space, and let F ,G : X → CB(X) be two
multi-valuedmappings. Suppose that there exist α ∈ (, ) and g ∈ Rs such that sα(hs +) ≤
 and αd(x,Fx)≤ d(x, y) or αd(y,Gy) ≤ d(x, y) implies that

H(Fx,Gy) ≤ g
(
d(x, y),d(x,Fx),d(y,Gy),d(x,Gy),d(y,Fx)

)

for all x, y ∈ X. Then Fix(F) = Fix(G) and Fix(F) is non-empty.

Proof The main idea of the proof follows from Theorem ..
By Lemma ., Fix(F) = Fix(G). Let r ∈ (hs, s ) and x ∈ X. If x is not a fixed point,

choose x ∈ Fx such that αd(x,Fx) < d(x,x). Thus,

d(x,Gx) ≤H(Fx,Gx)

≤ g
(
d(x,x),d(x,Fx),d(x,Gx),d(x,Gx),d(x,Fx)

)
≤ g

(
d(x,x),d(x,x),d(x,Gx), s

[
d(x,x) + d(x,Gx)

]
, 

)
.
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By Lemma ., we have d(x,Gx) ≤ hsd(x,x) < rd(x,x). If x is not a fixed point, there
exists x ∈Gx such that d(x,x) < rd(x,x). Since αd(x,Gx) < d(x,x),

d(x,Fx)≤ H(Fx,Gx)

≤ g
(
d(x,x),d(x,Fx),d(x,Gx),d(x,Gx),d(x,Fx)

)
≤ g

(
d(x,x),d(x,Fx),d(x,x), , s

[
d(x,x) + d(x,Fx)

])
.

By Lemma ., we have d(x,Fx) ≤ hsd(x,x) < rd(x,x).
Similarly, there exists x ∈ Fx such that d(x,x) < rd(x,x) < rd(x,x).
By continuing this process, we obtain a sequence {xn} in X such that

xn– ∈ Fxn–,xn ∈Gxn–, d(xn,xn+) ≤ rnd(x,x)

d(xn,Fxn) ≤ hd(xn–,xn) and d(xn–,Gxn–) ≤ hd(xn–,xn–).

We prove next that the sequence {xn} is Cauchy,

d(xn,xn+p) ≤ s
[
d(xn,xn+) + d(xn+,xn+p)

]
= sd(xn,xn+) + sd(xn+,xn+p)

≤ sd(xn,xn+) + s
[
d(xn+,xn+) + d(xn+,xn+p)

]
= sd(xn,xn+) + sd(xn+,xn+) + sd(xn+,xn+p)

≤ sd(xn,xn+) + sd(xn+,xn+) + sd(xn+,xn+) + · · ·
+ sp–d(xn+p–,xn+p–) + sp–d(xn+p–,xn+p)

≤ srnd(x,x) + srn+d(x,x) + srn+d(x,x) + · · ·
+ sp–rn+p–d(x,x) + sp–rn+p–d(x,x),

d(xn,xn+p) ≤ srn
(
 + sr + sr + · · · + sp–rp– + sp–rp–

)
d(x,x)

≤ srn
(
 + sr + sr + · · · + sp–rp– + sp–rp–

)
d(x,x)

= srn
[
 – (sr)p

 – sr

]
d(x,x).

Notice that

srn
[
 – (sr)p

 – sr

]
d(x,x) →  as n → ∞.

So {xn} is Cauchy, and xn → x for some x ∈ X.
Now, we claim that for each n≥ ,

αd(xn,Fxn)≤ d(xn,x) or αd(xn+,Gxn+) ≤ d(xn+,x).

If αd(xn,Fxn) > d(xn,x) and αd(xn+,Gxn+) > d(xn+,x) for some n ≥ , then

d(xn,xn+)≤ s
[
d(xn,x) + d(xn+,x)

]
< s

[
αd(xn,Fxn) + αd(xn+,Gxn+)

]

http://www.fixedpointtheoryandapplications.com/content/2013/1/215
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≤ s
[
αd(xn,xn+) + αhd(xn,xn+)

]
= s(α + αh)d(xn,xn+) = sα(hs + )d(xn,xn+).

Thus, we get sα(hs + ) > , which is a contradiction. By using the assumption, for each
n≥ , either

H(Fxn,Gx) ≤ g
(
d(xn,x),d(xn,Fxn),d(x,Gx),d(xn,Gx),d(x,Fxn)

)

or

H(Fx,Gxn+) ≤ g
(
d(x,xn+),d(x,Fx),d(xn+,Gxn+),d(x,Gxn+),d(xn+,Fx)

)
.

Therefore, one of the following cases holds.
(a) There exists an infinite subset I ⊆N such that

d(xn+,Gx) ≤ H(Fxn,Gx)

≤ g
(
d(xn,x),d(xn,Fxn),d(x,Gx),d(xn,Gx),d(x,Fxn)

)

for all n ∈ I .
(b) There exists an infinite subset J ⊆N such that

d(Fx,xn+)≤ H(Fx,Gxn+)

≤ g
(
d(x,xn+),d(x,Fx),d(xn+,Gxn+),d(x,Gxn+),d(xn+,Fx)

)

for all n ∈ J .
In case (a), we obtain

d(x,Gx)≤ s
[
d(x,xn+) + d(xn+,Gx)

]
≤ s

[
d(x,xn+) + g

(
d(xn,x),d(xn,Fxn),d(x,Gx),d(xn,Gx),d(x,Fxn)

)]
≤ s

[
d(x,xn+)

+ g
(
d(xn,x),d(xn,xn+),d(x,Gx), s

[
d(xn,x) + d(x,Gx)

]
,d(x,xn+)

)]

for all n ∈ I . Since g is continuous, d(x,Gx) ≤ s(g(, ,d(x,Gx), sd(x,Gx), )). Using
Lemma ., d(x,Gx) = . We have x ∈Gx.
In case (b), we obtain

d(x,Fx)≤ s
[
d(x,xn+) + d(xn+,Fx)

]
≤ s

[
d(x,xn+)

+ g
(
d(x,xn+),d(x,Fx),d(xn+,Gxn+),d(x,Gxn+),d(xn+,Fx)

)]
≤ s

[
d(x,xn+)

+ g
(
d(x,xn+),d(x,Fx),d(xn+,xn+),d(x,xn+), s

[
d(xn+,x) + d(x,Fx)

])]

http://www.fixedpointtheoryandapplications.com/content/2013/1/215
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for all n ∈ J . Since g is continuous, d(x,Fx) ≤ s(g(,d(x,Fx), , , sd(x,Fx))). Using Lem-
ma ., d(x,Fx) = . We have x ∈ Fx. This completes the proof. �

Remark . Taking s =  in Theorem . (case of metric spaces), we recover Theorem ..

The following result is a consequence of Theorem ..

Corollary . Let (X,d) be a b-complete metric space, and let T : X → CB(X) be a multi-
valued mapping. Suppose that there exist α ∈ (, ) and g ∈ Rs such that sα(hs + ) ≤  and
αd(x,Tx)≤ d(x, y) implies that

H(Tx,Ty) ≤ g
(
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

)

for all x, y ∈ X. Then T has a fixed point.

Corollary . Let (X,d) be a b-complete metric space, and let T : X → CB(X) be a multi-
valuedmapping. Suppose that there exists r ∈ (, s ) such that


s(r+)d(x,Tx)≤ d(x, y) implies

H(Tx,Ty) ≤ rmax
{
d(x, y),d(x,Tx),d(y,Ty)

}

for all x, y ∈ X. Then T has a fixed point.

Proof Let g ∈ Rs by g(x,x,x,x,x) = rmax{x,x,x}, where r < 
s . Put α = 

s(r+) . Since
hs = r < 

s and sα(hs + ) ≤ , by using Corollary ., T has a fixed point. �

Remark . Corollary . is an extension of Theorem ..

Corollary . Let (X,d) be a b-complete metric space, and let T : X → CB(X) be a
multi-valued mapping. Suppose that there exists a,b ∈ [, ) and a + b < 

s such that


s(+a+b)d(x,Tx)≤ d(x, y) implies that

H(Tx,Ty) ≤ ad(x, y) + bd(x,Tx) + bd(y,Ty)

for all x, y ∈ X. Then T has a fixed point.

Proof Let g ∈ Rs be g(x,x,x,x,x) = ax + b(x + x), where a + b < 
s . Put α = 

s(+a+b) .
Since hs = a + b < 

s and sα(hs + ) ≤ , by using Corollary ., T has a fixed point. �

The following examples show that we can apply Corollary . but cannot apply Theo-
rem ..

Example . Let X = [, ] and d(x, y) = |x – y| for all x, y ∈ X. It is obvious that d is
a b-metric on X with s =  and (X,d) is complete. Also, d is not a metric on X. Define
T : X → CB(X) by

Tx =

⎧⎨
⎩

{ 
 ,


 } if  ≤ x < ,

{ 
 } if x = .

Let x, y ∈ X. Without loss of generality, take x ≤ y.

http://www.fixedpointtheoryandapplications.com/content/2013/1/215
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If x = y or x, y < , then Tx = Ty. Hence H(Tx,Ty) = .
If x <  and y = , then

H(Tx,Ty) =



≤ 


=



· 

=


d(y,Ty) ≤ rmax

{
d(x, y),d(x,Tx),d(y,Ty)

}
,

where r = 
 <


 =


s . So all the conditions of Corollary . are satisfied. Moreover, 

 and



are the two fixed points of T .
On the other hand, if we choose x = 

 and y = , then

H(Tx,Ty) =


>



· 

=


s + s

max

{


,,



, ,




}

=


s + s
max

{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

So we could not apply Theorem ..

Example . Let X = [,∞) and d(x, y) = |x– y| for all x, y ∈ X. Then (X,d) is a complete
b-metric space with s = . Define T : X → CB(X) by

Tx =
[
,  +

x


]
for all x ∈ X.

Consider H(Tx,Ty) = 
 (x – y) = 

d(x, y) ≤ rmax{d(x, y),d(x,Tx),d(y,Ty)}, where r = 
 <


 =


s for all x, y ∈ X. So all the conditions of Corollary . are satisfied. Moreover,  and 

are the two fixed points of T .
On the other hand, if we choose x =  and y = , then

H(Tx,Ty) =


>


=


s + s

max

{
, , , ,




}

=


s + s
max

{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

So we could not apply Theorem ..
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